Notes for Lecture 20

In this lecture, we are still caught up in the "alphabet-reduction phase" of Dinur's proof of the PCP theorem. In all of the following, assume that $\Sigma = \{1, ..., k\}$ and $\Gamma = \{1, ..., h\}$ with $h \ge k$. We need an encoding procedure E, a decoding procedure D, and a testing procedure T as follows:

- $E: \Sigma \to \{\{0,1\}^{\Sigma} \to \{0,1\}\}, \text{ and } E: \Sigma \to \{\{0,1\}^{\Gamma} \to \{0,1\}\} \text{ defined by}$ $E(a)(x_1, ..., x_k) = x_a$
- D(A) = a, where a minimizes the Hamming distance between E(a) and A or -A (whichever is closer);
- And T is has the following properties:
 - 1. If A = E(a), B = E(b) and $\pi(b) = a$, then $T(A, B, \pi)$ accepts w.p. 1;
 - 2. If $T(A, B, \pi)$ accepts w.p. $\geq .99$, then $\pi(D(B)) = D(A)$.
 - 3. T uses only O(1) queries into A, B

Initially, we think of T implemented as follows:

Testing procedure, T: $(\{0, 1\}$ -version) INPUT: $A : \{0, 1\}^{\Sigma} \to \{0, 1\}, B : \{0, 1\}^{\Gamma} \to \{0, 1\}, \text{ and } \pi : \Gamma \to \Sigma$ Choose $x \in \{0, 1\}^{\Sigma}$ and $w, y, z \in \{0, 1\}^{\Gamma}$ u.a.r. **accept** iff (1) $A(x) + B(y) + B(z) = B(x \circ \pi + y + z), \text{ and}$ (2) $B(z) = 0 \Rightarrow B(y) = B(z \land w + y)$

In the algorithm, + denotes bitwise *xor* (addition in $\mathbb{Z}/2\mathbb{Z}$), and \wedge denotes bitwise conjunction. To interpret the first condition, suppose $A(x) = x_a$, $B(y) = y_b$ (i.e. A, B are encodings of a, b, respectively) and $\pi(b) = a$. The latter implies that $x_{\pi(b)} = x_a$ for each $x \in \{0, 1\}^{\Sigma}$. The former implies that $B(x \circ \pi) = x_{\pi(b)}$. Then $A(x) = B(x \circ \pi)$ implies $x_a = x_{\pi(b)}$, so T should accept. As we are only checking a small number of bits of A, B, the following criterion will be more useful: $A(x) = B(x \circ \pi + y) - B(y)$ (equivalently, $x_a = x_{\pi(b)} + y_b - y_b$). For technical reasons (that will become clear once we get to the analysis) it will be even more convenient to check $A(x) = B(x \circ \pi + y + z) - B(y) - B(z)$, which is true for the same reason if A and B are consistent long codes.

1 Harmonic analysis

For the sake of the argument, we will exploit an alternative notation for the objects we've already been talking about. First of all, note that $0 \mapsto 1$ and $1 \mapsto -1$ defines a group isomorphism $\mathbb{Z}/2\mathbb{Z} \to (\{-1,1\},\cdot)$, where \cdot is the multiplication inherited from \mathbb{R} . It's convenient, then, to think of encodings $A : \{0,1\}^{\Sigma} \to \{0,1\}$ as real-valued functions $A : \{0,1\}^{\Sigma} \to \mathbb{R}$. Moreover, $V = \{\{0,1\}^{\Sigma} \to \mathbb{R}\}$ is an \mathbb{R} -vector space and admits the following inner product:

$$\langle F, G \rangle = \frac{1}{2^{|\Sigma|}} \sum_{x \in \{0,1\}^{\Sigma}} F(x) G(x) = \mathop{\mathbb{E}}_{x \in \{0,1\}^{\Sigma}} \left[F(x) G(x) \right]$$

Definition 1 For each $\alpha \subseteq \Sigma$, define $u_{\alpha} : \{0,1\}^{\Sigma} \to \mathbb{R}$ by $u_{\alpha}(x_1,...,x_k) = (-1)^{\sum_{i \in \alpha} x_i}$.

For example, u_{\emptyset} is identically 1, and $u_{\{2,4\}}(x_1,...,x_k) = (-1)^{x_2+x_4}$

Claim 2 $\{u_{\alpha} : \alpha \subseteq \Sigma\}$ is an orthonormal set of vectors in V.

PROOF: (1) $\langle u_{\alpha}, u_{\alpha} \rangle = \mathbb{E}_{x}[u_{\alpha}^{2}(x)] = 1$ for any $\alpha \subseteq \Sigma$. (2) If $\alpha, \beta \subseteq \Sigma$ and $\alpha \neq \beta$, then

$$\langle u_{\alpha}, u_{\beta} \rangle = \mathop{\mathbb{E}}_{x} \left[(-1)^{\sum_{i \in \alpha} x_{i} + \sum_{j \in \beta} x_{j}} \right]$$
$$= \mathop{\mathbb{E}}_{x} \left[(-1)^{\sum_{i \in \alpha \Delta \beta} x_{i}} \right]$$
$$= \prod_{i \in \alpha \Delta \beta} \mathop{\mathbb{E}}_{x} \left[(-1)^{x_{i}} \right] = 0$$

It's not hard to see, then, that $\{u_{\alpha}\}_{\alpha\subseteq\Sigma}$ forms an orthonormal basis for V. Hence, if $F \in V$, then

$$F = \sum_{\alpha \subseteq \Sigma} \left\langle F, u_{\alpha} \right\rangle u_{\alpha}$$

For $\alpha \subseteq \Sigma$, let $\hat{F}(\alpha) = \langle F, \alpha \rangle$, so that $F = \sum_{\alpha \subseteq \Sigma} \hat{F}(\alpha) u_{\alpha}$. Let $\{u'_{\beta}\}_{\alpha \subseteq \Gamma}$ be the orthonormal basis of $\{\{0, 1\}^{\Gamma} \to \mathbb{R}\}$ defined in the same fashion.

Obviously, $\{-1,1\} \subseteq \mathbb{R}$, and if $F : \{0,1\}^{\Sigma} \to \{-1,1\}$, then

$$\hat{F}(\alpha) = \mathop{\mathbb{E}}_{x} \left[F(x) u_{\alpha}(x) \right]$$
$$= \mathop{\mathbf{Pr}}_{x} \left[F(x) = u_{\alpha}(x) \right] - \mathop{\mathbf{Pr}}_{x} \left[F(x) \neq u_{\alpha}(x) \right]$$
$$= 2 \mathop{\mathbf{Pr}}_{x} \left[F(x) = u_{\alpha}(x) \right] - 1$$

With these insights, we modify the encoding and testing procedures as follows. The encoding, $E: \Sigma \to \{\{0,1\}^{\Sigma} \to \{-1,1\}\}$, is defined by $E(a)(x_1, ..., x_k) = (-1)^{x_a}$. And

Testing procedure, $T: (\{-1, 1\}\text{-version})$ INPUT: $A: \{0, 1\}^{\Sigma} \to \{-1, 1\}, B: \{0, 1\}^{\Gamma} \to \{-1, 1\}, \text{ and } \pi: \Gamma \to \Sigma$ Assume $\mathbb{E}_x[A(x)] = 0$ and $\mathbb{E}_x[B(x)] = 0$. Choose $x \in \{0, 1\}^{\Sigma}$ and $w, y, z \in \{0, 1\}^{\Gamma}$ u.a.r. **accept** iff (1) $A(x) \cdot B(y) \cdot B(z) = B(x \circ \pi + y + z), \text{ and}$ (2) $B(z) = 1 \Rightarrow B(y) = B(z \land w + y)$

We can ensure $\mathbb{E}_x[A(x)] = 0$ by, if necessary, replacing A with A', where $A'(0, x_2, ..., x_k) = A(0, x_2, ..., x_k)$ and $A'(1, x_2, ..., x_k) = -A(0, \overline{x_2}, ..., \overline{x_k})$, and adjusting T's queries as necessary. This procedure is called *folding*. As A and B are long codes, this does not degrade performance. We will also make use of the following

Claim 3 If $F : \{0,1\}^{\Delta} \to \mathbb{R}$, then $\sum_{\alpha \subset \Delta} \hat{F}(\alpha) = \mathbb{E}_x \left[F(x)^2 \right]$.

PROOF:

$$\mathbb{E}_{x}\left[F(x)^{2}\right] = \mathbb{E}_{x}\left[\left(\sum_{\alpha \subseteq \Delta} \hat{F}(\alpha)u_{\alpha}(x)\right)^{2}\right]$$
$$= \sum_{\alpha \subseteq \Delta} \sum_{\beta \subseteq \Delta} \mathbb{E}_{x}\left[u_{\alpha}(x)u_{\beta}(x)\right]\hat{F}(\alpha)\hat{F}(\beta)$$
$$= \sum_{\alpha \subseteq \Delta} \sum_{\beta \subseteq \Delta} \langle u_{\alpha}, u_{\beta} \rangle \hat{F}(\alpha)\hat{F}(\beta)$$
$$= 2\sum_{\alpha,\beta \subseteq \Delta: \alpha \neq \beta} \langle u_{\alpha}, u_{\beta} \rangle \hat{F}(\alpha)\hat{F}(\beta) + \sum_{\alpha \subseteq \Delta} \hat{F} \langle u_{\alpha}, u_{\alpha} \rangle (\alpha)^{2}$$
$$= \sum_{\alpha \subseteq \Delta} \langle u_{\alpha}, u_{\alpha} \rangle \hat{F}(\alpha)^{2}$$

And the next, which is trivial.

Claim 4 If $F : \{0,1\}^{\Delta} \to \{-1,1\}$, then $\mathbb{E}_x \left[F(x)^2\right] = 1$

2 Behavior of T

Suppose $T(A, B, \pi)$ accepts with probability $\geq .99$, and suppose B(z) = 1. Observe that

$$\begin{aligned} \Pr_{x \in \{0,1\}^{\Sigma}, y \in \{0,1\}^{G}, z \in \{0,1\}^{G}amma} \left[A(x)B(y)B(z) &= B(x \circ \pi + y + z) \right] &= \Pr_{x,y,z} \left[A(x)B(y)B(z)B(x \circ \pi + y + z) = 1 \right] \\ &= \mathop{\mathbb{E}}_{x,y} \left[\frac{1}{2} + \frac{1}{2}A(x)B(y)B(x \circ \pi + y + z) \right] \\ &= \frac{1}{2} + \frac{1}{2}\mathop{\mathbb{E}}_{x,y} \left[A(x)B(y)B(x \circ \pi + y + z) \right] \end{aligned}$$

Thus, $\mathbf{Pr}_{x,y,z} \left[A(x)B(y)B(z) = B(x \circ \pi + y + z)\right] \ge .99$ if and only if $\mathbb{E}_{x,y} \left[A(x)B(y)B(z)B(x \circ \pi + y + z)\right] \ge .98$, and it suffices to compute the expectation. First,

$$\mathop{\mathbb{E}}_{x,y,z}\left[A(x)B(y)B(z)B(x\circ\pi+y+z)\right] =$$

$$\begin{split} &= \mathop{\mathbb{E}}_{x,y,z} \left[\left(\sum_{\alpha \subseteq \Sigma} \hat{A}(\alpha) u_{\alpha}(x) \right) \left(\sum_{\beta \subseteq \Gamma} \hat{B}(\beta) u_{\beta}(y) \right) \left(\sum_{\gamma \subseteq \Gamma} \hat{B}(\gamma) u_{\gamma}(z) \right) \left(\sum_{\delta \subseteq \Gamma} \hat{B}(\delta) u_{\delta}(x \circ \pi + y + z) \right) \right] \\ &= \sum_{\alpha \subseteq \Sigma} \sum_{\beta,\gamma,\delta \subseteq \Gamma} \hat{A}(\alpha) \hat{B}(\beta) \hat{B}(\gamma) \hat{B}(\delta) \mathop{\mathbb{E}}_{x} \left[u_{\alpha}(x) u_{\delta}(x \circ \pi) \right] \mathop{\mathbb{E}}_{y} \left[u_{\beta}(y) u_{\delta}(y) \right] \mathop{\mathbb{E}}_{z} \left[u_{\gamma}(z) u_{\delta}(z) \right] \\ &= \sum_{\alpha \subseteq, \Sigma \beta \subseteq \Gamma} \hat{A}(\alpha) \hat{B}(\beta)^{3} \mathop{\mathbb{E}}_{x} \left[u_{\alpha}(x) u_{\beta}(x \circ \pi) \right] \\ &= \sum_{\alpha \subseteq, \Sigma \beta \subseteq \Gamma} \hat{A}(\alpha) \hat{B}(\beta)^{3} \mathop{\mathbb{E}}_{x} \left[(-1)^{\sum_{a \in \alpha} x_{a}} (-1)^{\sum_{b \in \beta} x_{\pi}(b)} \right] \end{split}$$

Now, if we define $\pi_2: 2^{\Gamma} \to 2^{\Sigma}$ by $\pi_2(\beta) = \{a \in \Sigma: |\pi^{-1}[a] \cap \beta| \text{ is odd}\}$, then

$$\sum_{b\in\beta} x_{\pi(b)} = \sum_{a\in\pi_2(\beta)} x_a$$

(using addition modulo 2). It follows that

$$\begin{split} \mathop{\mathbb{E}}_{x,y,z} \left[A(x)B(y)B(z)B(x\circ\pi+y+z) \right] &= \sum_{\alpha\subseteq\Sigma,\beta\subseteq\Gamma} \hat{A}(\alpha)\hat{B}(\beta)^3 \mathop{\mathbb{E}}_{x} \left[(-1)^{\sum_{a\in\alpha} x_a} (-1)^{\sum_{a\in\pi_2(\beta)} x_a} \right] = \\ &= \sum_{\beta\subseteq\Gamma} \hat{A}(\pi_2(\beta))\hat{B}(\beta)^3 \end{split}$$

because

$$\mathbb{E}_{x}\left[(-1)^{\sum_{a\in\alpha}x_{a}}\cdot(-1)^{\sum_{a\in\pi_{2}(\beta)}x_{a}}\right] = \begin{cases} 1 & \text{if } \alpha = \pi_{2}(\beta) \\ 0 & \text{otherwise} \end{cases}$$

Thus, if $T(A,B,\pi)$ accepts with probability \geq .99, then

$$.98 \leq \sum_{\beta \subseteq \Gamma} \hat{A}(\pi_2(\beta))\hat{B}(\beta)^3$$
$$\leq \max_{\beta} \hat{A}(\pi_2(\beta))\hat{B}(\beta) \sum_{\beta \subseteq \Gamma} \hat{B}(\beta)^2$$
$$= \max_{\beta} \hat{A}(\pi_2(\beta))\hat{B}(\beta)$$

And so there exists a β_0 such that $|\hat{A}(\pi_2(\beta_0))| \ge .98$ and $|\hat{B}(\beta_0)| \ge .98$.

In the coming lecture, we will show that β_0 is a set of cardinality 1, that is, there exists a $b \in \Gamma$ such that $|\hat{A}(\{\pi(b)\})| \geq .98$ and $|\hat{B}(\{b\})| \geq .98$. From this, it will follow that $D(A) = \pi(b)$ and D(B) = b, so that $D(A) = \pi(D(B))$ as desired.