
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #9: Dimension Reduction and Nearest Neighbor
Search

Gregory Valiant∗

October 21, 2019

1 Dimension Reduction
In the previous lecture notes, we saw that any metric (X, d) with |X| = n can be embedded into
RO(log2 n) under any the `1 metric (actually, the same embedding works for any `p metic), with dis-
tortion O(log n). Here, we describe an extremely useful approach for reducing the dimensionality
of a Euclidean (`2) metric, while incurring very little distortion. Such dimension reduction is use-
ful for a number of reasons: on the practical side, many geometric algorithms have runtimes that
scale poorly with the dimension of the space in which they operate. From a theoretical perspective
these dimension-reduction procedures have been used numerous times as components within other
algorithms (e.g. Locality Sensitive Hashing).

2 Johnson-Lindenstrauss Transformation
The randomized dimension reduction approach is essentially due to Johnson and Lindenstrauss in
1984 [4], and many variants (and de-randomizations) have been explored in the past 30 years.

Theorem 1. Given any ε ∈ (0, 1), and a set X ⊂ Rd with |X| = n, there exists a randomized linear
map f : Rd → Rm with m = O(logn

ε2
) that embeds (X, `2) into (Rm, `2) with distortion at most

(1 + ε).

Proof. Let A be an m × d matrix with entries chosen independently from N(0, 1/m), and define
the map f : Rd → Rm by f(x) = Ax. Hence each of the m coordinates of f(x) are given by the
projection of x onto a d-dimensional Gaussian.

One useful trick in analyzing such Gaussian projections is the spherical symmetry of the Gaus-
sian. Hence, to analyze the distortion, for a given pair of vectors x, y, we could imagine rotating the
coordinate system so that x − y is a basis vector. Such a rotation does not change the distribution,

∗ c©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

and simplifies the analysis. (Exercise: prove this by leveraging the fact that sums of Gaussians are
Gaussian...)

Given that x− y is a basis vector, A(x− y) only depends on one row of A, and hence ||f(x)−
f(y)||22 = ||x− y||22

√∑m
i=1X

2
i , where the Xi’s are independent Gaussians of variance 1/m. Since

the expected square of a zero-mean Gaussian is its variable, E[||f(x)− f(y)||22] = ||x− y||22. Hence
the theorem will follow provided we show that

∑
X2
i is sufficiently tightly concentrated about its

expectation. Specifically, if this is within a (1+ε) factor of its expectation, namely ‖f(x)−f(y)‖22 =
(1 ± ε)‖x − y‖22, then that will imply that ‖f(x) − f(y)‖2 = (1 ± ε)‖x − y‖2. [The reason we are
analyzing this squared norm instead of directly analyzing the actual distance is that the square-root
would complicate the analysis.]

The probability that
∑m

i=1X
2
i is concentrated within a factor of (1 ± ε) of its expectation is

identical to the probability that
∑m

i=1 Zi is within (1 ± ε) of its expectation, where Zi is drawn
from N(0, 1), so we will analyze this slightly simpler expression. To do this, we will prove a
Chernoff-style bound, leveraging the easily verified fact that for t < 1/2, E[etZ

2
] = 1/

√
1− 2t for

Z ∼ N(0, 1). We begin by bounding the probability that
∑

i Z
2
i > (1 + ε)m; a similar argument

will show an analogous bound for Pr[
∑
Z2
i < (1− ε)m].

Pr[
∑

Z2
i > (1 + ε)m] = Pr[et

∑
Z2
i > et(1+ε)m], [for t > 0]

≤ 1/(1− 2t)m/2

et(1+ε)m
[by Markov’s inequality, for t ∈ (0, 1/2)]

= e−m(t(1+ε)+(1/2) log(1−2t)).

Using the fact that log(1 − 2t) > −2t − 4t2 (for 0 < t < 1
3
), the above probability is at most

e−m(tδ−2t
2), for every t ∈ (0, 1/3). Optimizing this quadratic function tε − 2t2 for t yields t =

ε/4. Plugging this in and simplifying yields that the above probability is at most e−m
ε2

8 . Hence by
choosing m > 17 logn

ε2
, this probability is o(1/n2), and hence we may perform a union bound over

all < n2/2 possible pairs of points x, y to argue that with constant probability, the embedding does
not significantly distort any of the O(n2) distances.

2.1 Recent Advances: Fast Johnson-Lindenstrauss Transformations
To achieve distortion ε for a set of n points in Rd, using the above scheme would require time
O(dm) = O(d logn

ε2
) to compute the embedding of each datapoint. Can we hope to speed this up?

The most naive hope would be that there is a variance of the Johnson-Lindenstrauss scheme in
which the random projection matrix, A, can be chosen to be sparse—if most of the entries are 0,
then we can multiply by A in time proportional to the number of nonzero entries, instead of time
(which is less than dm if A is sparse). Unfortunately, the guarantees of the theorem erode for sparse
A, and this won’t work.

However, in 2006 Ailon and Chazelle introduced the Fast Johnson-Lindenstrauss which is a
clever twist on this. Roughly, instead of multiplying by a sparse A, we transform our data into
the Fourier basis (recall that the Fourier transform is just multiplication by a d × d matrix, which
has the property that this can be computed in time O(d log d)), and then multiply by our sparse
A. This corresponds to multiplying by a dense A in the standard basis, and the analysis works
out (intuitively, as long as A is a bit random, and not sparse, then things are okay). This ends up

2

with runtime O(d log d+ polylogn
ε2

), which is much better than O(d log n/ε2) in the many cases when
logn
ε2
� log d. Feel free to check out the original paper [1] for the details.

2.2 Recent Advances: Stronger Johnson-Lindenstrauss Transformations
Recall the theorem we proved above, slightly restated:

Theorem 2. Given any ε ∈ (0, 1), and a set X ⊂ Rd with |X| = n, there exists a map f : Rd → Rm

with m = O(logn
ε2

) such that for all x, y ∈ X ,

‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2.

A sequence or recent works, culminating in the 2019 paper [5] established that an analog of the
above theorem holds, where we replace “for all x, y ∈ X”, with “for all x ∈ X and for all y ∈ Rd.
Hence there is a mapping that preserves the distances from any point in Rd to any point in X . The
construction of this mapping is much more complicated than the random projection that we analyzed
above, and, in particular, the mapping is non-linear!

3 Intro to Nearest Neighbor Search
A useful primitive in many data analysis and machine learning algorithms is the ability to efficiently
find similar data points to a given point of interest. For example, given a the text from a webpage,
or an image, the ability to quickly figure out similar documents or images seems extremely useful.
(Of course, one must make sure that the comparison metric and the feature space we are looking in
is appropriate.) This problem is known as “nearest neighbor search”.

Naively, given a set of n vectors in d dimensions, and a vector of interest, v, by simply comput-
ing the distance between v and each of the n vectors, one can clearly find v’s nearest neighbor in
time O(nd). In the case that d >> O(log n), one can first apply the Johnson-Lindenstrauss trans-
formation, and then any subsequent nearest neighbor search can be answered approximately in time
O(n log n).

Could we hope for a significantly better runtime? Clearly we must consider each datapoint at
some point, which would imply that we would need time at least O(n); however, the hope is that
there is a reasonable preprocessing step we could do, so as to enable us to perform subsequent
nearest neighbor searches in sublinear time.

To give a slightly silly example, suppose the points are just real numbers (d = 1). We could
preprocess the points by sorting them, and then given any number v, one can find its nearest neighbor
in time O(log n) by performing a binary search in the sorted list. The analog of such a scheme in
higher dimension suffers a “curse of dimensionality”: the amount of space it would take to store
such a lookup table scales exponentially with the dimension.

Nevertheless, if one is willing to tolerate some approximation—in the sense that we might only
be able return the approximate closest vector (e.g. a vector whose distance is a factor of ε larger than
that of the closest vector), then nontrivial schemes with interesting theoretical properties and good
practical performance exist.

Locality sensitive hashing schemes, as their name suggests, are hashing schemes with the prop-
erty that points that are close have a higher probability of hashing to the same bucket. Given such a

3

scheme, a nearest-neighbor search can be performed by simply hashing the query vector v, and then
checking which vectors are hashed to the same bucket. Since their introduction in the late 1990’s
in a paper of Indyk and Motwani (from Stanford) [3], there has been a huge body of research de-
scribing locality sensitive hashing schemes for various metrics, with various tradeoffs between the
various parameters (storage space, preprocessing time, etc.). Despite the volume of research, many
of the most basic questions are still open—we currently do not know if the schemes we have are
near optimal or not. See [2] for a (only slightly outdated) survey.

We now explore an extremely simple locality sensitive hashing scheme, based on the Johnson-
Lindenstrauss transformation, that illustrates some of the properties and intuitions of more complex
schemes:

Algorithm 1. RANDOM HYPERPLANE HASHING
Input: n points in d dimensions, integer s representing the number of hash
tables we will construct, and an integer k representing the length of each
hash.

• Pick s matrices of dimension k × d, denoted A1 . . . , As, by drawing each
entry of Ai independently from N(0, 1).

• For every point x, hash it to each of the s hash tables as follows:
for i ∈ [1, . . . , s], set x’s ith hash to be the length k vector sign(Aiv)
whose jth index is ±1 according to the sign of the jth coordinate of
the vector Aiv.

First we argue that the points that get hashed to the same bucket as x will tend to have a small
angle with x:

Claim 2. For x, y ∈ Rd, the probability that they are hashed to the same bucket in the ith hash table
is (1− angle(x,y)

π
)k, where angle(x, y) denotes the angle, in radians between the vectors x and y.

Proof. Consider the jth index of the hash of x and y. The entries corresponding to x and y will
agree if, and only if points x and y lie on the same side of the hyperplane defined by the the jth row
of matrix A. Because of the spherical symmetry of the d dimensional Gaussian, the probability that
this random hyperplane splits the points x and y is exactly equal to the probability that a random
line in the 2-dimensional plane spanned by x, y, passing through the origin, splits points x and y.
This probability is exactly angle(x, y)/π. The claim now follows from the independence of the k
coordinates.

Hence for x, y ∈ Rd, the probability that they are not hashed to the same bucket in any of the s
hash tables is approximately (1−(1−angle(x,y)

π
)k)s ≈ e−s·e

−k·angle(x,y)/π
. To see the implications of this

statement, consider setting k = π logn
2ε

, and s =
√
n. For this setting of parameters, if angle(x, y) ≤

ε, then the probability that they will hash to the same bucket in at least one of the hash tables is
roughly 1−e−s·e−k·angle(x,y)/π ≥ 1−e−s/

√
n = 1−1/e > 1/2.On the other hand, if angle(x, y) ≥ 5ε,

then the probability that they will hash to the same bucket in at least one of the hash tables is roughly
1− e−s·e−k·angle(x,y)/π ≤ 1− e−sn5/2 ≈ 1/n2. Hence, if we have hashed n points, via a union bound,
with constant probability, no pair x, y with angle(x, y) > 5ε will collide in any of the s hash tables.

The above reasoning shows that this hashing approach will allow us to construct a set of hash
tables with the following properties: 1) given a point x ∈ Rd, it takes time O(d

√
n logn
ε

) to hash x,
and 2) if there exists y with angle(x, y) < ε, then with constant probability, by checking each of the

4

√
n hashes, we will find a y′ s.t. angle(x, y′) ≤ 5ε. While this factor of 5 slop might not be ideal,

we get a sublinear dependence on n in the computation time—which is a big deal in typical settings
for which d ≈ O(log n).

References
[1] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate

nearest neighbors. SIAM Journal on computing, 39(1):302–322, 2009.

[2] A. Andoni and P. Indyk. near-optimal hashing algorithms for approximate nearest neighbors in
high dimensions. Communications of the ACM, 51(1):117–122, 2008.

[3] P. Indyk and R. Motwani. approximate nearest neighbors: towards removing the curse of di-
mensionality. In STOC, 1998.

[4] W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space. Contempo-
rary Mathematics, 26:189–206, 1984.

[5] Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in euclidean
space. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 1064–1069. ACM, 2019.

5

