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Notes for Lecture 9

Last time we have defined the edge expansion of a graph G by

h := min
S⊆V

|S|≤|V |/2

edges(S, V−S)
|S|

, where

edges(A,B) :=
∑
u∈A

∑
v∈B

(#edges between u and v).

We also defined the adjacency matrix M of G by

M(u, v):=#edges between u and v.

Note that G may be a multigraph, i.e., the number of edges between two vertices may exceed 1.
Being a symmetric matrix, M has a real spectrum which can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn,
with the corresponding orthonormal system of eigenvectors x1, x2, . . . , xn. We also proved that, for
a d-regular graph, λ1 = d, x1 = 1/

√
n, where 1:=(1, 1, . . . , 1) and n:=|V |, and that h = 0 if and

only if λ1 = λ2.

The goal of this lecture is to prove the following theorem.

Theorem 1 For a d-regular graph,

1. h ≥ (d− λ2)/2,

2. h ≤
√

2d(d− λ2).

Proof: In the previous lecture, we have proved that

λ2 = max
x⊥1

xMxT

xxT
.

Consider the quadratic form
∑

u,v M(u, v)(x(u)− x(v))2. We can rewrite it as∑
u,v

M(u, v)(x(u)− x(v))2 = 2d
∑

v

x2(v)− 2
∑
u,v

M(u, v)x(u)x(v) = 2dxxT − 2xMxT . (1)

Therefore

λ2 = max
x⊥1

2dxxT −
∑

u,v M(u, v)(x(u)− x(v))2

2xxT
= d−min

x⊥1

∑
u,v M(u, v)(x(u)− x(v))2

2xxT
.

To prove the first statement of the theorem, take a set S such that h = edges(S, V−S)/|S| and
|S| ≤ |V |/2. Let p:=|S|/n, q:=1− p = |V−S|/n, and define

x(v):=
{

q v ∈ S,
−p v /∈ S
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For this vector x, we get xxT = npq2+nqp2 = npq(p+q) = npq, whereas x ⊥ 1, and
∑

u,v M(u, v)(x(u)−
x(v))2 = 2hnp(p + q)2 = 2hnp. Hence

d− λ2 ≤
2hnp

2npq
=

h

q
≤ 2h.

This proves the first statement.

To prove the second statement, we will establish three auxiliary facts.

Claim 1. For all y ∈ Rn,∑
u,v

M(u, v)|y2(u)− y2(v)| ≤
√

2dyyT − 2yMyT
√

4dyyT .

A proof of Claim 1 follows from the Cauchy-Schwarz inequality and from formula (1):∑
u,v

M(u, v)|y2(u)− y2(v)| =
∑
u,v

M(u, v)|y(u)− y(v)| · |y(u) + y(v)|

≤
√∑

u,v

M(u, v)(y(u)− y(v))2
√∑

u,v

M(u, v)(y(u) + y(v))2

≤
√∑

u,v

M(u, v)(y(u)− y(v))2
√∑

u,v

2M(u, v)(y2(u) + y2(v))

=
√

2dyyT − 2yMyT
√

4dyyT .

Claim 2. Suppose x is an eigenvector corresponding to eigenvalue λ2: xM = λ2x and such that
#{v : x(v) > 0} ≤ n/2 (the latter can always be achieved by replacing x by −x if necessary).
Define a vector y by y(v):=max{x(v), 0}. Then yM ≥ λ2y componentwise.

Indeed, if x(v) ≥ 0, then (yM)(v) ≥ (xM)(v) = λ2x(v) = λ2y(v). If x(v) < 0, then y(v) = 0,
but (yM)(v) ≥ 0.

Claim 3. For the vector y defined in Claim 2,∑
u,v

M(u, v)|y2(u)− y2(v)| ≥ 2hyyT .

Here is a proof of Claim 3: Let us arrange the components of y in nonincreasing order

y(v1) ≥ y(v2) ≥ · · · ≥ y(vn).

Suppose t of these components are strictly positive: y(vt) > y(vt+1) = · · · = y(vn) = 0.
Denote by K the set where the jumps occur: K:={k : y(vk) > y(vk+1)}. With this notation,
rewrite the sum

∑
u,v M(u, v)|y2(u)− y2(v)| as

2
t∑

i=1

n∑
j=i+1

M(vi, vj)(y2(vi)− y2(vj)) = 2
∑
k∈K

∑
i≤k

∑
j>k

M(vi, vj)(y2(vk)− y2(vk+1)).
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The last equality comes from the fact that in case there are several elements of the set K
between two indices i and j, the sum

∑
k∈K,i≤k<j(y

2(vk) − y2(vk+1)) telescopes to y2(vi) −
y2(vj).

Now, for each k = 1, . . . , n, denote by Lk the set {vi : i ≤ k}; for k = 0, set L0:=∅. With this
notation, we have

∑
i≤k

∑
j>k M(vi, vj) ≥ h|Lk|, so

2
∑
k∈K

∑
i≤k

∑
j>k

M(vi, vj)(y2(vk)− y2(vk+1)) ≥ 2
∑
k∈K

h|Lk|(y2(vk)− y2(vk+1)).

Using summation by parts and denoting by k′ the element of K preceding k, the last expression
can be written as

2h
∑
k∈K

(|Lk| − |Lk′ |)y2(vk) = 2h
∑
k∈K

#{v : y(v) = y(vk)}y2(vk) = 2h
∑

v

y2(v) = 2hyyT .

This proves Claim 3.

Finally, we can combine the three results we just proved. First not that the vector y from Claim 2
is not a zero vector, since x is a nonzero vector orthogonal to the vector 1, hence x has nonzero
entries of both signs. Therefore,

h ≤
∑

u,v M(u, v)|y2(u)− y2(v)|
2yyT

≤
√

2dyyT − 2yMyT
√

4dyyT

2yyT

≤
√

2dyyT − 2λ2yyT
√

4dyyT

2yyT
=

√
2d(d− λ2).

This finishes the proof. �
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