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Notes for Lecture 12

In the last lecture we described the construction of the zigzag product of graphs and completed the

analysis of its expansion. This was the final building block for our construction of arbitrarily large

d-regular expanders, for a constant d. In particular, we had d = 372 and achieved λ2 ≤ λ < d/2.

Notice that, if we needed a larger expansion, we could always recur to graph powering. Given G,

with adiacency matrix M(G) and second largest eigenvalue λ2(G), we would then have M(Gk) =

[M(G)]k and λ2(Gk) = [λ2(G)]k. In the particular case of our construction, k-powering would

produce a graph with eigenvalue λ2 < (d
2)k and degree dk, yielding an arbitrarily large gap. By

the bounds on expansion of Lecture 9, Theorem 1, we obtain a lowerbound on the expansion of

dk(1 − 1
2k ), which is larger than 1 already for k=1, and it is hence sufficient for the reduction we

presented in Lecture 3 from MAX3SAT to MAX3SAT with bounded occurence of variables.

The following claim (Theorem 3, Lecture 5) was crucial in our amplification of the gap for a PCP -

verifier, using random walks:

Theorem 1 There exists d such that for every n there is a d-regular graph G = (V,E) with n

vertices such that for every B ⊂ V s.t. |B| ≤ |V |
2 = n

2 ,

Pr[random walk in G of length k is completely contained in B] ≤
(

2
3

)k

Here and in the rest of this lecture, a random walk has starting point uniform over V and at each

step chooses with equal probability one of the d edges incident to the current vertex.

Today we are going to establish Theorem 1 by showing the more general result:

Theorem 2 Let G = (V,E) be a d-regular expander with λ(G) ≤ αd for α < 1. For B ⊂ V , let

β = |B|
|V | . Then:

Pr[random walk in G of length k is completely contained in B] ≤ (α + β)k

Note that the starting point of the walk needs to be random. The result does not hold for an

arbitrary deterministic starting vertex in B, as such vertex could lie deep within B and require

many steps of the random walk to exit B.
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Theorem 2 is sufficient to ensure Theorem 1 if we have α ≤ 1
6 , which we can obtain from our

construction of expander graphs through powering, as described above. Moreover, amplifying the

spectral gap of G through graph powering, we can make the probability in Theorem 1 as small as
1
2 + ε for any ε > 0.

Before stating the proof for Theorem 2, we introduce the following definitions, which apply to a

d-regular graph G = (V,E), |V | = n with adiacency matrix M .

Definition 3 (Transition Matrix) The transition matrix P is the matrix P = 1
dM .

Each entry P (u, v) of the matrix P equals the number of edges between u and v divided by the

degree, i.e. the probability that a random walk currently at u proceeds to v in the next step.

Similary, P 2(u, v) =
∑

w∈V P (u, w)P (w, v) equals the probability that a random walk at u moves

to v in two steps. By induction, we can generalize to claim that P k(u, v) equals the probability of

a transition from u to v in k steps. Finally, if M had eigenvalues d, λ2, · · · , λn, P has eigenvalues

1, λ2
d , · · · , λn

d .

Consider now a vector x ∈ RV representing a probability distribution over V , i.e. for all u ∈ V

x(u) ≥ 0,
∑

v∈V x(v) = 1. Then xP =
∑

v∈V x(u)P (u, v) equals the distribution vector derived

from sampling a starting point from distribution x and taking one step of the random walk defined

by P . Similarly xP k yields the distribution vector of a walk starting at a vertex sampled from x

and taking k steps according to P .

Definition 4 πu = ( 1
n , · · · , 1

n) is the vector representing the uniform distribution over vertices.

Definition 5 Let B be the matrix:

B(u, v) =

{
1 u = v, u ∈ B

0 otherwise

In words, the multiplication xB sets all entries of x not in B to 0.

Proof

Let v0, · · · , vk be the vertices visited by the random walk under consideration.
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Claim 6

Pr[random walk of length k is completely contained in B] = ||πuB(PB)k||1

Proof: Consider µB(PB)k(v) for v ∈ B and any starting distribution µ. We claim this equals the

probability that a random walk of length k, with starting distribution µ, is completely contained

in B and vk = v. This is trivially true for k = 0 and, by induction:

µB(PB)k(v) = [µB(PB)k−1][PB(v)] =

=
∑
w∈B

Pr[v0, · · · , vk−1 = w ∈ B]Pr[vk = v ∈ B|vk−1 = w] =

= Pr[v0, · · · , vk = v ∈ B]

Applying this to µ = πu, we obtain:

Pr[r.w. of length k is completely contained in B] =
∑
v∈V

πuB(PB)k(v) = ||πuB(PB)k||1

as required. �

The following claim helps us to bound this quantity.

Claim 7 For every x ∈ RV :

||xBPB||2 ≤ (α + β)||x||2

The main theorem follows directly from this claim as:

||πuB(PB)k||1 ≤
√

n||πuB(PB)k||2 ≤
√

n||πu(BPB)k||2

where the first inequality follows from Cauchy-Schwarz and the second is due to the fact that

BB = B as B is diagonal with entries in 0, 1. By applying the former claim k times we then

obtain:

lcl||πuB(PB)k||1 ≤
√

n||πu(BPB)k||2 ≤
√

n(α + β)||πu(BPB)k−1||2 ≤

= · · · ≤
√

n(α + β)k||πu||2 =
√

n(α + β)k 1√
n

= (α + β)k

We are then left with proving Claim 7.
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Proof: In a fashion similar to that in the proof of the spectral gap of the zigzag product, we

decompose xB in two components. The first will be constant in every entry and will have its

magnitude reduced by β through multiplication by B. The second, perpendicular to πu, will be

shortened by α through multiplication by P . Formally, let xB = (xB)|| + (xB)⊥, where (xB)|| =(
1
n

∑
v∈V (xB)(v)

)
·~1 and (xB)⊥ = (xB)− (xB)||. Then, we have:

||xBPB||2 ≤ ||(xB)||PB||2 + ||(xB)⊥PB||2 (1)

by triangle inequality. Here we can see that (xB)||P = (xB)|| by construction of (xB)||. Moreover,

as (xB)|| is constant ||(xB)||B||2 =
√

β||(xB)||||2. But:

||(xB)||||2 =

√√√√n

(
1
n

∑
v∈V

(xB)(v)

)2

=

√
1
n

(
∑
v∈V

(xB)(v))2 =

=
1√
n

∑
v∈V

(xB)(v)

And, by Cauchy-Schwarz we get:

||(||(xB)||2 =
1√
n

√
|B|
√∑

v∈V

x2(v) =
√

β||x||2

So, we obtain ||(xB)||PB||2 ≤ β||x||2.

To bound the second term in the sum in Equation 1, we use the spectral gap of P . Recall that by the

construction of the transition matrix and the assumption of the theorem, P has largest eigenvalue

1 and other eigenvalues λ2
d , · · · , λn

d , all less or equal to α in absolute value. Let y1, y2, · · · , yn be an

orthonormal basis of eigenvectors for P . Let z be any vector perpendicular to ~1 and z =
∑n

i=2 ziyi.

Then:

||zP ||2 = ||1
d

n∑
i=2

ziλiyi||2 ≤
1
d

√√√√ n∑
i=2

z2
i λ2

i ≤

= max
i=2,··· ,n

∣∣∣∣λi

d

∣∣∣∣
√√√√ n∑

i=2

z2
i ≤ α||z||2

In particular, this implies ||(xB)⊥PB||2 ≤ ||(xB)⊥P ||2 ≤ α||(xB)⊥||2 ≤ α||x||2. Finally, this yields:

||xBPB||2 ≤ ||(xB)||PB||2 + ||(xB)⊥PB||2 ≤ (α + β)||x||2
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Notice that from the same argument we could have obtained ||xBPB||2 ≤ max(α,
√

β)||x||2. But

in our application α can be made arbitrarily small, so that α + β is a better choice.

Relation between spectral gap and diameter of graph

In this section we prove the following theorem:

Theorem 8 Let G=(V,E) be a d-regular graph with λ(G) ≤ αd. Then, the diameter of G is

O
(

1
1−α log n

)
.

Proof: Let P be transition matrix of the random walk of G, i.e. P (u, v) = 1
dMG(u, v). Then,

the largest eigenvalue of P is 1 and all remaining eigenvalues λ2, · · · , λn have absolute value less or

equal to α. �

Let x be a vector representing a distribution over vectors, ∀v ∈ V x(v) ≥ 0 and
∑

v∈V x(v) = 1.

As 〈x, πu〉 = 1, πu − x is perpendicular to ~1. Hence, for any k:

||πu − xP k||2 = ||(πu − x)P k||2 ≤ αk||πu − x||2

Suppose x represents a probability distribution with all probability mass concentrated at one vertex.

Then ||πu − x||2 =
√

(n− 1) 1
n2 +

(
n−1

n

)2 ≤ 2. Hence, for k = log 1
α
(10n) = O( 1

1−α log n):

||πu − xP k||2 ≤ 2αk ≤ 1
5n

which implies that for every vertex v:

|πu(v)− xP k(v)| ≤ 1
5n

and hence xP k(v) > 0 for all v ∈ V , implying that the diameter of G is O( 1
1−α log n).
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