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1 The Fundamental Theorem of Markov Chains
We begin with several definitions that will provide some terminology for discussing the long-term
behavior of a time-homogeneous Markov chain.

Definition 1. A (time homogenous) Markov chain, X0, X1, . . . , is irreducible if, for all pairs of
states, i, j there is a positive probability of eventually getting to state j when starting at state i:∑

t≥0

Pr[Xt = j|X0 = i] > 0.

Given the representation of a Markov chain as a graph, with nodes being the states, and nonzero
probability transitions represented as directed edges, the above definition is equivalent to requiring
that the graph is strongly connected.

For both Markov chains with finite, and infinite state spaces, it is useful to classify states into the
set of states that are transient—meaning the chain will visit them only a finite number of times—and
those that are recurrent—meaning that the chain will visit them an unbounded number of times, if
the chain is run for sufficiently long:

Definition 2. Letting

ri =
∑
t≥1

Pr[Xt = i and for t′ ∈ {1, . . . , t− 1}, Xt′ 6= i|X0 = i]

denote the probability that a Markov chain returns to state i, given that it starts there, we say that
state i is transient if ri < 1, and recurrent if ri = 1.
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In the case that a state i is transient, then the number of times the chain will be in state i, given
that it starts in state i, is given by the geometric random variable with parameter 1−ri, and hence has
expected value 1/(1− ri). For recurrent states, one can also ask what the expected time is between
visits to a given state, namely E[min{t : Xt = i}|X0 = i]. For Markov chains with a finite number
of states, a state is recurrent if and only if this expected time is finite. As the following example
illustrates, for infinite chains, it is possible that a state is recurrent, but the expected time to return is
infinite.

Example 3. (Gambler’s Ruin) Consider the Markov chain X0, . . . where X0 = 0, and Xt = Xt−1±
1, with probability 1/2 of each outcome. First, we claim that state 0 is recurrent. To see this,
recall our analysis of the randomized 2-SAT algorithm from last class. An immediate consequence
of that analysis showed that, given that Xt = i, with probability at least 1/2 there is some t′ ∈
{t, . . . , t + 2n2} such that |Xt′ − i| ≥ n/2 (namely the walk will have wandered at least distance
n/2 from where we started within those 2n2 steps). Hence, whatever the value ofXt, with probability
at least 1/4, we have hit 0 within the next 2X2

t steps, where the factor of 1/4 is due to the symmetry—
namely there is also probability at least 1/4th that we hit value 2Xt during this time. Hence for every
value of Xt, we can name a time t′ = f(t) such that with constant probability we will have returned
to 0 within the next t′ steps, and hence state 0 must be recurrent.

The expected time until we return to 0, however, is infinite! We will see a proof of this next week,
in the context of analyzing hitting times. Roughly, this is because we do expect it to take ≈ X2

t steps
before we either reach 0 or value 2Xt. So, if we start at X0 = 0, after one step we are at X1 = ±1,
then with probability 1/2, we reach 0 after 1 step, but if we haven’t then we expect it will take 22

steps before we either reach 0 or value±4, and if the first time one of those two outcomes occurs we
are at value 4, then we expect it to take 42 steps before we either are at 0 or value 8, etc. Hence the
expected time to return to 0 is 1 + 1

2
1 + 1

4
22 + 1

23
(22)2 + 1

24
(23)2 + . . . , which diverges.

Intuitively, this means that if we play a fair betting game (we toss a coin and if its heads, you win
a dollar, otherwise, you lose a dollar), then if you were to play for infinitely long, you can guarantee
that you walk away with positive winnings. However, the expected time you will need to play until
this happens is infinite! This example is often referred to as the “Gambler’s Ruin”—my (technically
accurate) perspective on this is that the gambler is “ruined”, not because they expect to lose tons of
money, but because they expect to spend so much time gambling. ]

The next definition characterizes when a Markov chain has some periodic behavior:

Definition 4. A Markov chain X0, X1, . . . is periodic if there exists a state, i, such that

gcd ({t|Pr[Xt = i|X0 = i] > 0}) 6= 1,

and is aperiodic if no such state exists. (Here “gcd” is short-hand for the “greatest common divi-
sor”.)

Example 5. The “Gambler’s Ruin” Markov chain is periodic, because, for example, you can only
ever return to state 0 at even time-steps: gcd{t|Pr[Xt = 0|X0 = 0] > 0} = 2.

Fact 6. Any irreducible Markov chain that has at least one “self-loop” (ie one state i for which
Pr[Xt = i|Xt−1 = i] > 0, is aperiodic.
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Proof. Suppose state i has a self-loop. From any state j, the chain can eventually get to i (by
irreducibility), and use the self-loop any number of times, and then return to j (by irreducibility),
rendering the greatest common divisor of timesteps at which we could have returned to state j to be
1.

Theorem 1 (The Fundamental Theorem of Markov Chains). LetX0, . . . denote a Markov chain over
a finite state space, with transition matrix P . Provided the chain is 1) irreducible, and 2) aperiodic,
then the following hold:

1. There exists a unique stationary distribution, π = (π1, π2, . . .) over the states such that: for
any states i and j,

lim
t→∞

Pr[Xt = i|X0 = j] = πi.

2. For each state i, πi = 1
E[min(t:Xt=i)|X0=i]

, namely πi is the inverse of the expected return time
of state i.

3. π is a left eigenvector of matrix P , with eigenvalue 1, namely the vector-matrix product

πP = π.

The crucial aspect of the above theorem is that the probability of being in a given state, i,
eventually becomes independent of the state we started in, j. This is the crucial property of ir-
reducible+aperiodic Markov chains! It is natural to ask whether analogs of the above theorem hold
when the Markov chain in question is either 1) not finite, 2) not irreducible, and 3) not aperiodic.

• (Infinite State Spaces) There is an analog of the theorem that applies to Markov chains with an
infinite state space, which you will see on Problem Set 7. This theorem states that, provided
the chain is aperiodic and irreducible, either there is a unique stationary distribution such that
for all states i, j limt→∞ Pr[Xt = i|X0 = j] = πi > 0, or for all states limt→∞ Pr[Xt =
i|X0 = j] = 0.

• (Not Irreducible) Given any non-irreducible Markov chain, one can decompose it into (possi-
bly more than one) irreducible components, corresponding to the strongly connected compo-
nents of the graph. Each of these components will have a stationary distribution (provided the
chain is aperiodic), though which of these stationary distributions the chain eventually ends
up at, depends on the randomness of the early part of the chain.

• (Not Aperiodic) If a chain is periodic, but is finite and irreducible, there will still be a unique
stationary distribution, π, satisfying πP = π, though it is not the case that limt→∞ Pr[Xt =
i|X0 = j] = πi, since this probability will depend on whether or not t divides the period, and
hence this limit does not exist. This is the only issue: for example, it is still the case that, in
the limit, the chain will have been in state i exactly πi fraction of the time.

The uniqueness of the stationary distribution for irreducible, aperiodic (finite) chains is extremely
powerful. It means that, if we are able to guess a distribution π and check that πP = π, then we have
proved that π is the stationary distribution. One way of thinking about the condition that πP = π, is
that this condition simply means that, if we start with πi probability mass at state i, and evolve the
chain by one step, then the amount of probability mass leaving state i (along the outgoing edges in
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the graph representation of the Markov chain) is exactly equal to the probability arriving at state i
from its neighbors. The following two examples/propositions illustrate this approach to describing
stationary distributions.

Proposition 7. For any Markov chain where transitions are symmetric (e.g. Pr[Xt = i|Xt−1 = j] =
Pr[Xt = j|Xt−1 = i]), if the chain is aperiodic and irreducible, then the stationary distribution is
the uniform distribution over states.

Proof. Letting π denote the uniform distribution over states, which assigns probability 1/|S| to each
of the |S| states, consider the ith entry of πP , which we’ll denote by πP (i) :

πP (i) =
∑
j

πjPj,i =
∑
j

πjPi,j =
1

|S|
∑
j

Pi,j =
1

|S|
= πi,

where the second equality used the assumption of symmetry, that Pi,j = Pj,i, the third equality used
the fact that πj = 1/|S|, and the final equality used the fact that the sum of entries in any row of P
is 1, as these entries correspond to the distribution of transitions out of a fixed state.

Example 8. Consider the following protocol for shuffling a deck of n cards: choose 2 cards at
random, and swap their positions. (If we pick the same card twice, then assume we don’t do anything
in that step.) Since the transitions are symmetric, (and the chain is aperiodic and irreducible...) by
the above proposition, the stationary distribution is the uniform distribution over the n! orderings of
the cards, and this is a valid shuffling procedure.

Proposition 9. Let X0, X1, . . . represent a random walk on a connected undirected graph, defined
by letting Xt be a uniformly random neighboring node of the node corresponding to Xt−1. Provided
the graph is not bi-partite, then there is a unique stationary distribution that puts probability π(v) =
degree(v)

2|E| on node v, where |E| denotes the number of edges in the graph.

The magic of the above proposition is that this stationary distribution depends only on the de-
grees of the nodes, and not on the structure of the graph! [E.g. suppose we have a social network,
and there is a magical stone being passed from friend to friend. The probability you have the stone
at some fixed time, t, long in the future, is a function of ONLY the number of friends you have, and
doesn’t depend on who those friends are connected to.

Proof. First, note that π as defined in the problem is actually a distribution, because the
∑

v degree(v) =
2|E|. Since the graph is connected, the walk is irreducible. If the graph is not bipartite, there is a
cycle of odd length (by definition). There is also a cycle of even length, e.g. take any edge, and cross
it then cross back. Hence the greatest-common-divisor of return times can be any even number, and
also can include any multiple of this odd length cycle, and hence the gcd is 1. So there is a unique
stationary distribution. To see that the claimed distribution is the stationary distribution, consider
the amount of probability mass leaving node v at one step of the walk: this is simply π(v), since
there are no self-loops. The probability entering state v is∑

u=Neighbor(v)

deg(u)

2|E|
1

deg(u)
=

∑
u=Neighbor(v)

1

2|E|
=
deg(v)

2|E|
= π(v),

where the second term in the first expression corresponds to the fact that each neighbor, u, will send
1/deg(u) of its probability mass to each of its neighbors, including v. Hence πP = π, and so π is
the stationary distribution.
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2 Markov Chain Monte Carlo: The Metropolis Algorithm
Given the fundamental theorem of Markov chains, one way of drawing samples from some distri-
bution of interest, would be to 1) construct an irreducible aperiodic Markov chain whose stationary
distribution, π is the distribution of interest, and then 2) run the chain for a long time, and return Xt

as a samples from something close to the stationary distribution. (Ideally, we would have t → ∞,
though then we would never get our sample....)

For many distributions of interest, it is much easier to construct such a Markov chain versus try-
ing to describe the distribution explicitly. (This is especially true when the distribution corresponds
to some process whose evolution is easy to model via a Markov chain.)

2.1 The Metropolis Algorithm
The Metropolis Algorithm is one generic way of constructing a chain to have a desired stationary
distribution, π. To apply this approach, we need the following ingredients:

• A connected graph whose nodes are the set S corresponding to the support of the distribution
in question (ideally with small degree).

• For two states, i, j, in the above graph, we need to be able to calculate the ratio π(i)/π(j),
where π is the distribution we care about. [For example, if we know π up to some constant
scaling factor, that is sufficient—such is the case when π is the uniform distribution over some
unknown number of things, or if π represents probabilities of events but all we can evaluate is
“likelihoods”.]

Given the above setup, consider the following Markov chain over states S: Letting d be any
constant larger than the maximum degree of the graph we are given, define the transition matrix Pi,j
as follows:

Pi,j =


0 if i, j not neighbors
1
d
min(1, π(j)

π(i)
) if i 6= j and they are neighbors

1−
∑

j 6=i Pi,j if i = j.

(1)

Theorem 2. The Markov chain constructed above is irreducible, aperiodic, and has stationary
distribution π.

Proof. The irreducibility is from the connectedness of the graph, and the aperiodicity is because d
is larger than the maximum degree, and hence there are self-loops with positive probability. We now
analyze the probability leaving, and entering at each node, given the distribution π, to prove that
πP = π. In the following expression, N(i) denote the set of neighboring states in the graph of state
i, and i 6∈ N(i). The probability leaving node i is

π(i)
∑
j∈N(i)

1

d
min(1,

π(j)

π(i)
) =

 ∑
j∈N(i):π(i)≥π(j)

π(j)

d

+

π(i) ∑
j∈N(i):π(i)<π(j)

1

d

 .

The total probability mass arriving at state i is

∑
j∈N(i)

π(j)

d
min(1,

π(i)

π(j)
) =

 ∑
j∈N(i):π(i)≥π(j)

π(j)

d

+

 ∑
j∈N(i):π(i)<π(j)

π(i)

d

 .
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Hence the probability entering and leaving each node is equal, so πP = π, and hence π is the
(unique) stationary distribution, by the fundamental theorem of Markov chains.

There are many distributions, π that we might be interested in, for which it is easy to calculate
π(i)/π(j), but for which it is hard to estimate π(i) for any specific i. The following is one example
that we may revisit next week.

Example 10. Suppose we are given a graph, and want to estimate the number of distinct “proper
colorings” using, say, m colors (i.e. assignments of m colors to the nodes such that no two nodes
have the same color). Or maybe we want to estimate the fraction of proper colorings for which
node 1 and node 10 have the same color. Here, provided we can construct a connected graph whose
nodes correspond to valid colorings, then we can apply the Metropolis algorithm to make a Markov
chain that samples according to the uniform distribution over colorings. Provided we don’t need
to run this chain for too long until it produces a sample from a distribution close to the stationary
distribution, π, this will give us a ways of sampling proper colorings uniformly at random from the
set of such colorings. This can be used to estimate the probability that a random coloring assigns
the same color to nodes 1 and 10, and if we are careful, might let us estimate the number of proper
colorings.

[TODO: add Gibbs sampling example]
Of course, in order for the Metropolis approach to be meaningful in any concrete sense, we not

only need that, in the limit as t → ∞, Xt is drawn from π, but we need that for some (ideally
small) finite value of t, the distribution of Xt is close to π. Next class, we will define the notion of
mixing time, which is the amount of time it takes before Xt becomes close to π, for an appropriate
definition of “close”, and will discuss several techniques for bounding the mixing time. One of
these techniques is “coupling”, which is an incredibly elegant approach that often requires a bit of
creativity to apply. See you Monday!
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