1. In class we saw a very simple probabilistic argument that in any graph \((V, E)\), the max-cut cuts at least \(|E|/2\) edges. Here we consider two improvements/variants:

(a) Consider the greedy algorithm that, given an ordering \(v_1, \ldots, v_n\) of the vertices, assigns \(v_1\) to set \(A\), then greedily partitions the other vertices (by sequentially assigning each unassigned vertex \(v\) to either \(A\) or \(B\) according to whether \(v\) has more neighbors already assigned to \(B\) or more neighbors already assigned to \(A\).) Assume that ties are broken by assigning the point to set \(A\). Prove that the cut found by this greedy algorithm cuts at least \(|E| + |B|\) edges, where \(|B|\) is the size of set \(B\) at the end of the algorithm. [Hint: think about what happens when a vertex actually gets put in set \(B\).]

(b) Prove that if the graph has an even number of nodes, \(n\), then there exists a cut with at least \(|E| + \frac{n}{2}\) edges crossing the cut. [Hint: the fact that \(n\) is even is just meant to suggest that it can be divided into two equal sets. . . .]

(c) Double Bonus: Can you turn the above probabilistic argument into an efficient deterministic algorithm? [This problem will not be graded...it is simply food for thought.]

2. An independent set in a graph is a subset of vertices with the property that no pair of them are connected via an edge. Given a graph \(G = (V, E)\) with \(|V| = n\), prove that \(G\) has an independent set of size at least

\[
\sum_{i=1}^{n} \frac{1}{d_i + 1},
\]

where \(d_i\) is the degree of vertex \(v_i\). [Hint: Given a permutation \(\pi = v_{\pi(1)}, \ldots, v_{\pi(n)}\) of the vertices, define the corresponding (independent) set \(S(\pi)\) by including vertex \(v_{\pi(i)}\) if none of \(v_{\pi(1)}, \ldots, v_{\pi(i-1)}\) is a neighbor of \(v_{\pi(i)}\). Note that \(S(\pi)\) is always an independent set. Now, define a randomized scheme for generating a permutation \(\pi\), such that \(E[|S(\pi)|]\) is the claimed quantity above.]

3. It is halloween, and there is a student-faculty costume party mixer. Assume \(n\) people show up to the party: some of them are students, and the rest are faculty. Assume that each person has at least \(1 + \log_2 n\) different costumes available to choose from (my set of costumes might or might not overlaps with your set). Note: its kindof funny if you show up with the same costume as your friends, but its horribly embarrassing if you have the same costume as one of the professors. Is it possible for all \(n\) people to coordinate their costumes in such a way that no student has the same costume as professor? You will show, via the probabilistic method, that such a coordination is possible. hooray.
(a) Recall that the probabilistic method is strictly BYOP (bring your own pumpkin, I mean probability distribution). A good first attempt would be to consider what happens if each person selects one of their costumes uniformly at random from their set of $\geq 1 + \log_2 n$ costumes. Under this distribution, what is a lower bound on the probability that this is a successful (i.e. no student is wearing the same costume as a professor)? [Hint: upper bound the probability of collision for one student/professor pair, then union bound over the number of such possible pairs.]

(b) Now solve the problem. You might try using a probability distribution over costumes that has a little more coordination between people....

Theorem 1. (Johnson and Lindenstrauss, 84’) Given any $\epsilon \in (0, 1)$, and a set $X \subset \mathbb{R}^d$ with $|X| = n$, there exists a randomized linear map $f : \mathbb{R}^d \to \mathbb{R}^k$ with $k = O\left(\frac{\log n}{\epsilon^2}\right)$ that embeds (X, ℓ_2) into (\mathbb{R}^k, ℓ_2) so that with high probability

$$(1 - \epsilon)\|x - y\|_2^2 \leq \|f(x) - f(y)\|_2^2 \leq (1 + \epsilon)\|x - y\|_2^2$$

for any $x, y \in X$.

4. In last Tuesday’s class, we saw a proof of the above theorem by letting $f(x) = Ax$, where each entry of A is independently drawn from $N(0, 1/k)$. In this problem, we will show that we can also select each entry independently from a Bernoulli-like distribution: $\Pr(A_{ij} = s) = \Pr(A_{ij} = -s) = 1/2$. Being able to select A in this fashion significantly speeds up the generation of the matrix, as well as reducing the time to compute Ax (by a large constant factor).

(a) What should the value of s be, as a function of k, n, and d, so that the expected value of the squared distance is correct, namely $E[\|f(x) - f(y)\|_2^2] = \|x - y\|_2^2$?

Let $v = x - y$, and assume for simplicity that $\|v\|_2 = 1$. For $i = 1, 2, \ldots, d$, let Z_i be the independent random variable such that $\Pr(Z_i = 1) = \Pr(Z_i = -1) = 1/2$, and let $C = \sum_{i=1}^d v_i Z_i$.

(b) [BONUS 1 point—this is a bit annoying but not interesting, feel free to skip.] Show that for any $0 < t < \frac{1}{2}$, $E[e^{tC^2}] \leq 1 + t + \frac{4t^2}{1 - 2t}$.

(c) Using the statement of part (b)—even if you didn’t do it—prove that with probability approaching 1 as n approaches infinity, for $k = O\left(\frac{\log n}{\epsilon^2}\right)$,

$$\|f(x) - f(y)\|_2^2 \leq (1 + \epsilon)\|x - y\|_2^2$$

for any $x, y \in X$. [Note: A very similar proof will also show that with high probability, $\|f(x) - f(y)\|_2^2 \geq (1 - \epsilon)\|x - y\|_2^2$, though you don’t need to prove that.]