## Notes for Lecture 8

In the previous lectures, we have seen that in the reduction form MAX-3-SAT to MAX-3-SAT where each variable occurs a bounded number of times we required the construction of a graph $G(V, E)$ with the following properties:

- There is a constant $d$ such that for every $n$ there is a graph $G(V, E),|V|=n$ with much degree $d$ such that $\forall S \subseteq V,|S| \leq \frac{|V|}{2}$ hte number of edges with one endpoint in $S$ and one endpoint in $V-S$ is $\geq|S|$.

In addition, we required that $\forall n$ this graph should be efficiently constructed. Note that for our purposes, multigraphs are allowed.

Definition 1 (Edge-expansion of a graph) We define the edge-expansion of a graph $G$ :

$$
h(G)=\min _{|S| \leq|V| / 2} \frac{\operatorname{edges}(S, V-S)}{|S|}
$$

In what follows, we consider $G=(V, E)$ to be a given graph and $M \in \mathbb{R}^{V \times V}$ its adjacency matrix, that is

$$
\begin{equation*}
M(u, v):=\text { number of edges between } u \text { and } v \tag{1}
\end{equation*}
$$

Note that $M$ is symmetric.
Definition 2 If $M \in \mathbb{C}^{n \times n}, \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}$ and $x M=\lambda x$ then $\lambda$ is an eigenvalue of $M$ and $x$ is an eigenvector of $M$.

Example 1 Let $M$ be the adjacency matrix of a d-regular graph. Then $(1,1, \cdots, 1) \cdot M=(d, d, \cdots, d)=$ $d(1,1, \cdots, 1)$. Therefore, the vector $(1,1, \cdots, 1)$ is an eigenvector of $M$ with corresponding eigenvalue 1.

Generally, $x M=\lambda x \Rightarrow x(M-\lambda I)=0 \Rightarrow \operatorname{det}(M-\lambda I)=0$. $\operatorname{det}(M-\lambda I)$ is a polynomial in $\lambda$ over $\mathbb{C}$ of degree $n$, and it has $n$ roots (counting multiplicities). Therefore, $\lambda$ is an eigenvalue of $M$ iff it is a root of $\operatorname{det}(M-\lambda I)$ and so, counting multiplicities, $M$ has $n$ eigenvalues.

Theorem 3 If $M \in \mathbb{R}^{n \times n}$ is symmetric then the following properties hold:

1. all $n$ eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ are real
2. one can find an orthogonal set of eigenvectors $x_{1}, \cdots, x_{n}$ such that $x_{i}$ has corresponding eigenvalue $\lambda_{i}$ and $x_{i} \perp x_{j}$ for $i \neq j$.

We note that a multiple of an eigenvector is also an eigenvector and therefore we can assume w.l.o.g. that all the $x_{i}$ have length one.

Lemma 4 Let $M \in \mathbb{R}^{n \times n}$ symmetric. Then $\lambda_{1}=\max _{x \in \mathbb{R}^{n},\|x\|=1}\left\{x M x^{T}\right\}$, where $x M x^{T}=\sum_{i, j} x(i) x(j) M(i, j)$

Proof:

- (a) Assume $\lambda_{1} \geq \lambda_{2} \cdots, \geq \lambda_{n}$. Then $x_{1} M x_{1}^{T}=\lambda_{1} x_{1} x_{1}^{T}=\lambda_{1}$ therefore, $\max _{x \in \mathbb{R}^{n},\|x\|=1}\left\{x M x^{T}\right\} \geq \lambda_{1}$.
- (b) Conversely, let $x$ be any vector of length one, $x \in \mathbb{R}^{n},\|x\|=1$. Let $x=a_{1} x_{1}+a_{2} x_{2}+$ $\cdots+a_{n} x_{n}$.

$$
\begin{array}{r}
x M x^{T}=\sum_{i, j} x(i) x(j) M(i, j)=\left(\sum_{i} a_{i} x_{i}\right) M\left(\sum_{i} a_{i} x_{i}\right)^{T}= \\
\left(\sum_{i} \lambda_{i} a_{i} x_{i}\right)\left(\sum_{j} a_{i} x_{j}\right)^{T}=\sum_{i} \lambda_{i} a_{i}^{2} \leq \max _{i} \lambda_{i} \sum_{i} a_{i}^{2}=\lambda_{1}
\end{array}
$$

Therefore $\max _{x \in \mathbb{R}^{n},\|x\|=1}\left\{x M x^{T}\right\} \leq \lambda_{1}$.

We can also prove that $\lambda_{2}=\max _{x \in \mathbb{R}^{n},\|x\|=1, x \perp x_{1}}\left\{x M x^{T}\right\}$. For (a) use $x=x_{2}$, and conclude $\max _{x \in \mathbb{R}^{n},\|x\|=1, x \perp x_{1}}\left\{x M x^{T}\right\} \geq \lambda_{2}$.
For (b) take any $x \in \mathbb{R}^{n},\|x\|=1, x \perp x_{1}$.
Let $x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$. Then $x M x^{T}=\sum_{i=2}^{n} \lambda_{i} a_{i}^{2}=\lambda_{2}$.
A similar argument shows that

$$
\begin{equation*}
\max \left\{\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\}=\max _{x \perp x_{1},\|x\|=1}\left|x M x^{T}\right| \tag{2}
\end{equation*}
$$

Theorem 5 Let $G$ be a d-regular graph and $M$ its adjacency matrix. Let $\lambda_{1}, \cdots, \lambda_{n}$ its eigenvalues and $x_{1}, \cdots, x_{n}$ the corresponding eigenvectors. Then $\lambda_{1}=d$.

Proof: Trivially, $\lambda_{1} \geq d$ because $d$ is an eigenvalue for some $i$.
Let $x \in \mathbb{R}^{n},\|x\|=1, x M=\lambda_{1} x$

$$
\begin{gathered}
0 \leq \sum_{u, v} M(u, v)(x(u)-x(v))^{2}=2 d \sum_{v} x(v)^{2}-2 \sum_{u, v} x(u) x(v) M(u, v) \\
=2 d\|x\|^{2}-2 x M x^{T}=2 d-2 \lambda_{1} \Rightarrow d \geq \lambda_{1}
\end{gathered}
$$

Since $d \leq \lambda_{1}$ and $d \geq \lambda_{1}$ it follows $d=\lambda_{1}$.
It is helpful to think of the vector $x$ as a labelling of the graph. So far, we have proved that the largest eigenvalue is $d$. Now we will prove that if the second largest eigenvalue is also equal to $d$ then the graph is disconnected.
To see this fact, choose $x_{1}=\frac{1}{\sqrt{n}}(1,1 \cdots, 1)$ and $x_{2}$ another eigenvector orthogonal to $x_{1} . x_{2}$ should be $\left(x_{2}(1), \cdots, x_{2}(n)\right)$ with $\sum_{i} x_{2}(i)=0$. Therefore, some entries should be positive and some others should be negative $\left({ }^{*}\right)$.

$$
0 \leq \sum_{u, v} M(u, v)\left(x_{2}(u)-x_{2}(v)\right)^{2}=2 d-2 \lambda_{2}=0
$$

Therefore, for $x_{2}$ any two adjacent vertices must have identical labels and the only way for condition $\left(^{*}\right)$ to hold is the graph to be disconnected.
Conversely, if the graph is disconnected then $\lambda_{1}=\lambda_{2}=d$ (Exercise).

We now turn the discussion to the edge-expansion of the graph (definition 1). Observe that $h(G)=0$ iff graph is disconnected, equivalently iff $\lambda_{2}=d$. Assume that $\lambda_{1}-\lambda_{2}>\epsilon$. Then $h(G)>\epsilon^{\prime}$. In fact,

Theorem $6 \quad \lambda_{2} \geq d-2 h \Rightarrow h \geq \frac{d-\lambda_{2}}{2}$
Proof: Let $S$ be the set that achieves $h(G)=\frac{\operatorname{edges}(S, V-S)}{|S|}$
Remember that $\lambda_{2}=\lambda_{2}=\max _{x \in \mathbb{R}^{n},\|x\|=1, x \perp x_{1}}\left\{x M x^{T}\right\}$
Define $x^{\prime}$ based on $S$, such that $x^{\prime} \perp(1,1, \cdots, 1)$.
Prove that $x^{\prime} M x^{T} \geq(d-2 h) \cdot\left\|x^{\prime}\right\|^{2}$.
For $x=\frac{x^{\prime}}{\left\|x^{\prime}\right\|^{2}}$ we have $x M x^{T} \geq d-2 h \Rightarrow \lambda_{2} \geq d-2 h$.
Theorem $7 h \leq \sqrt{d\left(d-\lambda_{2}\right)} \Rightarrow h^{2} \geq d\left(d-\lambda_{2}\right)$.

Before we see the proof of the latest theorem let's consider the solution to our previous exercise.
Assume $G$ is disconnected with $S$ and $V-S$ the two connected components.
Let $p=\frac{|S|}{|V|}, q=\frac{|V-S|}{|V|}$. Assign

$$
x(v)= \begin{cases}q & \text { if } v \in S \\ -p & \text { if } v \notin S\end{cases}
$$

First, observe that $x \perp(1,1, \cdots, 1)$ since $\sum_{v} x(v)=q \cdot|S|-p \cdot|V-S|=q p n-p q n=0$.
Second, look at $x M=(\underbrace{d q, d q, \cdots, d q}_{|S|}, \underbrace{-p d,-p d, \cdots,-p d}_{|V-S|})=d x$.
Therefore, if the graph is disconnected we have $\lambda_{2}=d$.
We will see the proof of the latest theorem in the following lecture.

