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1 Introduction

In this lecture, we will cover a brief introduction of Stein’s method which is used as a general tool for
proving central limit theorems.

We have so far derived lower bounds for property testing and estimation by characterizing the gener-
alized multinomial distribution and applying a theorem of Roos to compare it to a Poisson distribution.
If we consider GM ∼ Poisson(~λ) as a first-order approximation, we can try to obtain a so-called second-

order approximation by comparing GM ∼ N (~λ,Σ) (we use the term second-order in the sense that we
are now estimating a second moment). However, unlike the Poisson distribution which is supported on
the integers, the Gaussian distribution is supported on the reals and so we must do some discretization.

One standard way to prove the central limit theorem is the “hybridization” approach. Consider n
i.i.d. samples X1, ..., Xn and let X =

∑n
i=1Xi. Also, let G1, ..., Gn be n i.i.d. samples drawn from a

Gaussian distribution. Define

Xi = G1 + ....+Gi +Xi+1 + ...+Xn

such that X0 = X and Xn is distributed according to a Gaussian. Then we can bound the difference
between X and the Gaussian random variable Xn by bounding the difference between each Xi and Xi−1,
i.e. |X −Xn| =

∑n
i=1 |Xi−Xi−1|. Note that this argument only works when the samples are i.i.d. and

is not robust to more general settings. Stein’s method (1970) allows us to prove central limit theorems
more generally.

2 Stein’s Method

The goal is to compare X to a random variable G ∼ D, where D is some “nice” distribution. The
intuition behind Stein’s method is as follows:

1. Find a transformation T with a unique fixed point G.

2. Look at |TX −X|. The hope is that if X is close to G, then TX will be close to G as well.

We will consider G ∼ D = N (0, 1). A natural transformation T that holds G as a fixed point is
the Ornstein-Uhlenbeck process, which can be thought of as the transformation that adds N (0, ε2)
noise to the distribution and then scales it back to the origin by multiplying by 1√

1+ε2
.

Note that for any X with E[X] = 0 and E[X2] = 1, this transformation preserves the first two
moments, i.e. we still have E[TX] = 0 and E[(TX)2] = 1. Thus, we might expect that the bound we
derive between X and G would depend on third- and higher-order moments of X.

Our goal is to bound

sup
f∈H
|E[f(X)]− E[f(G)]| .

Note that the choice of distance metric we use to compare X and G determines the class of functions
H. For instance, if we use earth mover’s distance as our metric, H is the class of Lipschitz functions.

To get some intuition for how we shall compare the transformed distribution to the original one,
consider an example function f given in Figure 1, where X1 and X2 are Gaussians with means at the
indicated point. Note that E[f(X1 + noise)]− f(X1) ≈ 0, as X1 occurs in a portion of f that is linear,
whereas E[f(X2 + noise)]− f(X2) ∝ f ′′(X2), due to the significant second-derivative at X2. Similarly,
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Figure 1: An example function f

the scaling towards the origin will introduce a term linear in the first derivative of f at X. This motivates
the following expression:

|TG−G| ∝ E[f ′′(G)−Gf ′(G)].

On the other hand, because the Gaussian is fixed by this transformation, we know that |TG−G| = 0.
The following lemma verifies the useful fact that for a standard Gaussian random variable, and any twice-
differentiable function f , EX←G[f ′′(X)−Xf ′(X)] = 0. Note that in the following formulation, we replace
f by its antiderivative. Additionally, we will use the shorthand E[f(G)] to denote EX←G[f(X)].

Lemma 1 For all differentiable functions f : R→ R, letting G denote a standard Gaussian,

E[f ′(G)−G · f(G)] = 0.

Proof We evaluate the first term using integration by parts:

E[f ′(G)] =

∫ ∞
−∞

f ′(x)e−
x2

2 dx

= f(x)e−
x2

2

∣∣∣∞
−∞

+

∫ ∞
−∞

xf(x)e−
x2

2 dx

=

∫ ∞
−∞

xf(x)e−
x2

2 dx

= E[Gf(G)],

as claimed.

The above lemma guarantees that Exp[f(X)−Xf ′(X)] = 0 if X is distributed according to a Gaussian.
The next lemma shows that the magnitude of Exp[f(X)−Xf ′(X)] tells us how far X is from a Gaussian:

Lemma 2 Suppose that h : R→ R is Lipschitz continuous with bounded derivative. We have

E[h(X)]− E[h(G)] = E[f ′h(X)−Xfh(X)],

where we define

fh(x) = e
x2

2

∫ x

−∞
g(t)e−

t2

2 dt,

where g(x) = h(x)− E[h(G)].
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Proof First, we claim that f ′h(x)− xfh(x) = g(x). To see this, note that

f ′h(x) = e
x2

2

(
g(x)e−

x2

2

)
+
(
xe

x2

2

)∫ x

−∞
g(t)e−

t2

2 dt = g(x) + xfh(x),

so the claim follows. Then we have

E[f ′h(X)−Xfh(X)] = E[g(X)]

= E [h(X)− E[h(G)]]

= E[h(X)]− E[h(G)],

as claimed.

We can apply Lemma 2 when computing the distance between X and G with respect to some class
of functions H:

dH(X,G) = sup
h∈H
|E[h(X)]− E[h(G)]| = sup

h∈H
|E[f ′h(X)−Xfh(X)]|.

In the following section, we will give an example of how to bound the right hand side in order to prove
a central limit theorem.

3 Application to Central Limit Theorems

Now we will show how Stein’s method can be applied to proving a typical central limit theorem. Suppose
X1, ..., Xn are i.i.d. with E[Xi] = 0, E[X2

i ] = 1, and |E[X3
i ]| <∞, and let X = 1√

n
(X1 + ...+Xn). We

will begin by bounding the earth mover’s distance, and then transform this into a bound on the total
variation distance.

3.1 Bounding Earth Mover’s Distance

We will use the following lemma without proof:

Lemma 3 If h ∈ Lip, then fh satisfies ‖f ′′h ‖∞ ≤ 2.

Now we will show that dW (X,G) is small for sufficiently large n. More precisely:

Theorem 4 We have

dW (X,G) ≤ 3 · E[|X1|3]√
n

.

Proof By Lemma 2,

dW (X,G) = sup
h∈Lip

|E[h(X)]− E[h(G)]| = sup
h∈Lip

|E[f ′h(X)−Xfh(X)]| .

Let X ′ = X − 1√
n
X1 = 1√

n
(X2 + ...+Xn). Note that for any differentiable f : R→ R, we have

E[Xf(X)] = E[
√
nX1f(X)]

= E
[√

nX1

(
f(X ′) +

X1√
n
f ′(X ′)

)]
+ E1

= E[f ′(X)] + E1 + E2.
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The first line follows because

E[Xf(X)] =
1√
n

(E[X1f(X)] + ...+ E[Xnf(X)])

=
1√
n

(E[X1f(X)] + ...+ E[X1f(X)])

= E[
√
nX1f(X)].

In the second line, we claim that

|E1| ≤
E[|X1|3]‖f ′′‖∞

2
√
n

.

To see this, note that

f(X) = f

(
X ′ +

X1√
n

)
= f(X ′) +

X1√
n
f ′(X ′) + ε1,

where by Taylor’s theorem,

|ε1| ≤
X2

1

2n
‖f ′′‖∞,

so

|E1| =
∣∣∣∣E [X1√

n
ε1

]∣∣∣∣ ≤ E
[
|X1|√
n
|ε1|
]
≤ E[|X1|3]‖f ′′‖∞

2
√
n

.

In the third line, we claim that

|E2| ≤
E[|X1|3]‖f ′′‖∞√

n
.

To see this, note that

f ′(X) = f ′
(
X ′ +

X1√
n

)
= f ′(X ′) + ε2,

where by Taylor’s theorem,

|ε2| ≤
X1√
n
‖f ′′‖∞.

Note that E[
√
nX1f(X ′)] =

√
n · E[X1]E[f(X ′)] = 0, since E[X1] = 0 by assumption. Hence

|E2| =
∣∣E[X2

1 ε2]
∣∣ ≤ E[X2

1 |ε2|] ≤
E[|X1|3]‖f ′′‖∞√

n
.

Hence the total error is

|E| ≤ |E1|+ |E2| ≤
3 · E[|X1|3]‖f ′′‖∞

2
√
n

,

so by Lemma 3, we have

dW (X,G) ≤ sup
h∈Lip

3 · E[|X1|3]‖f ′′h ‖∞
2
√
n

≤ 3 · E[|X1|3]√
n

,

as claimed.
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3.2 Bounding Total Variation Distance

Now we discuss how to bound total variation distance based on earth mover’s distance. It will not
be possible to obtain a general bound, for example the earth mover’s distance between a binomial
distribution and a Gaussian distribution is small, but the total variation distance is 1. Instead, we will
have two guiding principles:

1. For two distributions A and B, if dW (A,B) is small, then dTV(A ◦ f,B ◦ f) is small, where f is
some sufficiently narrow Gaussian curve.

2. As long as A and B are “nice” distributions (in particular, A is unimodal, has discrete support,
and support(A) = support(B), then we can “deconvolve” to obtain a bound on dTV(A,B).

We have the following lemma:

Lemma 5 Suppose that A and B are distributions over Z. Let f : Z → R+ be the PDF of a unimodal
distribution on Z, with maxi∈Z f(i) = m. Then dTV(A ◦ f,B ◦ f) ≤ m · dW (A,B).

Proof First, we claim that

S =
∑
i∈Z
|f(i)− f(i− c)| ≤ 2mc.

Consider the quantities f(i)− f(i− c). Note that for some k ∈ Z, we have f(i)− f(i− c) ≥ 0 for i ≤ k
and f(i)− f(i− c) ≤ 0 for i > k. Hence

S =

k∑
i=−∞

(f(i)− f(i− c)) +

∞∑
i=k+1

(f(i− c)− f(i))

=

(
k∑

i=−∞
f(i)−

k−c∑
i=−∞

f(i)

)
+

( ∞∑
i=k−c+1

f(i)−
∞∑

i=k+1

f(i)

)

=

k∑
i=k−c+1

f(i) +

k∑
k−c+1

f(i)

≤ 2mc.

The claim follows...

The next lemma

Lemma 6 Suppose that A and B are distributions over Z. Let f : Z → R+ be the PDF of a unimodal
distribution over Z, with maxi∈Z f(i) = m. Furthermore, assume that A is unimodal with maxi∈ZA(i) =
m′. Then

dTV(A,B ◦ f) ≤ m · dW (A,B) +m′ · dW (f, δ).

Proof Note that

dTV(A,B ◦ f) ≤ dTV(A,A ◦ f) + dTV(A ◦ f,B ◦ f),

where the first inequality follows from the triangle inequality and the second follows from Lemma 5.
Now we have

dTV(A,A ◦ f) = dTV(f ◦A, δ ◦ f) ≤ m′ · dW (f, δ).
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Together with Lemma 5, this shows that

dTV(A,B ◦ f) ≤ m · dW (A,B) +m′ · dW (f, δ).

For example, we can take A = Binomial(n, k) and B = DiscretizedGaussian(µ, σ2). Taking f =
Binomial

(√
n, 12

)
gives a nontrivial bound on dTV(A,B).
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