
CS265/CME309, Fall 2018. Instructor: Gregory Valiant

Problem Set 3
Electronic submission to Gradescope due 10am Tuesday 10/16. You are strongly encouraged to
submit a homework with a partner—that is, submit one homework with both of your names. If you
submit with a partner, you must use a different partner than in previous problem sets!

[You may discuss these problems with classmates. Please do not troll the internet looking for so-
lutions to these problems. Your submission must be the original work of you and your partner,
and you must understand everything that is written on your submission. We suggest that you write
solutions using LaTex—see the course website for a latex solution template.]

1. Chernoff Bound applications. For each question, be sure to specify which Chernoff bound
you use:

(a) (4 points) Suppose you are conducting a poll to forecast the upcoming election. Assume
you randomly sample 5000 likely voters, what is the probability that the percentage
who support candidate X that you compute differs from the true population value (the
expected value) by more than an additive ±2%? What about differing by more than 5%.
What about more than 10%?

(b) (4 points) How many random voters must you sample if you want to guarantee that with
probability at least 0.95 (over the randomness in the choice of who you poll), you end up
with an estimate of the percent of people who will vote for candidate X that is accurate
to within an additive±1%? How does this change if you know that the fraction will vote
for X is very small, say at most 5%?

2. In class, we saw a sampling-based randomized algorithm for computing the median of a set
S of n (distinct) numbers (see Section 3.4 of Prob. and Comp. to refresh your memory). The
algorithm succeeds with high probability (probability > 1 − o(1)) and, provided it succeeds,
will compare 3

2
n+O(n3/4 log n) pairs of numbers. There is a different randomized algorithm

that many of you might have seen, that resembles quick-sort with a random pivot. In this
problem, you will show that this algorithm is significantly worse than the sampling-based
algorithm we saw in class. The algorithm is as follows:

• Choose a uniformly random element x ← S, and form the set S1 = {y ∈ S : y < x}
and S2 = {y ∈ S : y > x} by comparing every element of S to x.

• Based on the sizes of S1 and S2, determine which set the median lies in and recurse
the algorithm on that set (keeping in mind the sizes of the partitions S1,S2 from earlier
iterations of the algorithm in order to calculate which set the median of S belongs.

(a) (4 points) What is the expected number of comparisons that the above algorithm per-
forms on a list of n numbers? (The answer will be of the form cn + o(n); figure out the
leading constant, c).

(b) (4 points) Show that with constant probability, the algorithm will exceed its expectation
by at least n comparisons (and hence the runtime is not very strongly concentrated about
its expectation.)
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(c) DOUBLE BONUS You might wonder whether the leading terms of 3n/2 in the number
of comparisons that the randomized sampling based median algorithm uses is optimal.
Prove that any randomized algorithm that finds the median of a set of n distinct num-
bers (with probability at least 0.9), must, in expectation, compare at least 3n/2 pairs of
numbers. [This is more of a research problem/food for thought, and we not grade it.]

3. (4 points) For a random variable X distributed according to a Poisson distribution of expecta-
tion λ ≥ 0, for all integers k ≥ 0, by definition Pr[X = k] = e−λλk

k!
. For independent random

variables, X, Y , with X distributed according to a Poisson distribution of expectation λ1, and
Y distributed according to a Poisson distribution of expectation λ2, show that X + Y is dis-
tributed according to a Poisson distribution of expectation λ1 + λ2 by computing the moment
generating function of the Poisson distribution, and then arguing that the moment generating
function of X + Y is equal to that of the Poisson distribution of expectation λ1 + λ2 (and
hence, these two distributions must be equal).

4. Suppose a class has n students. On a given day, assume that if the ith student is asked “What
is the temperature today”, her response is drawn from a Gaussian (Normal) distribution whose
mean is the actual temperature, and variance is σ2

i (and her guess is independent from those
of the other students).

(a) (4 points) If σi = 1 for all i, how accurate will the average of the n guesses be? [Feel
free to use the fact that the sum of independent Gaussians is Gaussian: namely for Xi

distributed according to N(µi, σ
2
i ), if the Xi are independent, then

∑
iXi is distributed

according to N(
∑

i µi,
∑

i σ
2
i ). This fact can be proved by looking at the moment gener-

ating function of X , as in the previous problem.]

(b) (4 points) If σi = 1 for all i, how accurate can we expect the median of the guesses to be?
Specifically, find some function d(n) for which with probability at least 0.9, the median
will be within distance d(n) from the true temperature.

(c) (4 points) Suppose σ2
i = 1 for i ≤ n/2, and σ2

i = n for i > n/2. Are we better-off
returning the mean of the guesses, or the median? Support your claim with a Chernoff
bound or two and a brief discussion.

(d) BONUS (2 points): Suppose you are given the list of σ2
i ’s, and hence you know the

variance of each of the n guesses. What is the “best” estimate of the temperature, where,
for example “best” could be defined as minimizing the expected square of the error of
the guess.

(e) DOUBLE BONUS: Suppose you are given the set of σ2
i ’s, but are not told which student

has each variance. What is the “best” estimate of the temperature? [This is more of a
research problem/food for thought, and we will not grade it.]

5. Thresholds in random spatial networks: Suppose we have a square room (with side length 1)
with n people that are positioned uniformly at random. Assume that each person will befriend
the k nearest people.

(a) (4 points) Prove that there is some constant c such that if k ≥ c log n, then with high
probability, the resulting friend network is connected (for every two people, there exists
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some chain of friend’s friend’s friends, etc. connecting them). [Hint: Divide the room
into n

logn
equal-sized squares, and argue that with high probability, every square has at

least one person. Next, show via Chernoff bounds that with high probability, for each

person, the number of people within distance 10
√

logn
n

is at most k = c log n for some
c, and hence each person will be friends with everyone in the 8 neighboring squares, and
hence the friend network is connected.]

(b) BONUS (2 points): Prove that there exists some constant c2 such that for k = c2 log n,
the probability that the resulting network is connected goes to zero as n→∞, and hence
Θ(log n) is the connectivity threshold in this network model. [Hint: to overcome issues
of dependencies, consider analyzing the setting of a Poisson Point Process, namely where
the number of people is chosen from a Poisson distribution of expectation n, and each
person’s location is chosen randomly, as before. In this setting, the number of people
in any two disjoint regions are independent. Then note that because the probability
that a Poisson random variable of expectation n is actually equal to n is large—at least
Θ(1/

√
n)— one can translate the result from the Poisson setting to the setting of exactly

n people.]
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