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Abstract

In a network with selfish users, designing and deploying
a protocol determines the rules of the game by which
end users interact with each other and with the net-
work. We study the problem of designing a protocol to
optimize the equilibrium behavior of the induced net-
work game. We consider network cost-sharing games,
where the set of Nash equilibria depends fundamentally
on the choice of an edge cost-sharing protocol. Previous
research focused on the Shapley protocol, in which the
cost of each edge is shared equally among its users.

We systematically study the design of optimal cost-
sharing protocols for undirected and directed graphs,
single-sink and multicommodity networks, different
classes of cost-sharing methods, and different measures
of the inefficiency of equilibria. One of our main
technical tools is a complete characterization of the
uniform cost-sharing protocols—protocols that are de-
signed without foreknowledge of or assumptions on the
network in which they will be deployed. We use this
characterization result to identify the optimal uniform
protocol in several scenarios: for example, the Shapley
protocol is optimal in directed graphs, while the op-
timal protocol in undirected graphs, a simple priority
scheme, has exponentially smaller worst-case price of
anarchy than the Shapley protocol. We also provide
several matching upper and lower bounds on the best-
possible performance of non-uniform cost-sharing pro-
tocols.
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1 Introduction

Designing Networks and Protocols to Mini-
mize Inefficiency. The computer science view of net-
works has changed fundamentally over the last decade.
In the past, networks were largely assumed to be
planned in advance by a single designer, with users who
were controllable, cooperative, or at least predictable.
Today, many of the networks dear to computer science—
from the Internet, to the Web, to peer-to-peer and social
networks—are both created and used by a vast num-
ber of autonomous individuals with diverse objectives.
Research in the design and analysis of algorithms has
responded in kind, with an increasing focus on opti-
mization in networks with self-interested designers or
users.

How do we model and analyze selfish behavior in
networks? One important genre of problems posits that
some aspect of network resource allocation—such as
the routing of traffic, the balancing of jobs across ma-
chines, the division of bandwidth, or the available net-
work infrastructure—is at least partially controlled by
self-interested network users, rather than by the net-
work designer or manager. Almost all work in this area
studies applications in which resource allocation is com-
pletely controlled by selfish network users. The most
common goal in such applications is to quantify the
magnitude of suboptimality inevitably caused by self-
ish resource allocation. This goal is analytic, not algo-
rithmic. For example, one well-studied approximation
measure used for this purpose is the price of anarchy
(POA)—the ratio between the objective function val-
ues of a worst Nash equilibrium and that of an optimal
solution.

But inefficiency measures like the POA are flexible
enough to inform a broader question: how should we
design networks and their protocols to minimize the ef-
ficiency loss caused by selfish behavior? A measure of
inefficiency provides a comparative framework for rig-
orously answering this question—given a set of feasi-
ble solutions, the “optimal solution” is the one with
the smallest-possible worst-case efficiency loss. This ap-
proach thus adopts inefficiency measures like the POA
as objective functions to be minimized in novel network
optimization problems. The optimal objective function



value then quantifies the unavoidable loss in solution
quality caused by selfish behavior, given the design con-
straints of the problem.

Network Cost-Sharing Games. The question of
how to design networks and network protocols to mini-
mize the inefficiency of their equilibria can (and should)
be asked in a range of models. In this paper, we fo-
cus on the conceptually simple but mathematically rich
network cost-sharing games introduced by Anshelevich
et al. [2, 3].

A Shapley network design game [2] is defined as fol-
lows. The game transpires in a graph, directed or undi-
rected, with fixed edge costs; these might represent the
cost of installing infrastructure between two vertices, or
the cost of leasing a large amount of bandwidth on an
existing link. Each player i is associated with a source-
sink pair (si, ti) and chooses an si-ti path Pi to establish
connectivity. Given a choice by each player, the network
H = ∪iPi is formed at cost

∑
e∈H ce. The global objec-

tive function is to minimize this cost.
A key assumption in Shapley network design games

is that the cost of the network formed is passed on to the
players by sharing the cost of each edge e ∈ H equally
among the players that use it. (This method of sharing
the cost of a single edge e is the same as the Shapley
value of the corresponding cooperative game, where the
players S are the users of the edge and the cost function
is C(∅) = 0 and C(T ) = ce for all non-empty T .) We
assume that each player chooses a path to minimize the
sum of its cost shares. Every such game admits at least
one pure-strategy Nash equilibrium—a choice of a path
for each player so that no player can strictly decrease its
cost via a unilateral deviation [2]. Note that the design
decision of how to share the network cost determines the
incentive structure and hence the set of Nash equilibria
in the network design game, but it does not affect the
global optimization problem of connecting all players at
minimum cost.

The inefficiency of equilibria in Shapley network
design games is largely understood. The POA can
be as large as the number k of players, even in a
network of two parallel links [3]. Somewhat better
bounds can be obtained by restricting attention to a
subset of all Nash equilibria. Considering only the
Nash equilibria reachable via best-response dynamics
from the empty solution, as in [6, 7], the worst-case
ratio drops to polylogarithmic in single-sink undirected
networks [6], but this ratio remains polynomial in k
in directed networks and multicommodity undirected
networks (Seffi Naor, personal communication, May
2007). Considering only the best Nash equilibrium (the
price of stability (POS)), as in [2, 3], the worst-case
ratio in directed graphs is precisely the kth Harmonic

number Hk =
∑k

i=1 1/i ≈ ln k [2]. (The worst-case
POS of Shapley cost-sharing in undirected graphs is
unknown [2, 14].)

These known lower bounds on the performance of
the Shapley cost-sharing protocol motivate an obvious
question: can we design a better cost-sharing protocol?

Desiderata. To determine whether or not there
are protocols superior to Shapley cost-sharing, we must
precisely define a design space. Formulating such a
design space requires a number of modeling choices that
are inevitably subject to debate. We propose one such
definition that we feel is natural and that leads to non-
trivial problems and interesting results, but freely admit
that there may be alternative, equally interesting design
spaces to explore.

Throughout the entire paper, we retain the follow-
ing properties of the Shapley cost-sharing protocol.

(1) Budget-balance: The cost of each edge in the
formed network is fully passed on to its users.

(2) Separability: The cost shares of an edge are
completely determined by the set of players that
use it.

(3) Stability: For every network design game induced
by the cost-sharing protocol, there is at least one
(pure-strategy) Nash equilibrium.

We call cost-sharing protocols that satisfy (1)–(3) ad-
missible.

A case can be made for or against each of these
requirements; we next discuss the most obvious pros and
cons of and alternatives to these constraints. Budget-
balance (1) is, of course, the raison d’être of a cost-
sharing protocol and is the least contentious. One
could also consider some version of approximate budget-
balance; the present work does not.

Separability (2) precludes any explicit coordination
or communication between the cost shares of different
edges of a network. (Cost-sharing decisions of different
edges still implicitly affect each other by influencing the
set of equilibria.) Some important practical network
protocols, such as TCP/IP congestion control with
various packet dropping policies (e.g. [24, 33]), can be
informally regarded as separable in this sense (since
each edge makes independent packet dropping decisions
based only on the local state, such as the current queue
length). A diametrically opposite modeling decision
would be to allow arbitrary communication between
different edges, subject only to some computational
complexity constraint (such as polynomial time); in this
case, however, our protocol design problems essentially
reduce to standard problems in (non-game-theoretic)
polynomial-time approximation algorithm design. In



particular, short of proving P 6= NP , no unconditional
lower bounds are possible in this alternative model.
Finding a natural generalization of separability that still
permits unconditional lower bounds is an interesting
research challenge.

Finally, we explain why the stability constraint (3)
is appropriate. One line of criticism would argue that it
is too strong: by Nash’s theorem [38], every protocol
always induces a game that has at least one mixed-
strategy Nash equilibrium, by which we can measure the
protocol’s performance. However, the mixed-strategy
Nash equilibrium is a notoriously problematic solution
concept (see e.g. [40, §3.2]), and is adopted primarily in
games where there are no pure-strategy Nash equilibria.
There may be no alternative when confronted with an
arbitrary game. When designing the game being played,
as in protocol design, there is no justification for settling
for mixed-strategy equilibria. (A similar argument
applies for the “sink equilibria” of [18].) For example,
algorithmic mechanism design [39] is also concerned
with designing games (largely auctions) that have good
equilibria, and almost all work in the area has sought
games with dominant-strategy (pure) Nash equilibria, a
much stronger requirement than (3). A second parallel
is provided by work in the networking community on
the BGP interdomain routing protocol [41], which can
be naturally viewed as a game (e.g. [13, 16, 19, 46]):
while mixed-strategy Nash equilibria always exist in
the induced path selection game, previous work has
focused entirely on the existence of pure-strategy Nash
equilibria.

One could also criticize the stability constraint (3)
for being too weak: pure-strategy equilibria should not
only exist, but also be easy to find. Arguably the
most natural strengthening of (3) is to insist that best-
response dynamics always converges to a pure-strategy
equilibrium. (This has also been the focus of the
literature on BGP discussed above, where this property
is called “safety” [16, 19, 46].) While our lower bounds
assume only the weaker stability requirement (3), all
of our upper bounds are achieved using protocols that
also satisfy this stronger convergence property. In
fact, for an important subclass of protocols discussed
next, a non-obvious consequence of our results is the
equivalence of the two assumptions: a protocol always
induces a game with pure-strategy equilibria if and
only if it always induces a game in which best-response
dynamics is guaranteed to converge.

We next explain a fourth constraint which, intu-
itively, requires that the cost-sharing decisions on an
edge are independent of the network context. For ex-
ample, in the Shapley protocol, the cost shares of an
edge depend only on the edge cost and the number of

users, and are independent of all other network proper-
ties (network size, location of sources and sinks, etc.).

(4) Uniformity: Consider two networks G1 and G2,
each with the same player set, and two outcomes
so that the users of edge e1 ∈ G1 and edge e2 ∈ G2

are the same subset S in both outcomes. If e1 and
e2 have equal cost, then the players of S are charged
the same cost shares in both outcomes.

We first emphasize that, whatever its merits, we thor-
oughly study the optimal protocol design problem both
with and without this uniformity constraint. That said,
a protocol often must be designed without foreknowl-
edge of or assumptions about the network in which it
will be deployed. Uniformity is natural in such cases.
Moreover, uniformity ensures that a cost-sharing pro-
tocol remains well defined as the surrounding network
evolves over time. Again, TCP/IP congestion control
can be thought of as “uniform” in this high-level sense.

More formally, a uniform cost-sharing protocol is
defined as a mapping from every possible edge cost and
player set to cost shares for these players, while a non-
uniform protocol is a mapping from edge costs, player
sets, and networks to cost shares for the players. As
we will see in Example 2.3 and thereafter, a simple
but powerful way to leverage non-uniformity is to order
the players according to some static property of the
network, such as shortest-path distances.

Having defined a design space (either uniform or
non-uniform admissible protocols) and an equilibrium
concept (pure-strategy Nash equilibria), the final mod-
eling decision required to rigorously define an “optimal
protocol” is an objective function—a measure of the
inefficiency of equilibria. As noted above, three such
measures, ordered from most to least stringent, are the
POA (determined by the worst equilibrium), the reach-
able POA of [6, 7] (determined by the worst equilibrium
reachable via best-response dynamics from an empty
state), and the POS (determined by the best equilib-
rium). Obviously, the strongest types of results are
upper bounds on the POA and lower bounds on the
POS. We seek out bounds on the POA where possi-
ble (in undirected graphs), and resort to bounds on the
POS only when there are no other options (in directed
graphs). While we do not emphasize the reachable POA
in this extended abstract, our upper and lower bounds
for the POA in undirected networks all have compara-
ble analogues for the reachable POA, as we show in the
full version.

Our Results. We systematically address the fol-
lowing question: which admissible cost-sharing proto-
col minimizes the inefficiency of equilibria in network
cost-sharing games? We study this question for uniform



Network Measure Uniform Non-Uniform
U-SS POA Θ(log k) 2
U-MC POA Θ(polylog(k)) Θ(polylog(k))
D-SS POS Hk 1
D-MC POS Hk [3/2,Hk]
D-SS POA k k

Table 1: Summary of results. Quantities denote the
smallest-possible worst-case inefficiency of equilibria, for
the given class of networks, approximation measure, and
cost-sharing protocols. The abbreviations “U”, “D”,
“SS”, and “MC” stand for undirected, directed, single-
sink, and multicommodity networks, respectively. The
Hk upper bound in directed networks follows from [2].

and non-uniform cost-sharing protocols, for undirected
and directed graphs, for single-sink and multicommod-
ity networks, and for different measures of the ineffi-
ciency of equilibria. We give essentially matching upper
and lower bounds in almost all cases. Our quantitative
results are summarized in Table 1. (Upper bounds on
the POA trivially carry over to the reachable POA. Mi-
nor modifications of our proofs extend all of our lower
bounds on the POA to the reachable POA as well.)

Our main technical tool for analyzing uniform cost-
sharing protocols is a complete characterization of such
protocols. In particular, we completely characterize
the uniform protocols that always induce a network
game with at least one pure-strategy equilibrium. Our
proof approach is to show that every such protocol
is induced by a direct product of weighted potential
functions. While the existence of a potential function
is a standard sufficient condition for the existence of
pure-strategy Nash equilibria [35, 42], it is generally
far from a necessary condition. The content of our
characterization result is, therefore, showing that the
only way to obtain pure-strategy Nash equilibria via
a cost-sharing protocol across all possible networks
is via the potential function approach. We know
of no analogous result in the economics literature.
There is also a close connection between the potential
functions in our characterization and the “weighted
Shapley values” defined by Kalai and Samet [28].

In undirected networks, simple uniform protocols
dramatically reduce the POA (and, in multicommod-
ity networks, the reachable POA) compared to that of
Shapley cost-sharing (from polynomial in k to polylog-
arithmic in k). We provide a complete analysis of the
best-possible worst-case POA in single-sink and multi-
commodity undirected networks, for uniform and non-
uniform schemes. For uniform protocols, we prove a
(nearly tight) logarithmic lower bound on the best-

possible POA, even in single-sink networks. The proof
idea to leverage our characterization of uniform proto-
cols to associate weights with the players, prove that
there is either a cluster of players with sufficiently sim-
ilar weights or a large group of players with sufficiently
different weights, and then exhibit a family of hard in-
stances for each of the two cases. For undirected net-
works and non-uniform protocols, we cannot rely on our
characterization theorem and establish lower bounds
via explicit constructions. For single-sink networks, we
show matching upper and lower bounds of 2 on the
best-possible POA. For multicommodity networks, we
prove a (nearly tight) logarithmic lower bound on the
best-possible POA achievable by non-uniform protocols
via a construction based on high-girth graphs. This
construction has additional implications, most notably
an Ω(

√
log k) lower bound for oblivious network de-

sign [17, 20] in k-commodity networks.
For directed graphs, our characterization theorem

quickly resolves the uniform protocol case: the Shapley
protocol is the optimal uniform protocol in directed
graphs (for the POA, reachable POA, and POS). Thus,
while the Shapley protocol is typically motivated by its
simplicity and fairness properties, it can be equally well
justified on efficiency grounds. Lastly, for non-uniform
protocols in directed graphs, we show that a POS of 1
is always achievable in single-sink networks and is not
always achievable in multicommodity networks. In the
latter scenario, we also give a linear programming-
based characterization of the enforceable outcomes of a
network game—the outcomes that can arise as a Nash
equilibrium with respect to some non-uniform cost-
sharing protocol.

Related Work. Several previous papers have
studied network cost-sharing games [2, 3, 6, 7, 8, 11,
14, 36]. All of these papers studied a fixed cost-sharing
method; none considered the design questions addressed
here. The inefficiency of equilibria in other network de-
sign games was studied in [1, 12]. For other models of
network formation and design with self-interested par-
ticipants, see [5, 23, 25] and the references therein.

A few previous papers study how to design protocols
to minimize the worst-case inefficiency of equilibria in
models unrelated to ours. First, Christodoulou, Kout-
soupias, and Nanavati [9] and Immorlica et al. [22] de-
sign machine scheduling policies to minimize the worst-
case POA in variants of the scheduling game proposed
by Koutsoupias and Papadimitriou [31]. Second, Jo-
hari and Tsitsiklis [27] design protocols for allocating
a single divisible resource among heterogeneous play-
ers and show that, among all protocols that meet cer-
tain desirable “scalability” constraints, the Kelly proto-
col [30] minimizes the worst-case efficiency loss. Third,



in a mechanism design context, Moulin and Shenker [37]
identify groupstrategyproof and budget-balanced mech-
anisms that minimize worst-case additive efficiency loss
over all possible valuation profiles.

To a lesser extent, the goals of this paper are
similar to previous approaches for improving the price
of anarchy of a given game; see, for example, previous
work on pricing selfish routing networks [10, 15, 29]
and Stackelberg routing [32, 44, 45]. The present
paper differs from these previous works in that we
aim to design a single distributed protocol to minimize
the worst-case inefficiency of equilibria over an entire
family of games, rather than a centralized algorithm for
improving the POA in a given game.

Finally, the goal of designing games with good
equilibria bears some resemblance to that of algorithmic
mechanism design [39]. In mechanism design problems,
however, there is generally some crucial data, such
as players’ valuations for different goods or resources,
which are unknown to the mechanism designer. There
is no private information in the games studied here;
instead, the designer lacks full control over the allocation
of resources. For this reason, the problems studied in
this paper are technically very different from those in
algorithmic mechanism design.

2 Preliminaries

Network Cost-Sharing Games. In a network
cost-sharing game, we are given a graph G = (V,E),
which can be directed or undirected, where each edge
e ∈ E has a nonnegative cost ce ≥ 0. There is a
set {1, . . . , k} of k players, where player i is associated
with a source si and a sink ti. The strategy set of
player i is the set Pi of si-ti paths. In an outcome of
the game, each player i chooses a single path Pi ∈ Pi.
The cost of an outcome (P1, . . . , Pk) is defined to be
C(P1, . . . , Pk) =

∑
e∈∪iPi

ce.
For each player i, a cost function ci : P1×· · ·×Pk →

R+ describes the cost incurred by player i in each
outcome of the game. Our separability constraint (2)
from the Introduction dictates that each cost function
ci can be expressed as a sum over edge cost shares. More
formally, we assume that each edge e of the network G
is endowed with a cost-sharing method ξe : 2{1,...,k} →
Rk

+. A cost-sharing method ξe assigns nonnegative cost
shares to the players, as a function of the set of players
that choose a path that contains the edge e. We abuse
notation and write ξe(i, S) for the cost share of player i
for the edge e, given that S is the set of players using e.
Separability also implies that ξe(i, S) = 0 for all players
i /∈ S.

The budget-balance constraint (1) from the In-
troduction imposes the following condition on each

cost-sharing method ξe:
∑

i∈S ξe(i, S) = ce. As a
consequence, the cost of every outcome (P1, . . . , Pk)
is partitioned among the players: C(P1, . . . , Pk) =∑k

i=1 ci(P1, . . . , Pk).
An outcome of a network cost-sharing game is

a pure-strategy Nash equilibrium (PNE) if no player
can decrease its cost by changing its strategy. More
formally, the outcome (P1, . . . , Pk) is a PNE if
for every player i and every strategy P ′

i ∈ Pi,
ci(P1, . . . , Pi, . . . , Pk) ≤ ci(P1, . . . , P

′
i , . . . , Pk). By the

stability constraint (3) from the Introduction, we are
only interested in network cost-sharing games that have
at least one PNE. Recall that an admissible scheme is
separable, budget-balanced, and stable.

We now formalize cost-sharing schemes.

Definition 2.1 A cost-sharing scheme assigns, for ev-
ery network G = (V,E) with edge costs c, for every
player set {1, 2, . . . , k}, and every set (s1, t1), . . . , (sk, tk)
of source-sink pairs, a cost-sharing method ξe to every
edge e ∈ E.

For example, Shapley cost shares define a cost-sharing
scheme, with the method ξe of an edge e given by
ξe(i, S) = ce/|S| for every set S ⊆ {1, . . . , k} and player
i ∈ S. More generally, a cost-sharing scheme can define
the method ξe in a way that depends on additional
information, including the identities of the players in S,
the topology of G, and the costs of other edges of the
network.

We next formalize the uniformity constraint (4)
from the Introduction.

Definition 2.2 A cost-sharing scheme is uniform if
the cost-sharing method ξe assigned to an edge e is
a function only of the edge cost ce and the player set
{1, 2, . . . , k}.

Ordered cost shares are a simple and important
example. Such cost shares are defined with respect
to an ordering of the players. The first player in the
ordering pays the full cost of all edges in its path; the
second player pays the full cost of all edges in its path
not already paid for by the first player; and so on.
Ordered cost-sharing schemes can be radically better
than Shapley cost-sharing in undirected networks; the
next example demonstrates this with an ordered non-
uniform scheme for single-sink undirected networks.

Example 2.3 (Prim Cost-Sharing Scheme)
Consider an undirected single-sink network defined
by an undirected network G with edge costs c, a
sink vertex t, and source vertices s1, . . . , sk. Define a
non-uniform ordered cost-sharing scheme by ordering



the players as follows. The first player is the one with
source si closest to the sink t; the second player is the
one with source closest to the set {t, si}; and so on. We
call this the Prim cost-sharing scheme.

We claim that every PNE of the network cost-
sharing game defined by the Prim cost-sharing scheme
has cost at most twice that of optimal. To see this,
first note that the cost incurred by the first player—
the player with source closest to the sink t—depends
only on its strategy and is independent of the strategies
chosen by the other players. Thus in every PNE, this
player will choose a shortest path Pi between its source
si and the sink t. By the same reasoning, in every PNE,
the second player will choose a shortest path between
its source and the path Pi, and will then follow Pi to
the sink t. The cost incurred by the second player is
thus at most the length of a shortest path between its
source and the set {si, t}.

More generally, in every PNE, each player selects
a shortest path from its source to the union of the
paths chosen by earlier players in the ordering. The
resulting outcome thus corresponds to a possible output
of the MST heuristic for the Steiner tree problem, when
implemented using Prim’s MST algorithm. Every such
output has cost at most twice that of a minimum-cost
Steiner tree (see e.g. [47]), which is a minimum-cost
outcome in the network game. Thus the POA in every
network cost-sharing game defined by the Prim cost-
sharing scheme is at most 2. Recall that the POA in
Shapley network design games can be as large as the
number k of players, even in undirected networks of
parallel links [3].

Remark 2.4 Standard examples (e.g. [47, Example
3.4]) give a matching lower bound on the worst-
case POA of every non-uniform admissible cost-sharing
scheme in single-sink undirected networks.

3 A Characterization of Linear, Uniform,
Admissible Cost-Sharing Schemes

This section provides a complete characterization of
the linear and uniform cost-sharing schemes that are
admissible. The stability constraint (3) from the
Introduction—a complex “global” constraint on all net-
work games that might be induced by a scheme—makes
this result highly non-trivial. This characterization has
several consequences, including lower bounds in the next
two sections on the worst-case POA and POS achievable
by (not necessarily linear) uniform admissible schemes
in undirected and directed networks, respectively.

Formally, a uniform cost-sharing scheme for a player
set {1, 2, . . . , k} is linear if, for all ce ≥ 0, the cost-
sharing method ξ it assigns to an edge of cost ce is

ce · ξ1, where ξ1 is the cost-sharing method it assigns to
an edge of unit cost. We sometimes abuse notation and
refer to a linear and uniform scheme (for a fixed player
set) by the cost-sharing method it assigns to a unit-cost
edge. Also, a cost-sharing method is positive if it always
assigns strictly positive cost shares to all of the players
using an edge of non-zero cost.

To map the terrain of linear, uniform, admissible
schemes, we begin with the Shapley scheme. The
stability of the Shapley scheme follows a “potential
function argument” [2, 35, 43]: one exhibits a potential
function for each network game induced by the scheme
such that local minima of the potential function are
in bijective correspondence with the PNE of the game.
Do any other schemes admit potential functions? This
question motivates the following definition.

Definition 3.1 Let {1, 2, . . . , k} be a player set. A
strictly positive function f : 2{1,...,k} → R+ is an
edge potential if it is strictly increasing (f(S) < f(T )
whenever S ⊂ T ) and if∑

i∈S

f(S)− f(S \ {i})
f({i})

= 1

for every S ⊆ {1, . . . , k}.

It is straightforward to show that every edge poten-
tial induces a positive, linear, uniform, and admissible
cost-sharing scheme.

Proposition 3.2 Let f be an edge potential for the
player set {1, 2, . . . , k}. Define a positive, linear, and
uniform cost-sharing scheme by assigning a unit-cost
edge the cost-sharing method ξ, where ξ(i, S) = (f(S)−
f(S \ {i}))/f({i}) for every S ⊆ {1, . . . , k} and i ∈ S.
Then, ξ is admissible.

We call a cost-sharing scheme potential-based if it is
induced by an edge potential as in Proposition 3.2.

The Shapley cost-sharing scheme corresponds to the
edge potential f with f(S) = H|S| for every subset S
of players. Because of the budget-balance constraint
in Definition 3.1, it is not immediately obvious that
further edge potentials exist. But as the proof of our
characterization theorem implicitly shows, there are
a plethora of others, with a bijective correspondence
between them and the open unit cube (0, 1)k−1 in (k−1)
dimensions. In fact, each such edge potential can be
interpreted as a sum of weighted Shapley cost shares in
the sense of Kalai and Samet [28]. (A different notion of
weighted Shapley cost shares has been explored recently
in the computer science literature [2, 8].)

Not all linear, uniform, and admissible cost-sharing
schemes are positive, as uniform variants of the Prim



cost-sharing scheme (Example 2.3) show. (See also
Proposition 4.1 below.) This motivates the following
operation for combining two cost-sharing schemes into
a single (non-positive) one.

Definition 3.3 Let ξ1 and ξ2 be linear, uniform cost-
sharing schemes for disjoint player sets A1 and A2,
respectively. The concatenation of ξ1 and ξ2 is the cost-
sharing scheme ξ1⊕ξ2 for the player set A1∪A2 defined
by

(ξ1 ⊕ ξ2)(i, S) =

 ξ1(i, S ∩A1) if i ∈ A1

ξ2(i, S) if S ⊆ A2

0 otherwise.

In words, players of A1 share the cost of an edge as if
no players of A2 were present (according to ξ1); if only
players of A2 are using an edge, then they share its cost
according to ξ2. The concatenation operation preserves
linearity and uniformity by definition; it also clearly
preserves separability and budget-balance. Arguing as
in Example 2.3, it also preserves stability.

Proposition 3.4 Let ξ1 and ξ2 be linear, uniform,
separable, and budget-balanced cost-sharing schemes.
The concatenation ξ1⊕ ξ2 is stable if and only if both ξ1

and ξ2 are stable.

We can now state our characterization result: every
linear, uniform, admissible cost-sharing scheme arises as
the concatenation of potential-based schemes.

Theorem 3.5 Let ξ be a linear, uniform, separable,
and budget-balanced cost-sharing scheme. Then ξ is
stable if and only if it is the concatenation of potential-
based schemes.

The proof of Theorem 3.5 is highly involved; for
details, see the full version of this paper. Its four major
steps are as follows. First, we show that every linear,
uniform, and admissible scheme ξ must be monotone in
the sense that ξ(i, S) ≥ ξ(i, T ) whenever i ∈ S ⊆ T ⊆
{1, 2, . . . , k}. Second, we prove that for every ξ as above,
the players can be partitioned into ordered equivalence
classes so that ξ(i, S) > 0 if and only if i belongs to
the lowest-indexed class that intersects S. (Different
equivalence classes correspond to disjoint player sets
that are combined via concatenation.) Third, for every
scheme ξ as above that is also positive, all of its cost
shares are uniquely determined by the k−1 pairwise cost
shares ξ(1, {1, 2}), ξ(1, {1, 3}), . . . , ξ(1, {1, k}). Finally,
we prove that for every set of k− 1 pairwise cost shares
as above, there exists a potential-based cost-sharing
scheme with the prescribed cost shares.

4 Undirected Networks: Minimizing the POA

This section identifies the best-possible worst-case POA
achievable in undirected graphs. All of our upper
bounds follow from simple ordered cost-sharing meth-
ods. Our lower bound for uniform schemes builds on
our characterization of uniform schemes (Theorem 3.5),
while our lower bound for non-uniform schemes is an
explicit construction derived from a family of high-girth
graphs.

Uniform Cost-Sharing Schemes. We begin
with some easy upper bounds using uniform ordered
cost-sharing schemes, where the players are ordered in
a fixed and arbitrary way (lexicographically, say). Rea-
soning as in Example 2.3, the worst-case POA of such a
scheme is precisely the worst-case competitive ratio of
the natural online greedy algorithms for online Steiner
tree [21] (in the single-sink case) and generalized Steiner
tree [4] (in the multicommodity case). We thus have
the following positive consequences of the upper bounds
in [4, 21] (where as usual, k denotes the number of play-
ers).

Proposition 4.1 There is a uniform admissible cost-
sharing scheme for single-sink undirected networks with
worst-case POA O(log k), and for multicommodity undi-
rected networks with worst-case POA O(log2 k).

We next leverage our characterization of uniform
cost-sharing schemes (Theorem 3.5) to prove that the
guarantees of Proposition 4.1 cannot be significantly
improved by any uniform cost-sharing scheme, ordered
or otherwise.

Theorem 4.2 Every uniform admissible cost-sharing
scheme has worst-case POA Ω(log k), even in single-
sink undirected networks.

Given a uniform admissible cost-sharing scheme,
our proof of Theorem 4.2 first separates the players into
different classes and, for each player class, orders the
players according to the value f({i}) of the associated
edge potential f (recall Theorem 3.5). Intuitively,
players that have similar f -values should also have
similar cost shares. We prove a dichotomy lemma
that shows that there are either log k players that are
sufficiently similar or k/polylog(k) players that almost
form an ordered cost-sharing scheme. In both of these
two cases, we can construct an example with Ω(log k)
POA. The details are not trivial and are given in the
full version.

Non-Uniform Cost-Sharing Schemes. Non-
uniform cost-sharing schemes overcome the lower bound
of Theorem 4.2 in single-sink networks. (Recall Exam-
ple 2.3.) Is this also true in multicommodity networks?



For example, there is a natural analogue of the Prim
cost-sharing scheme in such networks: the first player i
is the one minimizing the distance between its source si

and sink ti; the second player is the one minimizing the
distance between its source and sink, after all edges in
the shortest si-ti path have been reset to zero; and so
on.

Since our characterization (Theorem 3.5) is only for
uniform cost-sharing schemes, it offers no assistance for
this question. Instead, we devise a different lower bound
tailored to multicommodity networks that is robust
to non-uniform cost-sharing schemes. (See below for
additional applications of this result.)

Theorem 4.3 For all sufficiently large k, the worst-
case POA with respect to every (non-uniform) admis-
sible cost-sharing scheme for k-player undirected multi-
commodity networks is Ω(log k).

The proof of Theorem 4.3 is based on the following
combinatorial lemma, which we prove using a high-girth
graph construction of Erdös and Sachs (see [34, Exercise
15.3.1]) and Hall’s Marriage Theorem.

Lemma 4.4 For all sufficiently large n, there exists
a 3-regular graph G = (V,E) with 2n vertices and a
perfect matching M in G satisfying the following two
properties. First, deleting all of the edges of M yields a
graph with O(n/ log n) connected components. Second,
contracting all of the edges of M yields a graph with
girth Ω(log n).

Proof of Theorem 4.3: Let G = (V,E) be the graph
described in Lemma 4.4. Let G1 be the graph obtained
from G by contracting the perfect matching M . G1 has
girth at least 2c log n for some constant c > 0. Assign
cost c log n to all edges of M in G. All other edges in G
have cost 1.

We add an additional vertex v and, for every
connected component C of G \M , we add an edge with
cost 2c log n between v and an arbitrary vertex of C.
There are n players in the game, with one for each edge
e of M . The endpoints of e are the source and sink
vertices of the corresponding player.

Now fix arbitrary cost-sharing methods for the
edges of G. We claim that the outcome in which every
player chooses its one-hop path is a PNE with respect to
these cost-sharing methods. First, every deviation from
this outcome must use either an edge incident to the
extra vertex v or all of the edges of a cycle in the graph
G1. Since all such edges are currently unused by all of
the players, the budget-balance constraint ensures that
the deviating player must pay their full cost. Since each

edge incident to v has cost 2c log n and G1 has girth
2c log n, every deviation by every player incurs cost at
least 2c log n. Since every player’s one-hop path has
cost only c log n, it follows that this outcome is indeed
a PNE with respect to an arbitrary set of cost-sharing
methods. The cost of this outcome is cn log n.

To finish the proof, it suffices to exhibit a connected
subgraph with cost O(n). Consider taking all of the
edges incident to v and all of the edges in G but not M .
By construction, this subnetwork is connected. All of
the edges in G but not M have cost 1 and there are 2n
of them. All of the edges incident to v have cost 2c log n
and there are O(n/ log n) of them, for a total cost of
O(n). �

Applications of Theorem 4.3. In oblivious net-
work design [17, 20], the goal is to simultaneously route
one unit of flow between source-sink pairs in an undi-
rected network at minimum cost. However, the cost
of routing a given amount of flow on an edge is gov-
erned by a concave function that is unknown to the al-
gorithm. Can the flow be routed in a way that is com-
petitive with an optimal solution that is privy to this
cost function? (In [20], this version of the problem is
called “function-oblivious”; lower bounds were already
known for the “demand-oblivious” version [20, 26], in
which the sources themselves are unknown.) Amazingly,
a polylogarithmic competitive ratio is possible [20]. Our
next result is an unconditional lower bound that rules
out constant competitive ratios for this problem.

Corollary 4.5 For all sufficiently large k, there are k-
commodity oblivious network design instances such that
no routing of the demands is o(

√
log k)-competitive with

respect to every concave cost function.

The idea is to set the lengths of the one-hop paths in
the network in the proof of Theorem 4.3 to

√
log n,

and to consider the two cost functions c(x) = x and
c(x) =

√
log n, where x denotes the amount of flow on

an edge. For each function, there is a routing of the
traffic with cost Θ(n

√
log n). On the other hand, every

fixed routing of the demands has cost Ω(n log n) with
respect to one of the two functions.

In the full version, we discuss implications of the
construction in Theorem 4.3 for several NP-hard net-
work design problems.

5 Directed Networks: Minimizing the POS

In directed networks, a simple example (see the full
version) proves that every admissible (non-uniform)
cost-sharing scheme has worst-case POA equal to the
number k of players. We therefore study only the POS
in directed networks.



Uniform Cost-Sharing Schemes. Our main re-
sult in this section is that the Shapley cost-sharing
scheme is the optimal uniform scheme. This result jus-
tifies Shapley cost-sharing in a novel way: in addition
to being simple and fair, it minimizes worst-case effi-
ciency loss over all uniform schemes in directed net-
works. Given our complete characterization of uniform
schemes (Theorem 3.5), the proof is not difficult (see
the full version).

Theorem 5.1 For all k ≥ 1, among all uniform cost-
sharing schemes, the Shapley cost-sharing scheme mini-
mizes the worst-case POS in k-player directed networks.

Non-Uniform Cost-Sharing Schemes. Are
there non-uniform schemes more powerful than the
optimal uniform one (i.e., Shapley)? We answer this
question in the affirmative for single-sink networks, and
give partial results for multicommodity networks.

Call an outcome (P1, . . . , Pk) of a network enforce-
able if there exists a cost-sharing method ξe for each
edge e such that the outcome (P1, . . . , Pk) is a PNE in
the resulting network cost-sharing game. For example, a
POS of 1 is achievable in a network (with a non-uniform
scheme) if and only if some optimal outcome is enforce-
able.

Proposition 5.2 In single-sink directed networks, op-
timal solutions are enforceable.

We prove Proposition 5.2 via a reduction to an anal-
ogous result in [3] about network cost-sharing games
with endogenous cost shares. In multicommodity net-
works the optimal POS can be strictly larger than 1 (see
the full version). An obvious question is whether or not
every multicommodity network admits an enforceable
near-optimal outcome. We leave this as a challenging
open problem. We contribute in the full version a linear-
programming-based characterization of the enforceable
outcomes of a network game that we expect will prove
useful in resolving this question.
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