Problem Set 2–Solutions

1. (a) Let \(Y = (X - \mathbb{E}[X] + b)^2 \) for some constant \(b > 0 \), we’ll optimize over \(b \) later.

\[
\Pr[X \geq \mathbb{E}[X] + a] = \Pr[X + b \geq \mathbb{E}[X] + a + b] \\
\leq \Pr[Y \geq (a + b)^2] \\
\leq \frac{\mathbb{E}[Y]}{(a + b)^2} \\
= \frac{\text{Var}[X] + b^2}{(a + b)^2}
\]

This is minimized by setting \(b = \frac{\text{Var}[X]}{a} \) giving our bound.

(b) For part (i) the one-sided inequality yields 0.3 while the two-sided bound yields 0.44. For part (ii) the one-sided inequality yields 0.1 while the two-sided bound yields 0.11. So for deviations close to the mean the one-sided inequality yields a considerable gain, but the gain goes down as we move farther from the mean.

2. Tightness of Markov’s and Chebyshev’s inequalities:

(a) A rather silly example is the random variable \(X \) that always takes value \(a \). \(\Pr[X \geq a] = 1 = \mathbb{E}[X] \). Other less-trivial constructions exist, for example, for \(a \geq 1 \), we could consider the random variable \(X \) defined by \(\Pr[X = a] = 1/a \) and \(\Pr[X = 0] = 1 - 1/a \), for which \(\Pr[X \geq a] = \mathbb{E}[X]/a \).

(b) The silly example would be the random variable \(X \) which takes value \(-a\) half the time, and value \(a \) half the time. A less silly example, for \(a \geq 1 \), is the random variable that takes value \(\pm a \) with probability \(1/2a^2 \), and 0 with probability \(1 - a^2 \). This random variable has variance 1, and \(\Pr[|X - \mathbb{E}[X]| \geq a] = 1/a^2 = \frac{\text{Var}[X]}{a^2} \).

3. Define the random variable \(Y = |X - \mathbb{E}[X]|^k \). Since \(Y \) is non-negative and \(a^k \) is positive, we can use Markov’s inequality to get the following:

\[
\Pr \left[Y > a^k \left(\mathbb{E}[(X - \mathbb{E}[X])^k] \right) \right] = \Pr \left[Y > a^k \left(\mathbb{E}[Y] \right) \right] \leq \frac{1}{a^k}.
\]

Note that we used the fact that \(k \) was even when we assumed \((X - \mathbb{E}[X])^k = |X - \mathbb{E}[X]|^k \).

4. (a) The coefficient of \(x^k \) in the expansion of \((x - a)^n \) is \(\binom{n}{k} a^{n-k} \). This binomial coefficient is always an integer, and for prime \(n \), the numerator of the binomial coefficient is a multiple of \(n \), and for \(k \in \{1, \ldots, n - 1\} \) the denominator has no factors of \(n \), as all the prime factors of the denominator are at most \(\max(k, n - k) \). Hence for \(n \) prime, \((x - a)^n \cong x^n + (-a)^n \cong x^n - a^n \mod n \), where the final congruence used Fermat’s Little Theorem.

In the case that \(n \) is composite and not a power of a prime, we have \(n = p^k m \), for some prime \(p \) and \(m > 1 \) relatively prime to \(p \). Consider the coefficient of the \(x^{n-p^k} \) term:
\[\frac{n!}{p^k[(n-p^k)]}a^{p^k} \]. Since \(\gcd(a,n) = 1 \), the \(a^{p^k} \) term has no factors of \(p \). Additionally, all factors of \(p \) in the numerator of the binomial coefficient are cancelled by factors of \(p \) in the denominator since \(p^k! \) and \(p^km \cdot (p^km - 1) \cdot \ldots \cdot p^k(m - 1) \) are divisible by the same power of \(p \); hence \(\frac{n!}{p^k[(n-p^k)]}a^{p^k} \not\equiv 0 \mod p \), and the polynomial \((x - a)^n \mod p \) has a nonzero coefficient of \(x^{n-p^k} \).

(b) There are at least two reasons we cannot use the Schwartz-Zippel randomized test of polynomial identity to decide whether \((x - 1)^n - (x^n - 1) \cong 0 \mod n \). The first reason is that this is a degree \(n - 1 \) polynomial, and hence could have at least \(n - 1 \) roots, yet the set from which we are selecting values to substitute for \(x \) has size \(|n| \), yielding an abysmal bound of \(1/n \) on the probability of catching a composite. The second, more fundamental reason we cannot use Schwartz-Zippel is that in the case that \(n \) is composite, \(\mathbb{Z}_n^* \) is not a field, and hence even the polynomial ring modulo \(n \) has a number of problems—in particular, degree \(d \) polynomials may have more than \(d \) roots modulo \(n \). For example, the degree 2 polynomial \(p(x) = x^2 - x \) has the roots 1, 3, 4, 5 if we are working modulo 6.

(c) Assuming that \(n = p^km \) is composite, for \(m \geq 2 \) with \(\gcd(m,p) = 1 \), we will argue that with high probability over the random choice of \(r(x) \), \(q(x) = (x + 1)^n - (x^n + 1) \not\equiv 0 \mod (p, r(x)) \), and hence with at least with probability, this will hold modulo \((n, r(x)) \), since \(p \) is a factor of \(n \). Because we are working modulo \(p \), polynomials have a unique factorization, and hence the degree \(n \) polynomial in question has at most \(n/d \) unique irreducible degree-\(d \) polynomial factors. We now argue that with a reasonable probability, \(r(x) \) will be an irreducible degree \(d \) polynomial that is not one of the irreducible degree \(d \) factors of \(q(x) \), in which case the algorithm will successfully verify that \(q(x) \neq 0 \). Using the bounds from the hint on the number of monic irreducible polynomials, and the fact that there are at most \(p^d \) monic degree \(d \) polynomials modulo \(p \) (and \(r(x) \mod p \) is chosen uniformly at randomly from among them, because it is chosen uniformly from degree \(d \) monic polynomials modulo \(n \) and \(p \) is a divisor of \(n \)), we have:

\[
\Pr[\text{success}] \geq \frac{p^d/d - p^{d/2} - n/d}{p^d} \geq \frac{1}{d} - \frac{1}{p^{d/2}} - \frac{n}{d \cdot 17 \log n} \geq \frac{1}{4d},
\]

where the last inequality is a very crude bound.