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Notes for Lecture 11

In the previous lecture, we claimed it is possible to “combine” a d-regular graph on D vertices and a
D-regular graph on n vertices to obtain a d2-regular graph on nD vertices which is a good expander
if the two starting graphs are. Let the two starting graphs be denoted by H and G respectively.
Then, the resulting graph, called the zig-zag product of the two graphs is denoted by GZ©H.

Using λ(G) to denote the eigenvalue with the second-largest absolute value for a graph G, we
claimed that if λ(H) ≤ βd and λ(G) ≤ αD, then λ(GZ©H) ≤ (α + β + β2)d2. In this lecture we
shall describe the construction for the zig-zag product and prove this claim.

1 Replacement product of two graphs

We first describe a simpler product for a “small” d-regular graph on D vertices (denoted by H)
and a “large” D-regular graph on n vertices (denoted by G). Assume that for each vertex of G,
there is some ordering on its D neighbors. Then we construct the replacement product (Figure 1)
G r©H as follows:

• Replace each vertex of G with a copy of H (henceforth called a cloud). For i ∈ V (G), j ∈
V (H), let vij denote the jth vertex in the ith cloud.

• Let (i1, i2) ∈ E(G) be such that i2 is the jth
1 neighbor of i1 and i1 is the jth

2 neighbor of i2. Then
(vi1j1 , vi2j2) ∈ E(G r©H). Also, if (j1, j2) ∈ E(H), then ∀i ∈ V (G) (vij1 , vij2) ∈ E(G r©H).

Note that the replacement product constructed as above has nD vertices and is (d + 1)-regular.

2 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product GZ©H is constructed as follows (Figure
2):

• The vertex set V (GZ©H) is the same as in the case of the replacement product.

• (vi1j1 , vi2j2) ∈ E(GZ©H) if there exist j3 and j4 such that (vi1j1 , vi1j3), (vi1j3 , vi2j4) and
(vi2j4 , vi2j2) are in E(G r©H) i.e. vi2j2 can be reached from vi1j1 by taking a step in the
first cloud, then a step between the clouds and then a step in the second cloud (hence the
name!).

It is easy to see that the zig-zag product is a d2-regular graph on nD vertices. Let M ∈ R([n]×[D])×([n]×[D])

be the adjacency matrix of GZ©H. Using the fact that each edge in G r©H is made up of three steps
in G r©H, we can write M as BAB, where

B[vi1j1 , vi2j2 ] =
{

0 if i1 6= i2
#edges between j1 and j2 in H if i1 = i2
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Figure 1: The replacement product of G and H (not all edges shown)

A[vi1j1 , vi2j2 ] =
{

1 if i2 is the jth
1 neighbor of i1 and i1 is the jth

2 neighbor of i2
0 otherwise

Here B is the adjacency matrix of the replacement product after deleting all the edges between
clouds and A is the adjacency matrix containing only the edges between clouds. Note that A is the
adjacency matrix for a matching and is hence a permutation matrix.

3 Eigenvalues of the zig-zag graph

Let 1 denote the vector which is 1 in all coordinates and let λ(G) denote the eigenvalue with the
second-largest absolute value for the graph G with adjacency matrix M . We prove the following
theorem:

Theorem 1 If G is a D-regular graph on n vertices and H is a d-regular graph on D vertices such
that λ(G) ≤ αD and λ(H) ≤ βd, then λ(GZ©H) ≤ (α + β + β2)d2

We know that
λ(G) = max

x⊥1,||x||=1

∣∣xMxT
∣∣
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Figure 2: The zig-zag product of G and H and the underlying replacement product (not all edges
shown)

Thus, it suffices to obtain a bound on the above expression for GZ©H when G and H are good
expanders. To provide an intuition for the proof consider two extreme cases for a cut in GZ©H. If
the cut mostly includes or excludes entire clouds, then it can be viewed as a cut in G the number
of edges crossing it are almost the same as for the corresponding cut in G. If the cut splits almost
all clouds in two parts, then one may think of it as n cuts in n copies of H. In both these cases
then the number of edges crossing the cut will be “large” due the good expansion of G and H
respectively. The following proof essentially breaks any vector x into the algebraic analogs of these
two extremes.

Proof: Given any vector x ∈ RnD, x ⊥ 1, one can write it as x = x‖ + x⊥ where x‖ is constant
on each cloud and x⊥, restricted to any cloud is perpendicular to 1D (the all 1’s vector in D
dimensions). In particular

x‖(vij) =
1
D

∑
k

x(vik)

x⊥(vij) = x(vij)− x‖(vij)

We have ∣∣xMxT
∣∣ =

∣∣xBABxT
∣∣ =

∣∣(x‖ + x⊥)BAB(x‖ + x⊥)
∣∣

≤
∣∣∣x‖BABxT

‖

∣∣∣ + 2
∣∣x‖BABxT

⊥
∣∣ +

∣∣x⊥BABxT
⊥
∣∣
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We now analyze each of these terms separately.

∣∣x⊥BABxT
⊥
∣∣ =

∣∣x⊥BA(x⊥B)T
∣∣

≤ ||x⊥BA|| · ||x⊥B|| (by Cauchy − Schwarz)
= ||x⊥B|| · ||x⊥B|| (since A is a permutation matrix)
≤ βd ||x⊥|| · βd ||x⊥||

⇒
∣∣x⊥BABxT

⊥
∣∣ ≤ β2d2 ||x⊥||2 (1)

In the above ||x⊥B|| ≤ βd ||x|| follows from the fact that the restriction of x⊥ to any cloud is
perpendicular to 1D and that B is a block-diagonal matrix whose action on the restriction is the
same as that of the adjacency matrix of H. For the mixed term,∣∣∣x⊥BABxT

‖

∣∣∣ =
∣∣x⊥BA(x‖B)T

∣∣
= 2d

∣∣∣x⊥BAxT
‖

∣∣∣ (∵ x‖ is parallel to 1D in each cloud)

≤ ||x⊥B|| ·
∣∣∣∣x‖∣∣∣∣

≤ 2d · βd ||x⊥|| · ||x⊥||
≤ d2β(||x⊥||2 + ||x⊥||2) (by Cauchy − Schwarz)

⇒
∣∣∣x⊥BABxT

‖

∣∣∣ ≤ βd2(
∣∣∣∣x‖∣∣∣∣2 + ||x⊥||2) = βd2 ||x||2 (2)

Let y ∈ Rn be the vector defined as y(i) = 1
D

∑
j x(vij) and let C be the adjacency matrix for G.

Then ∣∣∣x‖BABxT
‖

∣∣∣ = d2
∣∣∣x‖AxT

‖

∣∣∣
= d2

∣∣∣∣∣∣
∑

i1,j1,i2,j2

x‖(vi1j1)A(vi1j1 , vi2j2)x‖(vi1j1)

∣∣∣∣∣∣
= d2

∣∣∣∣∣∣
∑
i1,i2

y(i1)y(i2)C(i1, i2)

∣∣∣∣∣∣
= d2

∣∣yCyT
∣∣

≤ d2 ||yC|| · ||y|| (by Cauchy − Schwarz)

≤ d2αD ||y||2 = d2α
∣∣∣∣x‖∣∣∣∣2

⇒
∣∣∣x‖BABxT

‖

∣∣∣ ≤ d2α
∣∣∣∣x‖∣∣∣∣2 (3)

Note that ||yC|| ≤ αD ||y|| follows from the bound on λ(G) and the fact that y · 1 =
∑

i y(i) =
1
D

∑
i

∑
j x(vij) = 0. Using equations (1), (2) and (3) gives∣∣xBABxT

∣∣ ≤ αd2
∣∣∣∣x‖∣∣∣∣2 + β2d2 ||x⊥||+ βd2 ||x||2

⇒
∣∣xBABxT

∣∣ ≤ d2(α + β + β2) ||x||2
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Using the previous characterization of eigenvalues, we have

λ(GZ©H) = max
x⊥1,||x||=1

∣∣xBABxT
∣∣ ≤ d2(α + β + β2)

�
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