Notes for Lecture 20

In this lecture, we are still caught up in the "alphabet-reduction phase" of Dinur's proof of the PCP theorem. In all of the following, assume that $\Sigma=\{1, \ldots, k\}$ and $\Gamma=\{1, \ldots, h\}$ with $h \geq k$.
We need an encoding procedure E, a decoding procedure D, and a testing procedure T as follows:

- $E: \Sigma \rightarrow\left\{\{0,1\}^{\Sigma} \rightarrow\{0,1\}\right\}$, and $E: \Sigma \rightarrow\left\{\{0,1\}^{\Gamma} \rightarrow\{0,1\}\right\}$ defined by

$$
E(a)\left(x_{1}, \ldots, x_{k}\right)=x_{a}
$$

- $D(A)=a$, where a minimizes the Hamming distance between $E(a)$ and A or $-A$ (whichever is closer);
- And T is has the following properties:

1. If $A=E(a), B=E(b)$ and $\pi(b)=a$, then $T(A, B, \pi)$ accepts w.p. 1;
2. If $T(A, B, \pi)$ accepts w.p. $\geq .99$, then $\pi(D(B))=D(A)$.
3. T uses only $O(1)$ queries into A, B

Initially, we think of T implemented as follows:

```
Testing procedure, \(\mathrm{T}:(\{0,1\}\)-version)
INPUT: \(A:\{0,1\}^{\Sigma} \rightarrow\{0,1\}, B:\{0,1\}^{\Gamma} \rightarrow\{0,1\}\), and \(\pi: \Gamma \rightarrow \Sigma\)
Choose \(x \in\{0,1\}^{\Sigma}\) and \(w, y, z \in\{0,1\}^{\Gamma}\) u.a.r.
accept iff
    (1) \(A(x)+B(y)+B(z)=B(x \circ \pi+y+z)\), and
    (2) \(B(z)=0 \Rightarrow B(y)=B(z \wedge w+y)\)
```

In the algorithm, + denotes bitwise xor (addition in $\mathbb{Z} / 2 \mathbb{Z}$), and \wedge denotes bitwise conjunction. To interpret the first condition, suppose $A(x)=x_{a}, B(y)=y_{b}$ (i.e. A, B are encodings of a, b, respectively) and $\pi(b)=a$. The latter implies that $x_{\pi(b)}=x_{a}$ for each $x \in\{0,1\}^{\Sigma}$. The former implies that $B(x \circ \pi)=x_{\pi(b)}$. Then $A(x)=B(x \circ \pi)$ implies $x_{a}=x_{\pi(b)}$, so T should accept. As we are only checking a small number of bits of A, B, the following criterion will be more useful: $A(x)=B(x \circ \pi+y)-B(y)$ (equivalently, $\left.x_{a}=x_{\pi(b)}+y_{b}-y_{b}\right)$. For technical reasons (that will become clear once we get to the analysis) it will be even more convenient to check $A(x)=B(x \circ \pi+y+z)-B(y)-B(z)$, which is true for the same reason if A and B are consistent long codes.

1 Harmonic analysis

For the sake of the argument, we will exploit an alternative notation for the objects we've already been talking about. First of all, note that $0 \mapsto 1$ and $1 \mapsto-1$ defines a group isomorphism $\mathbb{Z} / 2 \mathbb{Z} \rightarrow(\{-1,1\}, \cdot)$, where \cdot is the multiplication inherited from \mathbb{R}. It's convenient, then, to think of encodings $A:\{0,1\}^{\Sigma} \rightarrow\{0,1\}$ as real-valued functions $A:\{0,1\}^{\Sigma} \rightarrow \mathbb{R}$. Moreover, $V=\left\{\{0,1\}^{\Sigma} \rightarrow \mathbb{R}\right\}$ is an \mathbb{R}-vector space and admits the following inner product:

$$
\langle F, G\rangle=\frac{1}{2^{|\Sigma|}} \sum_{x \in\{0,1\}^{\Sigma}} F(x) G(x)=\underset{x \in\{0,1\}^{\Sigma}}{\mathbb{E}}[F(x) G(x)]
$$

Definition 1 For each $\alpha \subseteq \Sigma$, define $u_{\alpha}:\{0,1\}^{\Sigma} \rightarrow \mathbb{R}$ by $u_{\alpha}\left(x_{1}, \ldots, x_{k}\right)=(-1)^{\sum_{i \in \alpha} x_{i}}$.
For example, u_{\emptyset} is identically 1 , and $u_{\{2,4\}}\left(x_{1}, \ldots, x_{k}\right)=(-1)^{x_{2}+x_{4}}$

Claim $2\left\{u_{\alpha}: \alpha \subseteq \Sigma\right\}$ is an orthonormal set of vectors in V.

Proof: (1) $\left\langle u_{\alpha}, u_{\alpha}\right\rangle=\mathbb{E}_{x}\left[u_{\alpha}^{2}(x)\right]=1$ for any $\alpha \subseteq \Sigma$.
(2) If $\alpha, \beta \subseteq \Sigma$ and $\alpha \neq \beta$, then

$$
\begin{aligned}
\left\langle u_{\alpha}, u_{\beta}\right\rangle & =\underset{x}{\mathbb{E}}\left[(-1)^{\sum_{i \in \alpha} x_{i}+\sum_{j \in \beta} x_{j}}\right] \\
& =\underset{x}{\mathbb{E}}\left[(-1)^{\sum_{i \in \alpha \Delta \beta} x_{i}}\right] \\
& =\prod_{i \in \alpha \Delta \beta} \underset{x}{\mathbb{E}}\left[(-1)^{x_{i}}\right]=0
\end{aligned}
$$

It's not hard to see, then, that $\left\{u_{\alpha}\right\}_{\alpha \subseteq \Sigma}$ forms an orthonormal basis for V. Hence, if $F \in V$, then

$$
F=\sum_{\alpha \subseteq \Sigma}\left\langle F, u_{\alpha}\right\rangle u_{\alpha}
$$

For $\alpha \subseteq \Sigma$, let $\hat{F}(\alpha)=\langle F, \alpha\rangle$, so that $F=\sum_{\alpha \subseteq \Sigma} \hat{F}(\alpha) u_{\alpha}$. Let $\left\{u_{\beta}^{\prime}\right\}_{\alpha \subseteq \Gamma}$ be the orthonormal basis of $\left\{\{0,1\}^{\Gamma} \rightarrow \mathbb{R}\right\}$ defined in the same fashion.
Obviously, $\{-1,1\} \subseteq \mathbb{R}$, and if $F:\{0,1\}^{\Sigma} \rightarrow\{-1,1\}$, then

$$
\begin{aligned}
\hat{F}(\alpha) & =\underset{x}{\mathbb{E}}\left[F(x) u_{\alpha}(x)\right] \\
& =\underset{x}{\mathbf{P r}}\left[F(x)=u_{\alpha}(x)\right]-\mathbf{P r}_{x}\left[F(x) \neq u_{\alpha}(x)\right] \\
& =2 \underset{x}{\mathbf{P r}_{x}}\left[F(x)=u_{\alpha}(x)\right]-1
\end{aligned}
$$

With these insights, we modify the encoding and testing procedures as follows. The encoding, $E: \Sigma \rightarrow\left\{\{0,1\}^{\Sigma} \rightarrow\{-1,1\}\right\}$, is defined by $E(a)\left(x_{1}, \ldots, x_{k}\right)=(-1)^{x_{a}}$. And

```
Testing procedure, \(T:(\{-1,1\}\)-version \()\)
INPUT: \(A:\{0,1\}^{\Sigma} \rightarrow\{-1,1\}, B:\{0,1\}^{\Gamma} \rightarrow\{-1,1\}\), and \(\pi: \Gamma \rightarrow \Sigma\)
Assume \(\mathbb{E}_{x}[A(x)]=0\) and \(\mathbb{E}_{x}[B(x)]=0\).
Choose \(x \in\{0,1\}^{\Sigma}\) and \(w, y, z \in\{0,1\}^{\Gamma}\) u.a.r.
accept iff
    (1) \(A(x) \cdot B(y) \cdot B(z)=B(x \circ \pi+y+z)\), and
    (2) \(B(z)=1 \Rightarrow B(y)=B(z \wedge w+y)\)
```

We can ensure $\mathbb{E}_{x}[A(x)]=0$ by, if necessary, replacing A with A^{\prime}, where $A^{\prime}\left(0, x_{2}, \ldots, x_{k}\right)=$ $A\left(0, x_{2}, \ldots, x_{k}\right)$ and $A^{\prime}\left(1, x_{2}, \ldots, x_{k}\right)=-A\left(0, \overline{x_{2}}, \ldots, \overline{x_{k}}\right)$, and adjusting T 's queries as necessary. This procedure is called folding. As A and B are long codes, this does not degrade performance.

We will also make use of the following

Claim 3 If $F:\{0,1\}^{\Delta} \rightarrow \mathbb{R}$, then $\sum_{\alpha \subseteq \Delta} \hat{F}(\alpha)=\mathbb{E}_{x}\left[F(x)^{2}\right]$.
Proof:

$$
\begin{aligned}
\underset{x}{\mathbb{E}}\left[F(x)^{2}\right] & =\underset{x}{\mathbb{E}}\left[\left(\sum_{\alpha \subseteq \Delta} \hat{F}(\alpha) u_{\alpha}(x)\right)^{2}\right] \\
& =\sum_{\alpha \subseteq \Delta} \sum_{\beta \subseteq \Delta} \underset{x}{\mathbb{E}}\left[u_{\alpha}(x) u_{\beta}(x)\right] \hat{F}(\alpha) \hat{F}(\beta) \\
& =\sum_{\alpha \subseteq \Delta} \sum_{\beta \subseteq \Delta}\left\langle u_{\alpha}, u_{\beta}\right\rangle \hat{F}(\alpha) \hat{F}(\beta) \\
& =2 \sum_{\alpha, \beta \subseteq \Delta: \alpha \neq \beta}\left\langle u_{\alpha}, u_{\beta}\right\rangle \hat{F}(\alpha) \hat{F}(\beta)+\sum_{\alpha \subseteq \Delta} \hat{F}\left\langle u_{\alpha}, u_{\alpha}\right\rangle(\alpha)^{2} \\
& =\sum_{\alpha \subseteq \Delta}\left\langle u_{\alpha}, u_{\alpha}\right\rangle \hat{F}(\alpha)^{2}
\end{aligned}
$$

And the next, which is trivial.

Claim 4 If $F:\{0,1\}^{\Delta} \rightarrow\{-1,1\}$, then $\mathbb{E}_{x}\left[F(x)^{2}\right]=1$

2 Behavior of T

Suppose $T(A, B, \pi)$ accepts with probability $\geq .99$, and suppose $B(z)=1$. Observe that
$\underset{x \in\{0,1\}^{\Sigma}, y \in\{0,1\}^{\Gamma}, z \in\{0,1\}^{G}{ }^{\text {amma }}}{\mathbf{P r}}[A(x) B(y) B(z)=B(x \circ \pi+y+z)]=\operatorname{Pr}_{x, y, z}^{\operatorname{Pr}}[A(x) B(y) B(z) B(x \circ \pi+y+z)=1]$

$$
\begin{aligned}
& =\underset{x, y}{\mathbb{E}}\left[\frac{1}{2}+\frac{1}{2} A(x) B(y) B(x \circ \pi+y+z)\right] \\
& =\frac{1}{2}+\frac{1}{2} \underset{x, y}{\mathbb{E}}[A(x) B(y) B(x \circ \pi+y+z)]
\end{aligned}
$$

Thus, $\mathbf{P r}_{x, y, z}[A(x) B(y) B(z)=B(x \circ \pi+y+z)] \geq .99$ if and only if $\mathbb{E}_{x, y}[A(x) B(y) B(z) B(x \circ \pi+y+z)] \geq$.98 , and it suffices to compute the expectation.
First,

$$
\begin{aligned}
& \underset{x, y, z}{\mathbb{E}}[A(x) B(y) B(z) B(x \circ \pi+y+z)]= \\
& =\underset{x, y, z}{\mathbb{E}}\left[\left(\sum_{\alpha \subseteq \Sigma} \hat{A}(\alpha) u_{\alpha}(x)\right)\left(\sum_{\beta \subseteq \Gamma} \hat{B}(\beta) u_{\beta}(y)\right)\left(\sum_{\gamma \subseteq \Gamma} \hat{B}(\gamma) u_{\gamma}(z)\right)\left(\sum_{\delta \subseteq \Gamma} \hat{B}(\delta) u_{\delta}(x \circ \pi+y+z)\right)\right] \\
& =\sum_{\alpha \subseteq \Sigma \beta, \gamma, \delta \subseteq \Gamma} \sum_{\alpha \subseteq} \hat{A}(\alpha) \hat{B}(\beta) \hat{B}(\gamma) \hat{B}(\delta) \underset{x}{\mathbb{E}}\left[u_{\alpha}(x) u_{\delta}(x \circ \pi)\right] \underset{y}{\mathbb{E}}\left[u_{\beta}(y) u_{\delta}(y)\right] \underset{z}{\mathbb{E}}\left[u_{\gamma}(z) u_{\delta}(z)\right] \\
& =\sum_{\alpha \subseteq, \Sigma \beta \subseteq \Gamma} \hat{A}(\alpha) \hat{B}(\beta)^{3} \underset{x}{\mathbb{E}}\left[u_{\alpha}(x) u_{\beta}(x \circ \pi)\right] \\
& =\sum_{\alpha \subseteq, \Sigma \beta \subseteq \Gamma} \hat{A}(\alpha) \hat{B}(\beta)^{3} \underset{x}{\mathbb{E}}\left[(-1)^{\sum_{a \in \alpha} x_{a}}(-1)^{\sum_{b \in \beta} x_{\pi(b)}}\right]
\end{aligned}
$$

Now, if we define $\pi_{2}: 2^{\Gamma} \rightarrow 2^{\Sigma}$ by $\pi_{2}(\beta)=\left\{a \in \Sigma:\left|\pi^{-1}[a] \cap \beta\right|\right.$ is odd $\}$, then

$$
\sum_{b \in \beta} x_{\pi(b)}=\sum_{a \in \pi_{2}(\beta)} x_{a}
$$

(using addition modulo 2). It follows that

$$
\begin{aligned}
\underset{x, y, z}{\mathbb{E}}[A(x) B(y) B(z) B(x \circ \pi+y+z)] & =\sum_{\alpha \subseteq \Sigma, \beta \subseteq \Gamma} \hat{A}(\alpha) \hat{B}(\beta)^{3} \underset{x}{\mathbb{E}}\left[(-1)^{\sum_{a \in \alpha} x_{a}}(-1)^{\sum_{a \in \pi_{2}(\beta)} x_{a}}\right]= \\
& =\sum_{\beta \subseteq \Gamma} \hat{A}\left(\pi_{2}(\beta)\right) \hat{B}(\beta)^{3}
\end{aligned}
$$

because

$$
\underset{x}{\mathbb{E}}\left[(-1)^{\sum_{a \in \alpha} x_{a}} \cdot(-1)^{\sum_{a \in \pi_{2}(\beta)} x_{a}}\right]= \begin{cases}1 & \text { if } \alpha=\pi_{2}(\beta) \\ 0 & \text { otherwise }\end{cases}
$$

Thus, if $T(A, B, \pi)$ accepts with probability $\geq .99$, then

$$
\begin{aligned}
.98 & \leq \sum_{\beta \subseteq \Gamma} \hat{A}\left(\pi_{2}(\beta)\right) \hat{B}(\beta)^{3} \\
& \leq \max _{\beta} \hat{A}\left(\pi_{2}(\beta)\right) \hat{B}(\beta) \sum_{\beta \subseteq \Gamma} \hat{B}(\beta)^{2} \\
& =\max _{\beta} \hat{A}\left(\pi_{2}(\beta)\right) \hat{B}(\beta)
\end{aligned}
$$

And so there exists a β_{0} such that $\left|\hat{A}\left(\pi_{2}\left(\beta_{0}\right)\right)\right| \geq .98$ and $\left|\hat{B}\left(\beta_{0}\right)\right| \geq .98$.
In the coming lecture, we will show that β_{0} is a set of cardinality 1 , that is, there exists a $b \in \Gamma$ such that $|\hat{A}(\{\pi(b)\})| \geq .98$ and $|\hat{B}(\{b\})| \geq .98$. From this, it will follow that $D(A)=\pi(b)$ and $D(B)=b$, so that $D(A)=\pi(D(B))$ as desired.

