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Notes for Lecture 9

Last time we have defined the edge expansion of a graph G by
edges(S,V-25)

h = min T ,  where
[SI<IV]/2
edges(4,B) = Z Z(#edges between u and v).
ucAveEB

We also defined the adjacency matric M of G by
M (u,v):=#edges between u and v.

Note that G may be a multigraph, i.e., the number of edges between two vertices may exceed 1.
Being a symmetric matrix, M has a real spectrum which can be ordered as Ay > Ao > -+ > A,
with the corresponding orthonormal system of eigenvectors x1, 2, ..., z,. We also proved that, for
a d-regular graph, \y = d, 1 = 1/y/n, where 1:=(1,1,...,1) and n:=|V|, and that h = 0 if and
only if )\1 = AQ.

The goal of this lecture is to prove the following theorem.

Theorem 1 For a d-regular graph,
1. h> (d— AQ)/Q,
2. h < \/2d(d — X2).

PROOF: In the previous lecture, we have proved that

aMzT
Ao = max T
zx1l1l XX

Consider the quadratic form 3, M (u,v)(2(u) — z(v))%. We can rewrite it as
Z M (u,v)(z(u) — z(v)? = 2dz:):2(v) -2 Z M (u,v)z(uw)z(v) = 2dza’ — 2eMazT. (1)

Therefore

S, M) @) 5, M) - o)
2= U 22T Y 2zl '

To prove the first statement of the theorem, take a set S such that h = edges(S,V—S)/|S| and
|S| < |V]/2. Let p:=|S|/n, ¢:=1 —p =|V—=S|/n, and define

q vES,

x(v)::{ —p v¢gS

1



For this vector , we get 2z’ = npg®+ngp* = npq(p+q) = npq, whereas z L 1, and > M (u,v)(2(u)—
z(v))? = 2hnp(p + q)? = 2hnp. Hence
2hnp  h

d— )y < == = = < 2h.
2npq  q

This proves the first statement.

To prove the second statement, we will establish three auxiliary facts.
Claim 1. For all y € R,

> M(u,v)|y? (u) — y?(v)] < V2dyyT — 2yMyT\/AdyyT

A proof of Claim 1 follows from the Cauchy—Schwarz inequality and from formula (1):

ZMuvly \—ZMuvly —y()] - ly(u) +y(v)|
ZMUU ZMUU +y(v))?
ZMUU \/ZQMUU (u) +y%(v))

= /2dyyT — 2yMyT\/AdyyT .

Claim 2. Suppose z is an eigenvector corresponding to eigenvalue Ao: M = Aoz and such that
#{v:z(v) > 0} < n/2 (the latter can always be achieved by replacing x by —z if necessary).
Define a vector y by y(v):=max{z(v),0}. Then yM > Aoy componentwise.
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Indeed, if z(v

) >0, then (yM)(v) > (xM)(v) = Aaz(v) = Aay(v). If z(v) <0, then y(v) =0,
but (yM)(v) >0

Claim 3. For the vector y defined in Claim 2,

> M(uv)|y? () = y?(v)] = 2hyy".

Here is a proof of Claim 3: Let us arrange the components of y in nonincreasing order

y(v1) = y(va) = - = y(vn).

Suppose t of these components are strictly positive: y(v¢) > y(ver1) = -+ = y(vn) = 0.
Denote by K the set where the jumps occur: K:={k : y(vx) > y(vi+1)}. With this notation,
rewrite the sum 3, M (u, )|y?(u) — y?(v)] as

23" 37 Mo )62 — 2e) =2 3 35 Mot ) (2 00) — 12 (0ksr))

i=1 j=i+1 keK i<k j>k



The last equality comes from the fact that in case there are several elements of the set K
between two indices ¢ and j, the sum ZkeKqu(yQ(vk) — y?(vp41)) telescopes to y2(v;) —
y?(v5).

Now, for each k = 1,...,n, denote by L the set {v; : i < k}; for k = 0, set Lo:=0. With this
notation, we have 3, > .y M(vi,v;) > h|Lg], so

23 3 ) M (i v) (P (vr) = ¥ (k1)) = 2> L (Y2 (k) — yP (0k41).-

keK i<k j>k keK

Using summation by parts and denoting by &’ the element of K preceding k, the last expression
can be written as

20 (ILk| = L )yP(vr) = 20 )~ #{v 2 y(v) = y(or) }? (vk) = 20 ) P (v) = 2hyy” .

keK keK
This proves Claim 3.
Finally, we can combine the three results we just proved. First not that the vector y from Claim 2

is not a zero vector, since x is a nonzero vector orthogonal to the vector 1, hence x has nonzero
entries of both signs. Therefore,

< 2uwM (u, )|y (u) — y*(v)] _ V/2dyyT — 2yMyT /AdyyT

2yyT 2yyT
V2dyyT — 2XayyT \/AdyyT
= \/2d(d — )\y).
- 2yy” (@=2)
This finishes the proof. O



