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1 Introduction
The probabilistic method is a surprisingly effective approach for proving that certain combinatorial
objects exist. The basic recipe for applying the probabilistic method is the following:

1. To show that object C exists, define some probability space and random variable X .

2. Show that Pr[X = C] > 0.

At its core, the probabilistic method relies on the following trivial fact: for any object C, if you
can define a random variable, X , such that Pr[X = C] > 0, then C must exist! The surprising
part is how useful this basic recipe is: there are many sorts of combinatorial objects for which clean
instantiations of the probabilistic method give the best known bounds. We will begin by giving
one of the first known instantiations of this approach, due to Paul Erdos from 1947 [1]. We will
then begin considering some of the algorithmic aspects of this—namely if we know that the desired
object exists, how do we actually find it?

2 Ramsey Numbers
Definition 1. The kth Ramsey number, Rk is the smallest n such that for every way of coloring the
edges of the complete graph on n vertices with 2 colors, there exists a monochromatic k-clique—i.e.
a set of k vertices such that all the

(
k
2

)
internal edges are the same color.

Trivially, R1 = 1, and R2 = 2. R3 = 6: showing that R3 > 5 is easy, one just needs to provide a
2-coloring of the complete graph on 5 vertices such that there is no monochromatic triangle; showing
that R3 ≤ 6 is a bit annoying, though can be accomplished via a brute-force enumeration over all
possible 2-colorings, for example. R4 = 18, which is quite annoying to show, and we don’t even
know R5 exactly (the best we know is that it is between 43 and 48). The situation only gets worse
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for larger k: we don’t even know R10 up to a multiplicative factor of 30 (its somewhere between 798
and 23,556). Part of the challenge is that telling whether Rk ≤ n naively would require enumerating
over all 2(

n
2) possible colorings, and for each of these, even telling whether there is a monochromatic

k-clique would, naively, require searching through all
(
n
k

)
possible subsets of k of the n vertices.

Theorem 1. Rk ∈ (2k/2, 22k).

Proof. We first prove that Rk > 2k/2 via the probabilistic method. Let n = 2k/2, and consider
coloring each of the

(
n
2

)
edges red or blue according to the outcomes of independent coin flips.

For a given set of k vertices, the probability they form a monochromatic k-clique is (1/2)(
k
2)−1 =

2−k
2/2+k/2+1, where this expression is because we can pick the first edge to be any color, and then

we must color the remaining
(
k
2

)
− 1 edges with that color. Via a union bound over the

(
n
k

)
possible

sets of k vertices, we have

Pr[exists monochrome k-clique] ≤
(
n

k

)
2−k

2/2+k/2+1 ≤ nk

k!
2−k

2/2+k/2+1 =
2k

2/2

k!
2−k

2/2+k/2+1 =
2k/2+1

k!
< 1.

Hence, the probability that this random edge coloring yields a coloring without a monochromatic
k-clique is > 0, and hence there must exist such a coloring.

To show that Rk < 22k we can proceed via an inductive argument. Define Ra,b to be the minimal
n such that any 2-coloring (say red and blue) of the complete graph on n vertices either has a
monochromatic red clique of size at least a, or a monochromatic blue clique of size at least b. First
observe that Ra,b = Rb,a, by symmetry, and R1,k = 1, as all colorings have a red 1-clique (since that
doesnt even involve any red edges).

Consider a 2-coloring of a graph on n = 1 + Ra−1,b + Ra,b−1 vertices. Fix a vertex v, and let
Sr denote the subset of vertices that are connectd to v via red edges, and Sb denote the subset of
vertices connected to v via blue edges. By construction, |Sr|+ |Sb|+ 1 = n = 1+Ra−1,b +Ra,b−1,
and hence either |Sr| ≥ Ra−1,b or |Sb| ≥ Ra,b−1. In the case that |Sr| ≥ Ra−1,b, either Sr has a blue
clique of size b, or, a red clique of size a− 1 all of whose vertices are connected to v via red edges,
in which case the graph has a red clique of size a. An analogous statement holds in the case that
|Sb| ≥ Ra,b−1. In the case that Ra−1,b +Ra,b−1 is even we don’t even need the extra +1 because any
way of splitting n = Ra−1,b+Ra,b−1− 1 vertices into two sets will have the property that either one
of the sets has size at least Ra−1,b or the other has size at least Ra,b−1.

Hence we have shown the following:

Ra,b ≤ 1 +Ra−1,b +Ra,b−1 if Ra−1,b +Ra,b−1 is odd, and otherwise Ra,b ≤ Ra−1,b +Ra,b−1.

Inductively, we will argue that for any a, b, Ra,b ≤ 2a+b. For the base case, note thatR1,2 = R2,1 = 1
and R2,2 ≤ R1,2 + R2,1 = 2 < 24. For the inductive step, assuming Ra,b ≤ 2a+b, for all a, b
that sum to at most c, then we claim that it holds for all a, b since Ra+1,b ≤ Ra,b + Ra+1,b−1 ≤
2a+b + 2a+1+b−1 ≤ 2(a+1)+b, as desired.

The proof of the above Theorem wasn’t too difficult. Surprisingly, despite the huge gap between
the upper and lower bounds, and the fact that people have studied Ramsey numbers for almost a
century, we don’t know how to improve significantly on either of them. Specifically, we don’t know
how to tighten the exponents by even a tiny constant factor: there is no constant ε > 0 for which we
can show that Rk > 2(1+ε)k/2 or that Rk < 2(1−ε)2k.
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3 Independent Sets
In the Ramsey Number example, the distribution we came up with—coloring the edges uniformly
at random—was a very simple/natural distribution. For some examples of the probabilistic method,
we will need slightly more creative distributions.

Definition 2. Given a graph, an independent set is a subset of the vertices such that no pair is
connected via an edge.

Computing the size of the largest independent set of a graph is NP-hard. The following theorem,
however, guarantees the presence of a fairly large independent set, provided the number of edges in
the graph is not too large:

Theorem 2. For any graph with n vertices, and m ≥ n/2 edges, there exists an independent set of
size at least n2

4m
.

Proof. We proceed via the probabilistic method. Consider the following randomized process for
finding an independent set:

1. For each node, independently remove it and all the edges incident to it, with probability 1− n
2m

.

2. For each remaining edge, arbitrarily (it doesnt matter how) delete one of its two endpoints.

3. Return the set of remaining vertices.

The above process generates an independent set because of the second step—even without the first
step, the second step ensures that there is no edge connecting a pair of returned vertices, because
that edge would have removed one of those two endpoints. We now analyze the expected size of this
returned set. Letting X denote the number of vertices that survive step 1, we have that by linearity
of expectation,

E[X] = n
n

2m
=

n2

2m
.

Letting Y denote the number of edges surviving after the first step, we have that the probability
an edge survives the first step is ( n

2m
)2, since it survives that step if and only if both its endpoints

survive. Hence

E[Y ] = m(
n

2m
)2 =

n2

4m
.

Finally, note that the number of remaining nodes is at least X −Y , because each of the Y edges can
be responsible for the removal of at most 1 vertex in step 2, and hence

E[number returned vertices] ≥ E[X − Y ] = E[X]− E[Y ] =
n2

2m
− n2

4m
=

n2

4m
.

To conclude, note that if the prescribed randomized process, in expectation, will return an indepen-
dent set of size at least k, there must exist an independent set of size at least k.

One comment: In the theorem statement, we assumed that m ≥ n/2. If this were not true, then
in step 1, we would be removing each vertex with probability 1 − n/(2m) < 0, which is not valid
(since probabilities cannot be less than 0).
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4 Max-Cut, k-SAT, and De-randomization via Conditional Ex-
pectation

The Max-Cut problem is defined as follows: Given a graph G = (V,E), partition V into two sets,
A,B, so as to maximize the number of edges with one endpoint in A and one endpoint in B. This is
a standard NP-hard problem, though, as we will see, an efficient greedy algorithm will always cut at
least |E|/2 edges.

Rather than directly describing and analyzing the greedy algorithm, we will present it as the
consequence of de-randomizing a simple randomized scheme.

Proposition 3. Consider the randomized scheme that partitions V into A and B according to flips
of independent fair coins for each vertex. The expected number of edges cut by this scheme is |E|/2.

Proof. By linearity of expectation, the expected number of edges cut is the sum of the probabilities
that each edge is cut. For a given edge (u, v), it will be cut with probability 1/2, as this is the
probability v and u are assigned different sets.

The idea behind how to “de-randomize” this scheme is as follows: suppose we choose an or-
dering of the vertices, v1, . . . , vn, and assign each vertex to either set A or B iteratively. Given our
assignment for v1, . . . , vt−1, we will assign vt to whichever set maximizes the expected number of
edges cut, given the assignment of v1, . . . , vt−1 where the expectation is with respect to randomly
assigning vt+1, . . . , vn. The rational is as follows, where the expectations in the following equation
are with respect to independently assigning each of vt, . . . , vn to A or B with probability 1/2:

E[cut size|assignment to v1, . . . , vt−1] =
1

2
E[cut size|vt ∈ A, assignment to v1, . . . , vt−1]

+
1

2
E[cut size|vt ∈ B, assignment to v1, . . . , vt−1],

hence at least one of the these two terms must be at least half the left hand side. Each of these
two terms is straightforward to evaluate: E[cut size|vt ∈ A, assignment to v1, . . . , vt−1] is simply
the sum of the number of edges between v1, . . . , vt that are cut in the prescribed assignment, plus
1/2 times the number of edges with an endpoint in vt+1, . . . , vn (since these edges are cut with
probability 1/2 over the randomness in assigning these remaining nodes to the two sets).

Before we have assigned any of the vertices, the expected number of edges cut is |E|/2, and after
each successive assignment, the expectation conditioned on the assigned vertices is non-decreasing
as we iteratively assign vertices. Hence, after all vertices are assigned, we have obtained a determin-
istic algorithm that cuts at least half the edges.

What is this algorithm actually doing? Well, at each step, we put vt into whichever ofA orB cuts
more edges, which corresponds to asking whether node vt has more neighbors among v1, . . . , vt−1

in set A versus in set B. Hence this is simply the iterative greedy algorithm!

4.1 k-SAT
The same high-level arguments can also be applied to k-SAT formulas. For example, in the case of
a 3-SAT formula over binary variables x1, . . . , xn, if each clause contains exactly 3 variables, then
a random assignment to x1, . . . , xn satisfies, in expectation, a (1 − 1

23
) = 7/8 fraction of clauses
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(since a clause is not satisfied if each of the 3 variables gets “unlucky” in its random assignment.
Hence, via the probabilistic method, there must exist a satisfying assignment that satisfies at least
this fraction of clauses?

How can we make an efficient algorithm for finding such an assignment? Just as in the max-cut
example, we can iteratively assign the variables x1, . . . , xn by sequentially assigning xt so as to
maximize the expected number of satisfied clauses given the assignment to x1, . . . , xt−1, and with
respect to the randomness of assigning xt+1, . . . , xn. Computing these conditional expectations
is straightforward, since for each clause, if the assignment to x1, . . . , xt doesnt already satisfy or
falsify it, the probability it is satisfied is 1 − 1/2k where k denotes the number of unassigned (i.e.
randomized) variables that are left in that clause.
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