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Abstract. We study the approximability of 1-in-kSAT, the variant of
Max kSAT where a clause is deemed satisfied when precisely one of its
literals is satisfied. We also investigate different special cases of the prob-
lem, including those obtained by restricting the literals to be unnegated
and/or all clauses to have size exactly k. Our results show that the 1-
in-kSAT problem exhibits some rather peculiar phenomena in the realm
of constraint satisfaction problems. Specifically, the problem becomes
substantially easier to approximate with perfect completeness as well as
when negations of literals are not allowed.

1 Introduction

Boolean constraint satisfaction problems (CSP) arise in a variety of contexts and
their study has generated a lot of algorithmic and complexity-theoretic research.
An instance of a Boolean CSP is given by a set of variables and a collection of
Boolean constraints, each on a certain subset of variables, and the objective is to
find an assignment to the variables that satisfies as many constraints as possible.
The most fundamental problem in this framework is of course Max SAT where
the constraints are disjunctions of a subset of literals (i.e., variables and their
negations), and thus are satisfied if at least one of the literals in the subset are
set to 1. When the constraints are disjunctions of at most k literals, we get the
Max kSAT problem.

In this work we consider constraint satisfaction problems where each con-
straint requires that exactly one literal (from the subset of literals constrained
by it) is set to 1. This is a natural variant of SAT which is also NP-hard. We
study the version of this problem when all constraints contain at most k literals
(for constant k ≥ 3). We call this problem 1-in-kSAT. For k = 3, this problem
has often found use as a more convenient starting point compared to 3SAT for
NP-completeness reductions. For each k ≥ 3, determining if all constraints can
be satisfied is NP-hard [9]. We study the approximability of this problem and
some of its variants.
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In addition to being a natural satisfiability problem that merits study for its
own sake, the underlying problem of making unique choices from certain specified
subsets is salient to a natural pricing problem. We describe this connection at
the end of the introduction.

We now formally define the problems we consider. Let {x1, x2, . . . , xn} be
a set of Boolean variables. For a set S ⊆ {xi, xi | 1 ≤ i ≤ n} of literals, the
constraint ONE(S) is satisfied by an assignment to {x1, . . . , xn} if exactly one
of the literals in S is set to 1 and the rest are set to 0.

Definition 1 (1-in-kSAT and 1-in-EkSAT). Let k ≥ 2. An instance of 1-in-

kSAT consists of a set {x1, x2, . . . , xn} of Boolean variables, and a collection of
constraints ONE(Si), 1 ≤ i ≤ m for some subsets S1, S2, . . . , Sm of {xi, x̄i | 1 ≤
i ≤ n}, where |Si| ≤ k for each i = 1, 2, . . . , m. When each Si has size exactly
k, we get an instance of Exact 1-in-k Satisfiability, denoted 1-in-EkSAT.

Definition 2 (1-in-kHS and 1-in-EkHS). Let k ≥ 2. An instance of 1-in-kHS

consists of a set {x1, x2, . . . , xn} of Boolean variables, and a collection of con-
straints ONE(Si), 1 ≤ i ≤ m for some subsets S1, S2, . . . , Sm of {xi | 1 ≤ i ≤ n},
where |Si| ≤ k for each i = 1, 2, . . . , m. When each Si has size exactly k, we get
an instance of Exact 1-in-k Hitting Set, denoted 1-in-EkSAT.

Note that 1-in-kHS (resp. 1-in-EkHS) is a special case of 1-in-kSAT (resp. 1-in-

EkSAT) where no negations are allowed. Also, 1-in-kHS is simply the variant of
the Hitting Set problem where we are given a family of sets each of size at most k
from a universe, and the goal is to pick a subset of the universe which intersects
a maximum number of sets from the input family in exactly one element. The 1-

in-EkHS problem corresponds to the case when each set in the family has exactly
k elements. For every k ≥ 3, 1-in-EkHS is NP-hard [9].

Clearly, the following are both orderings of the problems in decreasing order
of their generality: (i) 1-in-kSAT, 1-in-EkSAT, 1-in-EkHS; and (ii) 1-in-kSAT,
1-in-kHS, 1-in-EkHS.

The 1-in-3SAT problem was considered in Schaefer’s work on complexity of
satisfiability problems [9]. An inapproximability factor of 6/5− ε was shown for
1-in-E3SAT in [6]. We are unaware of any comprehensive prior investigation into
the complexity of approximating 1-in-kSAT and its variants for larger k.

Our Results. For a maximization problem (such as a maximum constraint sat-
isfaction problem), we define an α-approximation algorithm to be one which
always delivers solution whose objective value is at least a fraction 1/α of the
optimum. A random assignment clearly satisfies at least a fraction k2−k fraction
of constraints in any 1-in-kSAT instance. This gives a 2k/k-approximation algo-
rithm, and no better approximation algorithm appears to be known for general
k. We prove that, for sufficiently large k, it is NP-hard to approximate 1-in-

EkSAT (and hence also the more general 1-in-kSAT) within a 2k−O(
√

k) factor.
The result uses a gadget-style reduction from the general Max kCSP problem,
but the analysis of the reduction uses a ”random perturbation” technique which
is a bit different from the standard way of analyzing gadget-based reductions.



The easiest of the problems we consider, namely 1-in-EkHS, has a simple e-
approximation algorithm. We prove that this is the best possible — obtaining an
(e−ε)-approximation is NP-hard, for every ε > 0 (for large enough k). Using the
algorithm for 1-in-EkHS, one can give an O(log k)-approximation algorithm for
1-in-kHS. (Recently, in [4], a hardness result for approximating 1-in-kHS within
a factor logσ n has been shown. Here n is the size of the universe, k is allowed
to grow with the input, and σ > 0 is an absolute constant.)

The 2k−O(
√

k) inapproximability factor for general 1-in-kSAT says that algo-
rithms that are substantially better than picking a random assignment do not
exist, assuming P 6= NP. For satisfiable instances of 1-in-kSAT, however, we are
able to give an e-approximation algorithm. Specifically, when given a 1-in-kSAT

instance for which an assignment that satisfies every clause exists, the algorithm
finds an assignment that satisfies at least a fraction 1/e of the constraints. This
is again the best possible, since our (e − ε)-inapproximability result holds for
satisfiable instances of 1-in-EkHS.

Our results highlight the following peculiar behavior of 1-in-kSAT which is
unusual for constraint satisfaction problems. The 1-in-kSAT problem becomes
much easier to approximate when negations are not allowed (the 1-in-kHS vari-
ant, which has a O(log k)-approximation algorithm), or when restricted to sat-
isfiable instances (which has an e-approximation algorithm).

A pricing problem. The 1-in-kHS problem is related to a natural optimization
problem concerning pricing that was recently considered in [7]. Consider the
following pricing question: there is a universe of n items, each in unlimited supply
with the seller. There are m customers, and each customer is single-minded and
wants to buy a precise subset of at most k items (and this subset is known
to the seller). Each customer values his/her subset at one dollar, and thus will
buy the subset if and only if it costs at most one dollar in total. The goal is
set prices to the items that maximizes the total revenue. If the prices are all
either 0 or 1 dollars, then this problem is exactly 1-in-kHS. But the seller could
price items in cents, and thereby possibly generating more revenue. However, it
can be shown that the optimum with fractional prices is at most e times that
with 0, 1-prices (this follows from Lemma 6). Therefore, this problem admits a
constant factor approximation (with approximation ratio independent of k) if
and only if 1-in-kHS admits such an algorithm.

The Problem of Constructing “Ad-Hoc Selective Families.” Another
application of the 1-in-kHS problem is to the computation of ad-hoc selective
families. An (n, h)-selective family is a combinatorial object defined and studied
in [2] to deal with a broadcast problem in a radio network of unknown topology.
An (n, h)-selective family is a collection S of subsets of [n] such that for every
set F ⊆ [n] such that |F | ≤ h there is a set S ∈ S such that |F ∩ S| = 1.
More generally, a collection S of subsets of [n] is ad-hoc selective for a collection
F of subsets of [n] if for every set F ∈ F there is a set S ∈ S such that
|S ∩ F | = 1 (in such a case, we say that S selects F ). The notion of ad-hoc
selective family, introduced in [3], has applications to the broadcast problem in
radio networks of known topology. Here the computational problem of interest



is, given a family F (that is related to the topology of the radio network) to find
a family S of smallest size that is ad-hoc selective for F : the family S determines
a schedule for the broadcast on the radio network and the time needed to realize
the broadcast depends on the number of sets in the family S. Clementi et al.
[3] observe that given an approximation algorithm for 1-in-kHS one can get
an approximation algorithm for the ad-hoc selective family problem as follows.
Think of F an instance of 1-in-kHS over the uniform [n], then an approximation
algorithm for 1-in-kHS will find a set S that “selects” a large number of sets in
F ; then one deletes those sets from F and repeats the above process. In order
to optimize this process, Clementi et al. [3] introduce the idea of dividing F
into sub-families of sets having approximately the same size, and our O(log k)
approximation algorithm for 1-in-kHS is based on a similar idea.

2 Approximation algorithms

In this section we present a randomized algorithm that delivers solutions within
factor 1/e of the optimum solution for 1-in-EkHS. We also present a randomized
algorithm that given an instance of 1-in-kSAT that is satisfiable, finds an assign-
ment that satisfies an expected fraction 1/e of the clauses. Both these algorithms
are the best possible in terms of approximation ratio, for large k, as we show in
Section 3.

2.1 Approximation algorithm for 1-in-EkHS

For the simplest variant 1-in-EkHS, there is a trivial e-approximation algorithm.

Theorem 3. For every integer k ≥ 2, there is a polynomial time e-approximation
algorithm for 1-in-EkHS. The claim holds also when k is not an absolute constant
but an arbitrary function of the universe size.

Proof. Set each variable to 1 independently with probability 1/k. The probability
that a clause of k variables has exactly one variable set to 1 equals k · 1

k (1 −
1/k)k−1 = (1−1/k)k−1 ≥ 1/e. Therefore the expected fraction of clauses satisfied
by such a random assignment is at least 1/e. The algorithm can be derandomized
using the method of conditional expectations. Note that we did not use the exact
value of k in the above argument, only that all sets had size k.

Algorithm for 1-in-kHS. We now consider the case when not all sets have
exactly k elements. For this case we do not know any way to approximate within
a factor that is independent of k.

Theorem 4. There exists c > 0 such that for every integer k ≥ 2, there is a
polynomial time c log k-approximation algorithm for 1-in-kHS. The claim holds
even when k is not a constant but grows with the universe size.



Proof. Let m be the number of sets in the 1-in-kHS instance. We partition the
sets in the 1-in-kHS instance according to their size, placing the sets of size in
the range [2i−1, 2i) in collection Fi partition, for i = 1, 2, . . . , dlog ke. Pick the
partition that has a maximum number of sets, say Fj , breaking ties arbitrarily.
Clearly, |Fj | ≥

m
dlog ke . Set each element to 1 with probability 1/2j . Fix a set set

in Fj that has x elements, 2j−1 ≤ x < 2j . The probability that it has exactly

one variable set to 1 equals x
2j

(

1 − 1
2j

)x

, which is easily seen to at least 1
2e .

Thus, expected fraction of sets in Fj that have exactly one element set to 1 is at
least 1

2e . Therefore, we satisfy at least m
2edlog ke sets. The algorithm can again be

derandomized using conditional expectations, and the argument holds for every
k in the range 1 ≤ k ≤ n, where n is the universe size.

Remark: Note that in the above algorithm, the upper bound on optimum we
used was the total number of sets. With this upper bound, the best approxi-
mation factor we can hope for is O(log k). This is because there are instances
of 1-in-kHS with m sets whose optimum is at most O( m

log k ). In fact, it can be
shown that an instance obtained by picking an equal number of sets in each of
the buckets at random will have this property with high probability.

2.2 Approximation algorithm for 1-in-kSAT with perfect
completeness

So far we saw algorithms for the case when negations were not allowed. We now
give an approximation algorithm for 1-in-kSAT for the case when the instance
is in fact satisfiable. Later on, in Section 3, we will show that without this
restriction, a strong inapproximability result for 1-in-kSAT holds. We will also
show that the factor e is the best possible, even with this restriction.

Theorem 5. For every k ≥ 2, there is an e-approximation algorithm for sat-
isfiable instances of 1-in-kSAT. The claim holds even when k is not an absolute
constant but an arbitrary function of the number of variables.

Proof. The approach is to use a linear programming relaxation, and apply ran-
domized rounding to it to obtain a Boolean assignment to the variables. Let
(V, C) be an instance of 1-in-kSAT, where V = {x1, x2, . . . , xn} is the set of vari-
ables and C = {C1, C2, . . . , Cm} is the set of clauses. For j = 1, 2, . . . , m, define
pos(Cj) ⊆ V to be those variables that appear positively (i.e., unnegated) in
Cj , and neg(Cj) to be those variables that appear negated in Cj . Consider the
linear program P with the following constraints in variables p1, p2, . . . , pn:

0 ≤ pi ≤ 1 for i = 1, 2, . . . , n ,
∑

i:xi∈pos(Cj)

pi +
∑

i:xi∈neg(Cj)

(1 − pi) = 1 for j = 1, 2, . . . , m.

The above program has a feasible solution. Indeed, let a : V → {0, 1} be an as-
signment that satisfies all clauses in C. Then clearly pi = a(xi) for i = 1, 2, . . . , n
satisfies all the above constraints.



Solve the linear program (P) to find a feasible solution p∗
i , 1 ≤ i ≤ n in

polynomial time. We need to convert this solution into an assignment a∗ : V →
{0, 1}. We do this using randomized rounding. That is, for each xi independently,
we set

a(xi) =

{

1 with probability p∗i
0 with probability (1 − p∗i )

Now consider the probability that a particular clause, say C1, is satisfied. Let
C1 depend on r variables, xi1 , xi2 , . . . , xir

. For 1 ≤ ` ≤ r, define q` = p∗i`
if xi`

appears unnegated in C1, and equal to 1−p∗i`
if xi`

appears negated in C1. Then
we have q1 + q2 + . . . + qr = 1. The probability that C1 is satisfied equals

q1(1 − q2)(1 − q3) · · · (1 − qr) + (1 − q1)q2(1 − q3) · · · (1 − qr) + · · ·

· · · + (1 − q1)(1 − q2) · · · (1 − qr−1)qr

By Lemma 6, this quantity is minimized when q1 = q2 = · · · = qr = 1/r, and
thus is at least (1 − 1/r)r−1 ≥ 1/e. Therefore the expected fraction of clauses
satisfied by the randomized rounding is at least 1/e, proving the theorem.

We now state the inequality that was used in the above proof. An elegant
proof of this inequality was shown to us by Chris Chang. For reasons of space,
we omit the proof here.

Lemma 6. Let r ≥ 2 and let q1, q2, . . . , qr be non-negative integers that sum up
to 1. Then the quantity

q1(1−q2) · · · (1−qr) + (1−q1)q2(1−q3) · · · (1−qr) + · · · + (1−q1) · · · (1−qr−1)qr

attains its minimum value when q1 = q2 = · · · = qr = 1/r. In particular, the
quantity is at least (1 − 1/r)r−1.

3 Inapproximability results

3.1 Factor 2Ω(k) hardness for 1-in-EkSAT

We now prove that, if P 6= NP, then, for sufficiently large k, 1-in-EkSAT cannot

be approximated within a factor of 2k−O(
√

k). The result uses a gadget-style
reduction from the constraint satisfaction problem Max EkAND, but the analysis
of the reduction uses a ”random perturbation” technique which is a bit different
from the standard way of analyzing gadget-based reductions.

Preliminaries. We first define the Max EkAND problem. An instance of Max

EkAND consists of a set of Boolean variables, and a collection of AND constraints
of the form l1 ∧ l2 ∧ · · · ∧ lk where each lj is a literal. The goal is to find an
assignment that satisfies a maximum number of the AND constraints.



Theorem 7 ([8]). If P 6= NP, for every ε > 0 and for every integers q ≥ 1 and
k such that 2q+1 ≤ k ≤ 2q+q2, there is no (2k−2q −ε)-approximation algorithm

for Max EkAND. In particular, for every k ≥ 7, ε > 0, there is no (2k−2d
√

ke−ε)-
approximate algorithm for Max kAND. Furthermore, if ZPP 6= NP, then for
every ε there is a constant c such that there is no n1−ε-approximate algorithm
for Max (c log n)AND.

The furthermore part follows from the result of [8] plus the use of a random-
ized reduction described in [1].

Inapproximability Result. We describe a reduction from Max EkAND to
1-in-EkSAT.

Lemma 8. Suppose that there is a polynomial time β-approximation algorithm
for 1-in-EkSAT, for some k ≥ 3. Then there is an 2ekβ-approximate algorithm
for Max EkAND.

Proof. We describe how to map an instance ϕAND of Max EkAND into an instance
ϕoik of 1-in-EkSAT. Let l1∧· · ·∧ lk be a clause of the Max EkAND instance ϕAND.
We introduce the constraints ONE(l1, negl2, . . . , neglk), ONE(negl1, l2, . . . , neglk),
. . . , ONE(negl1, negl2, . . . , lk), where neg` denotes the negation of the literal `.
If originally we had m AND constraints, now we have km constraints of 1-in-

EkSAT.

Claim 1 If there is an assignment that satisfies t constraints in ϕAND, then the
same assignment satisfies at least tk constraints in ϕoik.

Proof of Claim. For each clause l1∧· · ·∧lk that is true, then the k corresponding
ONE constraints are satisfied.

Claim 2 If there is an assignment that satisfies t′ constraints in ϕoik, then there
is an assignment that satisfies at least t′/(2ek2) constraints in ϕAND.

Proof of Claim. Take the assignment a that satisfies t′ constraints in ϕoik and
then randomly perturb it in the following way: for each variable independently,
flip its value with probability 1/k and leave the value unchanged with probability
1−1/k; we will estimate the expected number of clauses of ϕAND that are satisfied
by this random assignment R.

Let us look at a clause l1 ∧ · · · ∧ lk of ϕAND and the k corresponding clauses
of ϕoik. We consider different cases, depending upon how many of the literals
l1, l2, . . . , lk are set to 1 by the assignment a.

– If a satisfies all literals, then it satisfies all k clauses in ϕoik and the random
assignment satisfies l1 ∧ · · · ∧ lk with probability at least (1− 1/k)k ≥ 8/27,
for k ≥ 3.

– If a satisfies k − 2 literals, then it satisfies 2 clauses in ϕoik, and the random
assignment satisfies l1∧· · ·∧ lk with probability at least (1−1/k)k−2 ·k−2 ≥
1/(ek2)



– In all other cases, a satisfies none of the clauses corresponding to l1 ∧ · · · ∧ lk
in ϕoik.

In each case, we have that the probability that the assignment satisfies l1∧· · ·∧lk
is at least 1/(2ek2) times the number of constraints corresponding to l1 ∧ · · ·∧ lk
in ϕoik satisfied by a. If a satisfies t′ constraints, it follows that the random
assignment satisfies, on average, at least t′/(2ek2) clauses of ϕAND.

Suppose now that we have a β-approximate algorithm for 1-in-EkSAT and
that we are given in input an instance ϕAND of Max EkAND. Suppose that the
optimum solution for ϕAND has cost opt. Then we construct an instance ϕoik

of 1-in-EkSAT as described above, and give it to the approximation algorithm.
By Claim 1, the optimum of ϕoik is at least k · opt, and so the algorithm will
return a solution of cost at least k · opt/β. By Claim 2, we get a distribution
over assignments for ϕAND that, on average, satisfies at least opt/(2eβk) con-
straints. An assignment that satisfies at least as many constraints can be found
deterministically using the method of conditional expectations.

Theorem 9. If P 6= NP, for every sufficiently large k and for every ε > 0,

there is no polynomial time (2k−2d
√

ke/(2ek) − ε)-approximation algorithm for
1-in-EkSAT. Furthermore, if ZPP 6= NP, for every ε there is a c such that there
is a no polynomial time n1−ε approximation algorithm for 1-in-(c logn)SAT.

Proof. Follows from Theorem 7 and from the reduction of Lemma 8. For the
“furthermore” part one should observe that the reduction does not increase the
size of the input by more that a logarithmic factor.

3.2 Factor e − ε hardness for 1-in-EkHS

In this section, we prove the following hardness result, which shows that the
results of Theorems 3 and 5 are tight in terms of the approximation ratio.

Theorem 10. For every ε > 0, for sufficiently large k, there is no polynomial
time (e − ε)-approximation algorithm for 1-in-EkHS, unless P = NP. Further-
more, the result holds even when the instance of 1-in-EkHS is satisfiable.

Multiprover systems. Our proof will use the approach behind Feige’s hardness
result for set cover [5]. We will give a reduction from the multiprover proof system
of Feige, which we state in a form convenient to us below. In what follows, we
use [m] to denote the set {1, 2, . . . , m}.

Definition 11 (p-prover game). For every integer p ≥ 2 and a parameter u
that is an even integer, an instance I of the p-prover game of size n is defined
as follows.

– The instance consists of a p-uniform p-partite hypergraph H with the follow-
ing properties:



• [Vertices] The vertex set of H is given by W = Q1∪Q2∪· · ·∪Qp, where Qi

is the vertices in the i’th part (or prover), and |Qi| = Q = nu/2(5n/3)u/2

for i = 1, 2, . . . , p.
• [Hyperedges] There are R = (5n)u hyperedges in H, labeled by r ∈ [R].

Denote the r’th hyperedge, for r ∈ [R], by (qr,1, qr,2, . . . , qr,p), where qr,i ∈
Qi for i ∈ [p].

• [Regularity] Each vertex in W belongs to precisely R/Q hyperedges.
– Define B = 4u and A = 2u. For each r ∈ [R], and i ∈ [p], the instance

consists of projections πr,i : [B] → [A] each of which is (B/A)-to-1.

The goal is to find a labeling a : W → [B] that “satisfies” as many hyperedges of
H as possible, where we define the notion of when a hyperedge is satisfied below.

– [Strongly satisfied hyperedges] We say that a labeling a : W → [B] strongly
satisfies a hyperedge r ∈ [R] if

πr,1(a(qr,1)) = πr,2(a(qr,2)) = · · · = πr,p(a(qr,p)) .

– [Weakly satisfied hyperedges] We say that a labeling a : W → [B] weakly
satisfies a hyperedge r ∈ [R] if at least two elements of the tuple

〈πr,1(a(qr,1)), πr,2(a(qr,2)), · · · , πr,p(a(qr,p))〉

are equal.

Feige’s result on the above p-prover games can be stated as follows.

Theorem 12. There exists a constant 0 < c < 1 such that for every p ≥ 2 and
all large enough u, given an instance I of the p-prover game with parameter u,
it is NP-hard to distinguish between the following two cases, when it is promised
that one of them holds:

– Yes Instances: There is a labeling that strongly satisfies all hyperedges.
– No Instances: No labeling weakly satisfies more than a fraction p2cu of the

hyperedges.

Note that difference between Yes and No instances is not just in the fraction of
satisfied hyperedges, but also in how the hyperedge is satisfied (strong vs. weak).

Reduction to 1-in-EkHS. The result of Theorem 10 clearly follows from The-
orem 12 and the reduction guaranteed by the following lemma.

Lemma 13. For every ε > 0, there exists a positive integer p such that for
all large enough even u the following holds. Let k = 4u. There is polynomial
time reduction from p-prover games with parameter u to 1-in-EkHS that has the
following properties:

– [Completeness]: If the original instance of the p-prover game is a Yes in-
stance (in the sense of Theorem 12), then the instance of 1-in-EkHS produced
by the reduction is satisfiable.



– [Soundness]: If the original instance of the p-prover game is a No instance
(in the sense of Theorem 12), then no assignment satisfies more than a
fraction (1/e+ε) of the constraints in the instance of 1-in-EkHS produced by
the reduction.

Proof. We begin with describing the reduction. Suppose we are given an instance
I of the p-prover game with parameter u. In the following, we will use the
notation and terminology from Definition 11. We define an instance of 1-in-EkHS

on the universe

U
def
= {(i, q, a) | i ∈ [p], q ∈ Qi, a ∈ [B]} .

Thus the universe simply corresponds to all possible 〈vertex, label〉 pairs. The
collection of sets in the instance is given by {Sr,x} as r ranges over [R] and x
over {1, 2, . . . , p}A, where

Sr,x
def
= {(i, qr,i, a) ∈ U | xπr,i(a) = i} .

Note that the size of each Sr,x equals B = 4u = k. This is because Sr,x =
⋃

j∈[A]{(i, qr,i, a) | i = xj , πr,i(a) = j}, and for each j ∈ [A], there are precisely

B/A elements a ∈ [B] such that πr,i(a) = j (since the projections are (B/A)-to-
1).

Let us first argue the completeness (this will also help elucidate the rationale
for the choice of the sets Sr,x).

Claim 3 (Completeness) Let a : W → [B] be an assignment that strongly
satisfies all hyperedges of I. Consider the subset C = {(i, q, a(q)) | i ∈ [p], q ∈
Qi}. Then |C ∩ Sr,x| = 1 for every r ∈ [R] and x ∈ [p]A.

Proof of Claim. Since a strongly satisfies every hyperedge r ∈ [R], we have
πr,1(a(qr,1)) = πr,2(a(qr,2)) = · · · = πr,p(a(qr,p)), and let jr ∈ [A] denote
this common value. Also let ir = xjr

∈ [p]. Then it is not hard to check that
C ∩ Sr,x = {(ir, qr,ir

, a(qr,ir
)}.

Claim 4 (Soundness) Suppose that some C ⊆ U satisfies |C ∩ Sr,x| = 1 for
at least a fraction 1/e + ε of the sets Sr,x. Then, provided p ≥ 1 + 3/(eε) and
cu < ε/(2p8), I is not a No instance.

Proof of Claim. For each i ∈ [p] and each vertex q ∈ Qi, define Aq = {a ∈ [B] |
(i, q, a) ∈ C}, i.e,, Aq consists of those labels for q that the subset C “picked”.
We will later use the sets Aq , q ∈ W to prove that a good labeling exists for I.

Call r ∈ [R] to be nice if at least a fraction (1/e + ε/2) of the sets Sr,x, as
x ranges over [p]A, satisfy |C ∩ Sr,x| = 1. By an averaging argument, at least a
fraction ε/2 of r ∈ [R] are nice.

Let us now focus on a specific r that is nice. Define

Dr = {(i, b) | i ∈ [p], b ∈ [A], (i, qr,i, a) ∈ C for some a s.t. πr,i(a) = b} .



That is Dr consists of the projections of the assignments in Aqr,i
for all vertices

qr,i belonging to hyperedge r. Let |Dr| = M and (i1, b1), (i2, b2), . . . , (iM , bM ) be
the elements of Dr.

Now if |C ∩ Sr,x| = 1, then exactly one of the events xbj
= ij must hold as j

ranges over [M ]. Since r is nice we know that the fraction of such x ∈ [p]A is at
least (1/e + ε/2). We consider the following cases.

Case A: M > p3. Then there are at least M ′ def
= dM/pe > p2 distinct values

among b1, b2, . . . , bM . For definiteness, assume that b1, b2, . . . , bM ′ are distinct. If
exactly one of the events xbj

= ij holds as j ranges over [M ], then certainly at
most one j in the range 1 ≤ j ≤ M ′ satisfies xbj

= ij . The fraction of x ∈ [p]A

for which
∣

∣

∣
{j | j ∈ [M ′], xbj

= ij}
∣

∣

∣
≤ 1 is at most

(

1 −
1

p

)M ′

+ M ′
(

1−
1

p

)M ′−1

≤ e−(M ′−1)/p(M ′ + 1) ≤ e−p(p2 + 2) < 1/e

for p ≥ 10. This contradicts that fact that r is nice. Therefore this case cannot
occur and we must have M ≤ p3.
Case B: M ≤ p3 and all the bj ’s are distinct. Clearly, the fraction of x ∈ [p]A

for xbj
= ij for exactly one choice of j ∈ [M ] is precisely M

p

(

1 − 1/p
)M−1

. Now
we bound this quantity as follows:

M

p

(

1 − 1/p
)M−1

=
p

p − 1

M

p

(

1 − 1/p
)M

≤
p

p − 1

M

p
e−M/p (using 1 − x ≤ e−x for x ≥ 0)

≤
p

p − 1

1

e
(using xe−x ≤ 1/e for x ≥ 0)

≤
1

e
+

ε

3

provided p ≥ 1+3/(eε). Again, this contradicts that fact that r is nice. Therefore
this case cannot occur either.

Therefore we can conclude the following: if r is nice, then |Dr| ≤ p3 and there
exist ir,1 6= ir,2 ∈ [p] such that for some br ∈ [A], {(ir,1, br), (ir,2, br)} ⊆ Dr.

Consider the following labeling a to W . For each q ∈ W , set a(q) to be a
random, uniformly chosen, element of Aq (if Aq is empty we set a(q) arbitrarily).
Consider a nice r. With probability at least 1/p6, we have

πr,ir,1

(

a(qr,ir,1
)
)

= πr,ir,2

(

a(qr,ir,2
)
)

= br

and thus hyperedge r is weakly satisfied by the labeling a.
In particular, there exists a labeling that weakly satisfies at least a fraction

1/p6 of the nice r, and hence at least a fraction ε
2p6 of all r ∈ [R]. If u is large

enough so that p2cu < ε
2p6 (where c is the constant from Theorem 12), we know

that I is not a No instance.



The completeness and soundness claims together yield the lemma.

4 Conclusions

The 1-in-EkSAT problem, while hard to approximate within a 2Ω(k) factor, be-
comes substantially easier and admits an e-approximation in polynomial time
with either one of two restrictions: (i) do not allow negations (which is the 1-in-

EkHS problem), (ii) consider satisfiable instances. Such a drastic change in ap-
proximability under such restrictions is quite unusual for natural constraint satis-
faction problems (discounting problems which become polynomial-time tractable
under these restrictions).

We conclude with two open questions:

– Does 1-in-kHS admit a polynomial time o(log k)-approximation algorithm?3

– Does the 2Ω(k) hardness for 1-in-EkSAT hold for near-satisfiable instances
(for which a fraction (1 − ε) of the constraints can be satisfied by some
assignment)?
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