Notes for Lecture 9

Last time we have defined the edge expansion of a graph G by

$$
\begin{aligned}
h & :=\min _{\substack{S \subseteq V \\
|S| \leq|V| / 2}} \frac{\operatorname{edges}(S, V-S)}{|S|}, \quad \text { where } \\
\operatorname{edges}(A, B) & :=\sum_{u \in A} \sum_{v \in B}(\# \text { edges between } u \text { and } v) .
\end{aligned}
$$

We also defined the adjacency matrix M of G by

$$
M(u, v):=\# \text { edges between } u \text { and } v .
$$

Note that G may be a multigraph, i.e., the number of edges between two vertices may exceed 1 . Being a symmetric matrix, M has a real spectrum which can be ordered as $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, with the corresponding orthonormal system of eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. We also proved that, for a d-regular graph, $\lambda_{1}=d, x_{1}=\mathbf{1} / \sqrt{n}$, where $\mathbf{1}:=(1,1, \ldots, 1)$ and $n:=|V|$, and that $h=0$ if and only if $\lambda_{1}=\lambda_{2}$.
The goal of this lecture is to prove the following theorem.
Theorem 1 For a d-regular graph,

1. $h \geq\left(d-\lambda_{2}\right) / 2$,
2. $h \leq \sqrt{2 d\left(d-\lambda_{2}\right)}$.

Proof: In the previous lecture, we have proved that

$$
\lambda_{2}=\max _{x \perp 1} \frac{x M x^{T}}{x x^{T}} .
$$

Consider the quadratic form $\sum_{u, v} M(u, v)(x(u)-x(v))^{2}$. We can rewrite it as

$$
\begin{equation*}
\sum_{u, v} M(u, v)(x(u)-x(v))^{2}=2 d \sum_{v} x^{2}(v)-2 \sum_{u, v} M(u, v) x(u) x(v)=2 d x x^{T}-2 x M x^{T} . \tag{1}
\end{equation*}
$$

Therefore

$$
\lambda_{2}=\max _{x \perp 1} \frac{2 d x x^{T}-\sum_{u, v} M(u, v)(x(u)-x(v))^{2}}{2 x x^{T}}=d-\min _{x \perp 1} \frac{\sum_{u, v} M(u, v)(x(u)-x(v))^{2}}{2 x x^{T}} .
$$

To prove the first statement of the theorem, take a set S such that $h=\operatorname{edges}(S, V-S) /|S|$ and $|S| \leq|V| / 2$. Let $p:=|S| / n, q:=1-p=|V-S| / n$, and define

$$
x(v):=\left\{\begin{array}{rl}
q & v \in S, \\
-p & v \notin S
\end{array}\right.
$$

For this vector x, we get $x x^{T}=n p q^{2}+n q p^{2}=n p q(p+q)=n p q$, whereas $x \perp \mathbf{1}$, and $\sum_{u, v} M(u, v)(x(u)-$ $x(v))^{2}=2 h n p(p+q)^{2}=2 h n p$. Hence

$$
d-\lambda_{2} \leq \frac{2 h n p}{2 n p q}=\frac{h}{q} \leq 2 h .
$$

This proves the first statement.
To prove the second statement, we will establish three auxiliary facts.
Claim 1. For all $y \in \mathbb{R}^{n}$,

$$
\sum_{u, v} M(u, v)\left|y^{2}(u)-y^{2}(v)\right| \leq \sqrt{2 d y y^{T}-2 y M y^{T}} \sqrt{4 d y y^{T}}
$$

A proof of Claim 1 follows from the Cauchy-Schwarz inequality and from formula (1):

$$
\begin{array}{rl}
\sum_{u, v} & M(u, v)\left|y^{2}(u)-y^{2}(v)\right|=\sum_{u, v} M(u, v)|y(u)-y(v)| \cdot|y(u)+y(v)| \\
& \leq \sqrt{\sum_{u, v} M(u, v)(y(u)-y(v))^{2}} \sqrt{\sum_{u, v} M(u, v)(y(u)+y(v))^{2}} \\
& \leq \sqrt{\sum_{u, v} M(u, v)(y(u)-y(v))^{2}} \sqrt{\sum_{u, v} 2 M(u, v)\left(y^{2}(u)+y^{2}(v)\right)} \\
& =\sqrt{2 d y y^{T}-2 y M y^{T}} \sqrt{4 d y y^{T}}
\end{array}
$$

Claim 2. Suppose x is an eigenvector corresponding to eigenvalue $\lambda_{2}: x M=\lambda_{2} x$ and such that $\#\{v: x(v)>0\} \leq n / 2$ (the latter can always be achieved by replacing x by $-x$ if necessary).
Define a vector y by $y(v):=\max \{x(v), 0\}$. Then $y M \geq \lambda_{2} y$ componentwise.
Indeed, if $x(v) \geq 0$, then $(y M)(v) \geq(x M)(v)=\lambda_{2} x(v)=\lambda_{2} y(v)$. If $x(v)<0$, then $y(v)=0$, but $(y M)(v) \geq 0$.

Claim 3. For the vector y defined in Claim 2,

$$
\sum_{u, v} M(u, v)\left|y^{2}(u)-y^{2}(v)\right| \geq 2 h y y^{T}
$$

Here is a proof of Claim 3: Let us arrange the components of y in nonincreasing order

$$
y\left(v_{1}\right) \geq y\left(v_{2}\right) \geq \cdots \geq y\left(v_{n}\right)
$$

Suppose t of these components are strictly positive: $y\left(v_{t}\right)>y\left(v_{t+1}\right)=\cdots=y\left(v_{n}\right)=0$. Denote by K the set where the jumps occur: $K:=\left\{k: y\left(v_{k}\right)>y\left(v_{k+1}\right)\right\}$. With this notation, rewrite the $\operatorname{sum} \sum_{u, v} M(u, v)\left|y^{2}(u)-y^{2}(v)\right|$ as

$$
2 \sum_{i=1}^{t} \sum_{j=i+1}^{n} M\left(v_{i}, v_{j}\right)\left(y^{2}\left(v_{i}\right)-y^{2}\left(v_{j}\right)\right)=2 \sum_{k \in K} \sum_{i \leq k} \sum_{j>k} M\left(v_{i}, v_{j}\right)\left(y^{2}\left(v_{k}\right)-y^{2}\left(v_{k+1}\right)\right) .
$$

The last equality comes from the fact that in case there are several elements of the set K between two indices i and j, the sum $\sum_{k \in K, i \leq k<j}\left(y^{2}\left(v_{k}\right)-y^{2}\left(v_{k+1}\right)\right)$ telescopes to $y^{2}\left(v_{i}\right)-$ $y^{2}\left(v_{j}\right)$.
Now, for each $k=1, \ldots, n$, denote by L_{k} the set $\left\{v_{i}: i \leq k\right\}$; for $k=0$, set $L_{0}:=\emptyset$. With this notation, we have $\sum_{i \leq k} \sum_{j>k} M\left(v_{i}, v_{j}\right) \geq h\left|L_{k}\right|$, so

$$
2 \sum_{k \in K} \sum_{i \leq k} \sum_{j>k} M\left(v_{i}, v_{j}\right)\left(y^{2}\left(v_{k}\right)-y^{2}\left(v_{k+1}\right)\right) \geq 2 \sum_{k \in K} h\left|L_{k}\right|\left(y^{2}\left(v_{k}\right)-y^{2}\left(v_{k+1}\right)\right) .
$$

Using summation by parts and denoting by k^{\prime} the element of K preceding k, the last expression can be written as

$$
2 h \sum_{k \in K}\left(\left|L_{k}\right|-\left|L_{k^{\prime}}\right|\right) y^{2}\left(v_{k}\right)=2 h \sum_{k \in K} \#\left\{v: y(v)=y\left(v_{k}\right)\right\} y^{2}\left(v_{k}\right)=2 h \sum_{v} y^{2}(v)=2 h y y^{T} .
$$

This proves Claim 3.
Finally, we can combine the three results we just proved. First not that the vector y from Claim 2 is not a zero vector, since x is a nonzero vector orthogonal to the vector $\mathbf{1}$, hence x has nonzero entries of both signs. Therefore,

$$
\begin{aligned}
h & \leq \frac{\sum_{u, v} M(u, v)\left|y^{2}(u)-y^{2}(v)\right|}{2 y y^{T}} \leq \frac{\sqrt{2 d y y^{T}-2 y M y^{T}} \sqrt{4 d y y^{T}}}{2 y y^{T}} \\
& \leq \frac{\sqrt{2 d y y^{T}-2 \lambda_{2} y y^{T}} \sqrt{4 d y y^{T}}}{2 y y^{T}}=\sqrt{2 d\left(d-\lambda_{2}\right)}
\end{aligned}
$$

This finishes the proof.

