CS265/CME309, Fall 2019. Instructor: Gregory Valiant
Problem Set 8

Electronic submission via Gradescope due 11:59pm Tuesday 11/19. You are strongly encouraged
to submit a homework with a partner—that is, submit one homework with both of your names.

[You may discuss these problems with classmates. Feel free to look at wikipedia, course notes, etc.
for reference material, but do not try to specifically search online for solutions to the problems.
Your submission must be the original work of you and your partner, and you must understand
everything that is written on your submission. We strongly suggest that you write solutions using
LaTex—see the course website for a latex solution template. |

1. (A Couple of Couplings)

(a) (2 points) Consider a Markov Chain on n states, with the property that there is some state
s s.t. no matter what state you are in at time ¢, the probability that you are in state s at
time £+ 1 is atleast & > 0. (L.e. there is a column of the transition matrix whose smallest
entry is at least o.) Define a coupling of this Markov chain and prove that the mixing
time is at most 1 + 8(/2e). [Hint: When defining the coupling, be careful to make sure

o log(1--a) ",
that the transition probabilities sum to 1.]

(b) (2 points) Consider the Markov chain over 5 states, with transition matrix P defined as:

1/4 1/4 0 1/4 1/4
1/4 1/4 1/4 0 1/4
P=|1/4 0 1/4 1/4 1/4
0 1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4 0

Prove that the corresponding Markov chain has mixing time at most 2 <1 + llogg((lg/ /2166))> .

[Hint: feel free to use the observation that the minimum entry of the matrix P? is 3/16.]

2. (4 points) Consider a random walk on the n-dimensional hypercube (i.e. where the vertices are
n-bit numbers, and edges connect numbers that differ in a single index), where in each step,
with probability 1/2 one stays at the current vertex, and with probability 1/2, one chooses
a random index i < {1,...,n} and flips the ith coordinate. Prove that the mixing time is
O(nlogn). [Hint: When defining the coupling, it might be helpful to view the above random
walk as follows: pick a random index i <— {1,...,n}, and a value b <— {0, 1}, and update the
ith coordinate to have value b.]

3. (More Shuffling) Consider the shuffling algorithm where at each time step, a uniformly ran-
dom card is chosen, and placed on the top of the deck. [We considered this shuffling algo-
rithm in Lecture 15.] Assume the deck has n cards. We will prove that if the chain is run for
0.9 - nlogn steps, the total variational distance to the uniform distribution is 1 — o(1) (hence
the deck is essentially “unshuffled”), whereas if the chain is run for 1.1 - nlogn steps then it
is essentially shuffled.



(a) (2 points) Prove that this shuffling defines an irreducible, aperiodic chain (over n! states),
whose stationary distribution is the uniform distribution over orderings of the n cards.

(b) (2 points) Prove that for any initial ordering of the cards, o, the distance between the
distribution of orderings after ¢ time steps, and the uniform distribution, ||p, — Unif||; =
o(1) for t = 1.1 - nlogn, where p! denotes the distribution of the state of the deck after
t timesteps when started in the order 0. Hence the deck is essentially shuffled after
1.1nlogn steps. [We essentially saw this in lecture 15, but skipped the details. You can
show this either via a “strong stationary stopping time” or via a coupling.. . .]

(c) (2 points) Prove that after 0.9-n log n steps, with probability 1—o(1) there will be roughly
c(n) = n®! cards that have not yet been picked. Feel free to use the approximation
(1 —1/n)" ~ 1/e. [Hint: Approximate the expected number of unpicked cards, and
bound the variance, then apply Chebyshev’s inequality. |

(d) (2 points) Given the previous part, prove that the total variation distance to the uniform
distribution over orderings of the deck will be 1 — o(1) after 0.9nlogn steps. [Hint: if
¢(n) cards have not been picked, what does it mean about the ordering of the bottom
¢(n) cards of the deck?]

4. (Azuma-Hoeffding) (4 points) Suppose you are in charge of a potato-packing plant. In a
typical day, you arrive at work, and have a bin of n potatoes, which must pack into bags in
such a way that each bag has at least 10 pounds of potatoes. You implement an extremely
complicated potato-sorting algorithm that ensures that, each day, you maximize the number of
bags of potatoes that are packed using the n potatoes. Suppose that the weight of each potato
is between 0.5 and 2 pounds, and is drawn independently from some distribution P. Let X

denote the random variable representing the number of bags of potatoes that you will produce
2

in a given day. Prove that Pr[|X — E[X]| > A] < 2¢ 2. [Hint: Use Azuma-Hoeffding tail
bounds! In general, if you want to make a martingale argument, but dont know where to begin,
try defining the Doob martingale....]

5. (Martingale Stopping Theorem) Consider the following very simplified model of how opinions
propagate in social networks: suppose we represent the class via an undirected social network,
G = (V, E). The students are vertices, and an edge connects two students if they are “friends”.
Assume that each student either believes in climate change (ie is a “believer”) or is a climate
change “denier”. Furthermore, assume that people’s states evolve over time according to the
following process: each week, each student flips a fair coin, and with probability 1/2 keeps
their current state, and with probability 1/2 adopts the state of a randomly chosen “friend”.
What can we say about the spread of this contagion?

(a) (1 points) Let X, be the number of “deniers” after t weeks. Is { X} a martingale?

(b) (2 points) Let Y; be the sum of the degrees of all deniers after the ¢th week. Is {Y;} a
martingale?

(c) (2 points) Using the martingale stopping theorem, what is the probability that the entire
class eventually (i.e. after an infinite number of weeks) ends up a “denier”, as a function
of the starting configuration?



