

Generating Finite-State Abstractions of
Reactive Systems using Decision Procedures?

Michael A. Colón and Tomás E. Uribe

Computer Science Department, Stanford University
Stanford, CA 94305

colon|uribe@cs.stanford.edu

Abstract. We present an algorithm that uses decision procedures to
generate finite-state abstractions of possibly infinite-state systems. The
algorithm compositionally abstracts the transitions of the system, rela-
tive to a given, fixed set of assertions. Thus, the number of validity checks
is proportional to the size of the system description, rather than the size
of the abstract state-space. The generated abstractions are weakly pre-
serving for ∀CTL* temporal properties. We describe several applications
of the algorithm, implemented using the decision procedures of the Stan-
ford Temporal Prover (STeP).

In 10th International Conference on Computer Aided Verification,

Vol. 1427 of Lecture Notes in Computer Science, pp. 293–304

Springer-Verlag, June/July 1998.

1 Introduction

An attractive method for proving a temporal property ϕ for a reactive system S
is to find a simpler abstract system A such that if A satisfies ϕ, then S satisfies ϕ
as well. In particular, if A is finite-state, the validity of ϕ for A can be established
automatically using a model checker, which may not have been possible for S
due to an infinite or overly large state-space.

There are two obstacles to this approach. First, the construction of A is often
manual and has to be proved correct at a later stage. This process can be error-
prone if the proof is not formal, and tedious otherwise. Second, abstractions may
not be fine enough: if A is too abstract, A may not satisfy ϕ, even if S does. We
address the first problem by automatically constructing an A that is guaranteed
to be a correct abstraction, based on limited user input. We begin to address
the second by constructing abstractions quickly: abstractions that are found to
be too coarse can be refined with little effort and tested again. Thus, finding
the right abstraction is an iterative process where the user tests a number of
candidate abstractions, possibly guided by feedback from a model checker. The
procedure we present can be the basic building block in this process.

As in the procedure of Graf and Saidi [GS97], we use validity checking to
generate a finite-state abstraction based on a set of formulas B = {b1, . . . , bn}.
? This research was supported in part by the National Science Foundation under

grant CCR-95-27927, the Defense Advanced Research Projects Agency under NASA
grant NAG2-892, ARO under grant DAAH04-95-1-0317, ARO under MURI grant
DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA).

However, rather than performing an exhaustive search of the reachable abstract
states while constructing A, our algorithm transforms S to A directly, leaving
the exploration of the abstract state-space to a model checker. Thus, the number
of validity checks performed by our algorithm is proportional to the number of
formulas in B and the size of the representation of S, rather than the size of the
abstract state-space. Furthermore, our procedure is applicable to systems whose
abstract state-space is too large to enumerate explicitly, but can still be handled
by a symbolic model checker [McM93].

The price paid by our approach, compared to [GS97], is that a coarser ab-
straction may be obtained. However, we offset this by using a richer abstract
state-space: the complete boolean algebra of expressions over B = {b1, . . . , bn},
rather than only the monomials over this set. Our procedure can be seen as a
form of abstract interpretation [CC77], with this algebra as the abstract domain.

1.1 Related Work

Our abstraction procedure is related to the work of [GS97] and [SUM96]. The
procedure of [GS97] is the closest to ours, as discussed above. In deductive model
checking [SUM96], the abstract system and its state-space are generated inter-
actively, using theorem proving, based on the refinement of an initial, maximally
abstract system. The refinement proceeds until the property in question can be
proved or disproved. That procedure is thus top-down, as opposed to the more
bottom-up, property-independent approaches that this paper and [GS97] pro-
pose.1 In contrast to both [GS97] and [SUM96], we perform validity checking at
“compile time,” rather than at model check time.

Abstraction frameworks: Theoretical foundations of property-preserving ab-
straction are presented in [Dam96,LGS+95,CGL94]. We present the necessary
results on abstraction in Section 3. Deductive rules for proving simulation and
abstraction are presented in [KMP94]. In contrast, our approach is to transform
a concrete system into a property-preserving abstract system automatically, ob-
viating the need to prove property preservation for an abstraction given a priori .

Approaches based on abstract interpretation [CC77] are presented in, e.g.,
[CGL94,Dam96,DGG97]. Much of this work is specialized to the case of finite-
state systems. We include some simple fairness considerations, a special case of
those in the verification rules of [KMP94], which do not appear in most work on
abstract interpretation.

Other work uses abstractions that are more explicitly given by the user. For
instance, [DF95] applies abstraction and error trace analysis to infinite state
systems. The abstraction is generated automatically, given a data abstraction
that maps concrete variables and operators to abstract ones. [BBM97] uses ab-
stract interpretation to generate invariants and intermediate assertions for fair
transition systems. Like ours, their procedure is compositional and automatic,

1 These procedures can be given a top-down flavor by including in the set B atoms
from the temporal formula being verified.

2

given a suitable abstract domain. Their emphasis is on finding abstraction do-
mains where the reachable state-space can be approximated to produce useful
invariants. We, however, are motivated by the need to prove general temporal
properties over the abstract system. Nonetheless, our abstractions can be used
to generate invariants as well. These invariants can, in turn, be used to generate
more precise abstractions.

Over- and under-approximations: Pardo and Hachtel [PH97] present an
automatic BDD-based method for symbolic model checking, where the size of
BDD’s is reduced using over- and under-approximations of subformulas, depend-
ing on their polarity. We use polarity in an analogous way. Another approximated
BDD-based symbolic model checking procedure is presented in [KDG95], based
on the abstract interpretation framework of [Dam96]. These procedures do not
change the state-space of the system, but instead approximate the transition
relation to produce smaller BDDs.

Dill and Wong-Toi [DW95,Won95] use abstract-interpretation to verify timed
safety automata, over- and under-approximating sets of states and next-state re-
lations. This work approximates set operations during model checking, as well as
statically approximating the transitions themselves, using methods specialized to
real-time systems. The algorithm we propose for over- and under-approximating
transitions could be used in similar settings as well.

2 Preliminaries

2.1 Fair and Clocked Transition Systems

Fair transition systems [MP95] are a convenient formalism for specifying finite-
and infinite-state reactive systems, using an assertion language based on first-
order logic. A fair transition system (FTS) S = 〈Σ,Θ, T 〉 is given by a set of
system states Σ, an initial condition Θ, and a set of transitions T . Each state
in Σ is a valuation of a finite set of typed system variables V. If Σ is finite, S is
said to be finite-state.

Definition 1 (Assertion). A first-order formula whose free variables are a
subset of V is an assertion, or state-formula, and represents the set of states
that satisfy it. For an assertion ϕ, we say that s ∈ Σ is a ϕ-state iff s |= ϕ, that
is, ϕ holds given the values of V at s.

The initial condition Θ is an assertion that characterizes the set of initial
states. With each transition τ ∈ T we associate its transition relation ρτ (V,V ′),
a first-order formula over the system variables V and a primed set V ′, indicating
their values at the next state. A transition is enabled if it can be taken at
a given state. We define enabled(τ) def= ∃V ′.ρτ (V,V ′). We define post(τ, ϕ) as
the assertion ∃V0. (ρτ (V0,V) ∧ ϕ(V0)), which characterizes the states reachable
from ϕ-states by taking transition τ . As usual, we define ϕ′ to be the result
of replacing each free variable x of ϕ with x′. For a set of expressions E, let
E′

def= {ϕ′ | ϕ ∈ E}.

3

A run of S is an infinite sequence of states s0, s1, . . ., such that s0 |= Θ
and for all i ≥ 0, ρτ (si, si+1) for some τ ∈ T . In this case, we say that τ is
taken at si. Transitions can be labeled as just or compassionate. A just (or
weakly fair) transition cannot be continuously enabled without being taken; a
compassionate (or strongly fair) transition cannot be enabled infinitely often but
taken only finitely many times. A computation is a run that satisfies all fairness
requirements. To ensure that run prefixes can always be extended to an infinite
sequence, we assume an idling transition, with transition relation V = V ′.

Clocked transition systems [MP96] are an extension of fair transition sys-
tems that is intended to model reactive systems with real-time constraints. A
clocked transition system (CTS) is a fair transition system S = 〈Σ,Θ, T 〉, whose
system variables are partitioned into a set of discrete variables D and a set of
real-valued clock variables C. Instead of an idling transition, T includes a tick
transition, which is the only transition that can advance time. The progress of
time is restricted by a time-progress condition Π, an assertion over D and C.
The transition relation for tick is:

ρtick : ∃∆ > 0.

 (D′ = D) ∧ (C ′ = C +∆)
∧

∀t ∈ [0, ∆].Π(D,C + t)

 ,

where C ′ = C +∆ stands for c′1 = c1 +∆ ∧ . . . ∧ c′k = ck +∆, and Π(D,C + t)
stands for Π(d1, . . . , dj , c1 + t, . . . , ck + t), where D = {d1, . . . , dj}.2

We do not impose fairness conditions on the transitions of a clocked transi-
tion system. Instead, upper bounds on the time that can pass before an enabled
transition is taken can be specified using the time-progress condition. The com-
putations of a CTS are the runs where time grows beyond any bound.

2.2 Temporal Logic

We use linear-time temporal logic (LTL) to express properties of reactive
systems. Temporal formulas are built from assertions, boolean operators
(∧,∨,¬,→), and temporal operators (2,3,U ,W), as usual. (See [MP95] for
details.) LTL properties are part of the universal fragment of CTL*, that is, a
subset of ∀CTL* [Eme90]. Our procedure applies to the verification of ∀CTL*
properties, and hence also to LTL.

2.3 Example

Figure 1 presents a fragment of Fischer’s real-time mutual exclusion algorithm,
as described in [MP96], using the simple programming language of [MP95]. The
algorithm assumes uniform positive bounds L and U on the time each process
can wait before executing its next statement: an enabled transition must wait at
least L and at most U before being taken. If 2L > U , the algorithm guarantees
that both processes are never in their critical sections simultaneously.
2 Clocked transition systems also contain a master clock T , which can only be changed

by the tick transition; Θ should imply T = 0. We will not need T for our example.

4

local x : {0, 1, 2} where x = 0

P1 ::

`0: await x = 0
`1: x := 1
`2: skip
`3: await x = 1
`4: critical

 || P2 ::

m0: await x = 0
m1: x := 2
m2: skip
m3: await x = 2
m4: critical

Fig. 1. Fischer’s mutual exclusion algorithm.

To model the program as a clocked transition system, we introduce two
control variables π1 and π2, ranging over {`0, . . . , `4} and {m0, . . . ,m4} re-
spectively, and two clock variables c1 and c2. As Θ, we take the assertion
π1 = `0 ∧ π2 = m0 ∧ c1 = 0 ∧ c2 = 0 ∧ x = 0. We then introduce a transi-
tion for each statement, e.g., statement `1 yields transition τ`1 , with relation

ρ`1 :
(

π1 = `1 ∧ c1 ≥ L ∧
π′1 = `2 ∧ c′1 = 0 ∧ x′ = 1

)
∧ π′2 = π2 ∧ c′2 = c2 .

Finally, we take as the time-progress condition Π : c1 ≤ U ∧ c2 ≤ U , and add
the transition tick.

Mutual exclusion is expressed by the LTL formula 2¬(π1 = `4 ∧ π2 = m4).

3 Abstraction

Abstraction reduces the verification of a temporal property ϕ over a concrete
system S, to checking a related property over a simpler, abstract system A. For
simplicity, we write A |= ϕ to indicate that the corresponding property holds for
the abstract system.

In the following, we use the notation of [Dam96] whenever possible. Given
a set of temporal properties T and two systems S and A, we say that A is a
weakly preserving abstraction of S for T iff for any ϕ ∈ T , if A |= ϕ then S |= ϕ.
(A is said to be a strongly preserving abstraction if the converse is also true, but
we will only use weakly preserving abstractions in this paper.)

Based on the ideas of abstract interpretation [CC77], the abstract system
can be constructed from an abstract set of states ΣA and a partial order �,
where a1 � a2 if a1 is a “more precise” abstract state than a2. Such abstrac-
tions are often presented in terms of Galois connections, where the two posets
connected are (2Σ ,⊆) and (ΣA,�), where Σ is the concrete state-space. (see,
e.g., [LGS+95,Dam96]). A concretization function γ : ΣA 7→ 2Σ maps each ab-
stract state to the set of concrete states it represents, and an abstraction function
α : 2Σ 7→ ΣA maps each set of concrete states to the most precise abstract state
that represents it. The pair (α, γ) is a Galois connection iff for all x ∈ 2Σ and
all y ∈ ΣA, α(x) � y if and only if x ⊆ γ(y). We extend γ to sets of abstract
states S ∈ 2Σ

A
with γ(S) def=

⋃
a∈S γ(a), and to relations ρA over ΣA × ΣA as

γ(ρA) def=
{
〈s1, s2〉 | s1 ∈ γ(a1) and s2 ∈ γ(a2) for some 〈a1, a2〉 ∈ ρA

}
.

5

The following abstract domain is often (implicitly) used in deductive verification:

Definition 2 (Assertion-based abstraction). As the abstract domain ΣA,
choose the complete boolean algebra BA(B) (using ∧A,∨A,¬A) over a finite
set of assertions B, where sA1 � sA2 iff sA1 implies sA2 . Then let γ(f) =
{s ∈ Σ | s |= f} and α(S) =

∧A {sA ∈ BA(B) | S ⊆ γ(sA)
}

. We call this the
assertion-based abstract domain with basis B.

We now have a Galois insertion from (2Σ ,⊆) to (ΣA,�), since α(γ(f)) = f for
all f ∈ BA(B).

Notation: Note that we use ∧A,∨A,¬A for operations in the abstract domain,
while ∧,∨,¬,→ are the usual connectives in the general assertion language.

We will continue to characterize sets of concrete states using assertions, which
need not be points in the abstract state-space. For a formula sA ∈ BA(B), we
will write γ(sA) to characterize the set of states it represents, rather than simply
sA, to highlight the fact that sA is an abstract state, while γ(sA) is an assertion
(representing a set of concrete states). More formally, γ(sA) is obtained from
sA by replacing ∧A, ∨A and ¬A by ∧, ∨ and ¬; the boolean variables in sA,
which are elements of B, appear as corresponding subformulas in γ(sA). In this
way, the extension of γ to sets can be characterized as γ(S) =

∨
a∈S γ(a). For

assertions f1 and f2, we sometimes write f1 ⊆ f2 when f1 → f2 is valid.

The correctness of our abstractions is based on the following lemma.

Lemma 1 (Weak Preservation of ∀CTL*—a sufficient condition). Let
B be a finite set of assertions, S = 〈Σ,Θ, T 〉, and A = 〈ΣA, ΘA, T A〉. If

1. Initial condition: Θ ⊆ γ(ΘA) (that is, Θ is over-approximated by ΘA),
2. For each transition τ ∈ T there is a transition τA ∈ T A such that ρτ ⊆

γ(ρτA) (that is, τ is over-approximated by τA), and
3. Fairness: If τA ∈ T A is just (resp. compassionate), then there is a just (resp.

compassionate) τ ∈ T such that: (a) γ(enabled(τA)) ⊆ (resp. =) enabled(τ),
and (b) post(τ, γ(enabled(τA))) ⊆ γ(post(τA, enabled(τA))),

then the abstract system A is a weakly preserving abstraction of S for ∀CTL*.

The third requirement limits the fairness constraints that can be imposed
on transitions in A. Note that the more fairness constraints A has, the more
∀CTL* properties it will satisfy. If (3) does not hold, only safety properties will
be preserved. Note that (b) is guaranteed if ρτ ⊆ γ(ρτA).

This lemma still holds if the inclusions are valid only for the reachable states
of S, i.e., invariants of S can be used to establish them. More general conditions
for simulation and refinement between fair transition systems are presented in
[KMP94] as deductive verification rules.

6

4 Generating Finite-State Abstractions

In the following, let B = {b1, . . . , bn} be a fixed assertion basis. We assume we
have at our disposal a procedure checkValid, which can sometimes decide the
validity of assertions: if checkValid(p) returns true, then p is valid. That is, this
validity checker is assumed to be sound, but is not required to be complete.

The workhorse of our abstraction algorithm is a procedure that approximates
assertions over V and V ′ as assertions over B and B′. The procedure descends
through the boolean structure of the formula, building an assertion to serve as
a context and keeping track of the polarity of subexpressions until it reaches
the atoms. The procedure then over- or under-approximates each atom using an
element of BA(B ∪B′).

4.1 Abstracting Atoms

Atoms are abstracted by testing them, in context, against a set of points P ⊆
BA(B ∪B′):

αatom(+, C, a) =
∧
A {p ∈ P | checkValid((C ∧ a)→ γ(p))} (over-approximation)

αatom(−, C, a) =
∨
A {p ∈ P | checkValid((C ∧ γ(p))→ a)} (under-approximation)

Intuitively, the context C indicates that we are only concerned with results
that lie within C. Thus, when over-approximating a in context C, we can consider
a ∧C instead, a smaller set. This yields a smaller result, and hence a more precise
over-approximation. Similarly, when under-approximating a in context C, we can
under-approximate a ∨ ¬C instead. This will give a larger result, and hence a
better overall under-approximation.

4.2 Abstracting Assertions

We extend αatom to a function α that abstracts assertions as follows:

α(π,C, a) = αatom(π,C, a), if a is an atom

α(π,C,¬q) = ¬Aα(π−1, C, q), where +−1 def= − and −−1 def= +
α(+, C, q ∧ r) = let q̂ = α(+, C, q) in q̂ ∧A α(+, C ∧ γ(q̂), r)
α(+, C, q ∨ r) = let q̂ = α(+, C, q) in q̂ ∨A α(+, C ∧ ¬γ(q̂), r)
α(−, C, q ∧ r) = let q̂ = α(−, C, q) in q̂ ∧A α(−, C ∧ γ(q̂), r)
α(−, C, q ∨ r) = let q̂ = α(−, C, q) in q̂ ∨A α(−, C ∧ ¬γ(q̂), r)

An assertion f is thus abstracted using O(|P | · |f |) validity checks. The main
claim that justifies the correctness of the algorithm is:

Proposition 1. For assertions C and f ,
C → (γ(α(−, C, f))→ f) and C → (f → γ(α(+, C, f))) are valid.

Notice that this algorithm applies to any abstract domain that is a boolean
algebra, provided the operations for ∧A, ∨A, ¬A and γ are available. Similarly,
it applies to any assertion language for which a validity checker is available.

7

4.3 Abstracting Systems and Properties

Given a concrete transition system S = 〈Σ,Θ, T 〉, its abstraction is A =
〈BA(B), ΘA, T A〉, where ΘA is the result of over-approximating Θ, and T A
is the result of over-approximating each transition relation in T .

The initial context can contain known invariants of S. When abstracting the
atoms of an initial condition or the assertions of a temporal property (see below),
we test against the set of unprimed points

PU
def= B ∪ {¬bi | bi ∈ B} .

For transition relations, we test against the set of mixed points

PM
def= PU ∪ P ′U ∪ {p1 → p2 | p1 ∈ PU ∧ p2 ∈ P ′U} .

Thus, the algorithm abstracts a transition relation ρτ using O(n2|ρτ |) validity
checks, where n = |B|. For an assertion f with no primed variables, O(n|f |)
validity checks are needed. Enlarging these point sets can increase the quality of
the abstraction, as discussed in Section 4.4; however, these relatively small sets
sufficed to verify most of the examples in Section 5.

System A is an n-bit finite-state system. Since Θ ⊆ γ(ΘA) and ρτ ⊆ γ(ρτA)
for all τ ∈ T , conditions (1) and (2) of Lemma 1 are satisfied. We satisfy
condition (3) by propagating the fairness of τ to τA only if we can establish
the validity of γ(enabled(τA)) → enabled(τ). In this case, the two enabling
conditions are equivalent.3 If the basis includes the atoms in the guard of τ , this
is guaranteed to be the case. (If an assertion f contains only atoms in B, then its
abstraction is equivalent to f , modulo invariants.) In the worst case no fairness
carries over and only safety properties of A (and hence S) can be proved.

A temporal property ϕ is abstracted by under-approximating the assertions it
contains (over-approximating those with negative polarity). This method guar-
antees that every model of the abstract property corresponds to a model of the
concrete one. Thus, if all computations of the abstract system satisfy ϕA, all
computations of the concrete system will satisfy ϕ. If the basis includes all of
the assertions appearing in the property, the property approximation is exact.

4.4 Optimizations

Preserving concrete variables: We allow finite-domain variables of S to be
propagated through to A, leaving it to the model checker to represent them
explicitly or encode them as bits. We implement this by having α be the identity
on finite-domain subexpressions whose free variables do not appear in the basis.
(Note, however, that the algorithm can always be used to abstract finite-state
systems to smaller abstract ones.)

3 In general, the known invariants of S can be used to establish the conditions of
Lemma 1, so the two could differ on unreachable states.

8

Reducing the test point set: Our implementation includes a few simple
strategies for eliminating trivial or redundant test points. For example, if an
atom implies bi, it is unnecessary to test the point ¬bi → b′j . Also, if τ does not
modify the free variables of bi, we eliminate the points {p→ b′i | p ∈ PU}.

Enlarging the test point set: There are occasions when additional points
must be tested to obtain a sufficiently precise abstraction. For example, ρτ may
imply (bi ∧ bj) → b′k, but imply neither bi → b′k nor bj → b′k. However, we are
unwilling to incur the potentially exponential cost of a naive enumeration of
such points. Instead, we allow the user to specify additional points to test when
specifying the basis. Alternatively, the user may enlarge the basis, but this will
in general also increase the time and space used at model-check time.

Conjunctions of literals: When a subexpression consists solely of conjunctions
of literals, we eliminate redundant validity checks by testing each point once for
the entire subexpression. That is, we terminate the recursion early, since testing
the points for each atom will not improve the quality of the abstraction.

4.5 Example

We used the following basis to abstract Fischer’s algorithm:

b1: c1 ≥ L b4: c2 ≥ c1
b2: c2 ≥ L b5: c1 ≥ c2 + L
b3: c1 ≥ c2 b6: c2 ≥ c1 + L

The starting context consisted of assumptions L > 0, U > 0, U ≥ L and 2L > U ,
and invariants c1 ≥ 0 and c2 ≥ 0. The initial condition was abstracted to

π1 = `0 ∧ π2 = m0 ∧ x = 0 ∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4 ∧ ¬b5 ∧ ¬b6

(where we now write ∧,∨,¬ rather than ∧A,∨A,¬A). Transition `1 was ab-
stracted to

ρA`1 :

π1 = `1 ∧ π′1 = `2 ∧ x′ = 1 ∧ π′2 = π2 ∧

b1 ∧ ¬b′1 ∧ b′4 ∧ ¬b′5 ∧ (b2 → ¬b′3) ∧ (b2 → b′6) ∧
(¬b3 → ¬b′3) ∧ (¬b3 → b′6) ∧ (b4 → ¬b′3) ∧ (b4 → b′6) ∧

(¬b5 → ¬b′3) ∧ (b6 → ¬b′3) ∧ (b6 → b′6)

 .

The other transitions were similarly abstracted. (The tick transition, which con-
tains quantifiers, was treated as a single literal when abstracted.) With our im-
plementation (see Section 5), the abstract system was generated in 28 seconds,
and mutual exclusion was automatically model checked in one second.

5 Experimental Results

We implemented our abstraction procedure using the deductive and algorithmic
support found in the Stanford Temporal Prover, STeP [BBC+96]. STeP includes

9

System # transitions Basis size Abstraction
time

Model check
time

Bakery 14 3 3s <1s

Fischer 11 6 28s 1s

Alternating-bit 7 4 14s <1s

Bounded Retransmission 13 7 70s 4s

Table 1. Abstraction and model check times.

decision procedures for datatypes, partial orders, linear arithmetic, congruence
closure and bit-vectors. They are integrated into a general validity checker that
is complete for ground formulas, relative to the power of the decision procedures,
and can be applied to first-order formulas as well [BSU97]. STeP also includes
explicit-state and symbolic LTL model checking for fair transition systems.

We have tested our implementation on a few examples, including two mutual
exclusion algorithms and two data-communication protocols. All of these exam-
ples are infinite-state: they contain variables whose range is unbounded (integers,
lists, and real-valued clocks). For each example, Table 1 gives the size of the basis,
the time to generate the abstract system, and the time to model check the prop-
erties of interest against the generated abstraction, using STeP’s explicit-state
model checker.4 (The concrete systems, properties, bases and abstract systems
are available on the web at http://rodin.stanford.edu/abstraction.)

The Bakery algorithm is a two-process mutual exclusion algorithm (see, e.g.,
[MP95]). The property we verify is mutual exclusion, which proves to be partic-
ularly easy to establish since it is sufficient to take as a basis the set of assertions
that guard transitions.

In the alternating-bit protocol, a sender and a receiver communicate over
two lossy channels. The property we verify is that the receiver’s list is always a
prefix of the list that the sender is transmitting. The basis for this example was
found by trace-based refinement : starting with the guards of the transitions, we
added assertions to the basis in response to abstract counter-examples found by
the model checker. We also found it necessary to add a test point so that the
validity checker could derive the necessary inductive properties of lists.

The bounded retransmission protocol in, e.g., [HS96,GS97,DKRT97] is an
extension of the alternating-bit protocol where a limit is placed on the number of
transmissions of a particular item. As with the alternating-bit protocol, we verify
the prefix property of the receiver’s list. In addition, we verify that the sender
and receiver report their status consistently: either they both report OK, they
both report NOT OK, or the sender reports DONT KNOW and the receiver reports
OK or NOT OK. To generate the basis, we started with the basis used for the
alternating-bit protocol and added the guards of the transitions.

4 While we recognize that the abstraction times are highly dependent on the speed of
the validity checker, we present them to give a feel for how quickly the abstractions
can be generated in practice.

10

While verifying the consistency of the status reports, STeP’s model checker
discovered an abstract counter-example that uncovered an oversight in our orig-
inal implementation. If the list to be transmitted is empty, the sender finishes
immediately, reporting OK. The receiver, not having received a frame whose last
bit was set, assumes the sender aborted transmission and reports NOT OK. To
correct this problem, we require that the list be non-empty, since the bounded
retransmission protocol is not designed to transmit empty lists.

6 Conclusions

We have presented a procedure for abstracting transition systems in a composi-
tional manner, using a finite-state abstraction domain. Instead of using theorem-
proving to explore the abstract state-space, we use it to abstract the transition
relations that describe the system. The abstract state-space can then be ex-
plored, explicitly or symbolically, by a model checker.

The procedure provides an alternative method for combining deductive and
algorithmic verification. The use of deductive tools makes our procedure appli-
cable to infinite-state systems. The efficiency of the abstraction procedure, and
the use of finite-state model checking at the abstract level, gives the procedure
a level of automation comparable to that of finite-state algorithmic methods. As
with deductive methods, the availability of new decision procedures for particu-
lar theories increases the power of the algorithm.

The choice of the abstraction basis B can be based on the user’s understand-
ing of the system, analogous to the use of intermediate assertions in deductive
verification. The procedure is completely automatic once this basis is chosen,
and its efficiency allows for various alternatives to be quickly tested. However,
techniques for the generation (manual and automatic) of the abstraction basis
remain to be tested and explored.

Acknowledgements: We thank Nikolaj Bjørner, Zohar Manna, Hassen Saidi
and Henny Sipma for their feedback and comments.

References

[AH96] R. Alur and T.A. Henzinger, editors. Proc. 8th Intl. Conference on Computer
Aided Verification, vol. 1102 of LNCS. Springer-Verlag, July 1996.

[BBC+96] N.S. Bjørner, A. Browne, E.S. Chang, M. Colón, A. Kapur, Z. Manna, H.B.
Sipma, and T.E. Uribe. STeP: Deductive-algorithmic verification of reactive
and real-time systems. In Alur and Henzinger [AH96], pages 415–418.

[BBM97] N.S. Bjørner, A. Browne, and Z. Manna. Automatic generation of invari-
ants and intermediate assertions. Theoretical Computer Science, 173(1):49–
87, February 1997. Preliminary version appeared in 1st Intl. Conf. on Princi-
ples and Practice of Constraint Programming , vol. 976 of LNCS, pp. 589–623,
Springer-Verlag, 1995.

[BSU97] N.S. Bjørner, M.E. Stickel, and T.E. Uribe. A practical integration of first-
order reasoning and decision procedures. In 14th Intl. Conf. on Automated
Deduction, vol. 1249 of LNCS, pages 101–115. Springer-Verlag, July 1997.

11

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th ACM Symp. Princ. of Prog. Lang., pages 238–252. ACM Press, 1977.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
ACM Trans. on Prog. Lang. and Systems, 16(5):1512–1542, September 1994.

[Dam96] D.R. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Eindhoven University of Technology, July 1996.

[DF95] J. Dingel and T. Filkorn. Model checking of infinite-state systems using data
abstraction, assumption-commitment style reasoning and theorem proving. In
Wolper [Wol95], pages 54–69.

[DGG97] D.R. Dams, R. Gerth, and O. Grümberg. Abstract interpretation of reactive
systems. ACM Transactions on Prog. Lang. and Systems, 19(2):253–291, 1997.

[DKRT97] P.R. D’Argenio, J.P. Katoen, T. Ruys, and G.T. Tretmans. The bounded
retransmission protocol must be on time! In 3rd TACAS Workshop, vol. 1217
of LNCS, pages 416–432. Springer-Verlag, 1997.

[DW95] D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive
over and under approximation. In Wolper [Wol95], pages 409–422.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, vol. B, pages 995–1072. Elsevier Science
Publishers (North-Holland), 1990.

[Gru97] O. Grumberg, editor. Proc. 9th Intl. Conference on Computer Aided Verifica-
tion, vol. 1254 of LNCS. Springer-Verlag, June 1997.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Grumberg [Gru97], pages 72–83.

[HS96] K. Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe, pages 662–681,
March 1996.

[KDG95] P. Kelb, D. Dams, and R. Gerth. Practical symbolic model checking of
the full µ-calculus using compositional abstractions. Technical Report 95/31,
Eindhoven University of Technology, The Netherlands, October 1995.

[KMP94] Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of simulation and
refinement. In A Decade of Concurrency, vol. 803 of LNCS, pages 273–346.
Springer-Verlag, 1994.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:1–35, 1995.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Pub., 1993.
[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.
[MP96] Z. Manna and A. Pnueli. Clocked transition systems. Tech. Report STAN-CS-

TR-96-1566, Computer Science Department, Stanford University, April 1996.
[PH97] A. Pardo and G. Hachtel. Automatic abstraction techniques for propositional

µ-calculus model checking. In Grumberg [Gru97], pages 12–23.
[SUM96] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In Alur

and Henzinger [AH96], pages 208–219.
[Wol95] P. Wolper, editor. Proc. 7th Intl. Conference on Computer Aided Verification,

vol. 939 of LNCS. Springer-Verlag, July 1995.
[Won95] H. Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems.

PhD thesis, Computer Science Department, Stanford University, March 1995.
Tech. Report CS-TR-95-1546.

12

