
Simulating Branching Programs with Edit Distance
and Friends

Or: A Polylog Shaved Is a Lower Bound Made∗

Amir Abboud
Stanford University, USA

abboud@cs.stanford.edu

Thomas Dueholm
Hansen

Aarhus University, Denmark
tdh@cs.au.dk

Virginia Vassilevska
Williams

Stanford University, USA
virgi@cs.stanford.edu

Ryan Williams
Stanford University, USA
rrw@cs.stanford.edu

ABSTRACT
A recent, active line of work achieves tight lower bounds for
fundamental problems under the Strong Exponential Time
Hypothesis (SETH). A celebrated result of Backurs and In-
dyk (STOC’15) proves that computing the Edit Distance
of two sequences of length n in truly subquadratic O(n2−ε)
time, for some ε > 0, is impossible under SETH. The result
was extended by follow-up works to simpler looking prob-
lems like finding the Longest Common Subsequence (LCS).

SETH is a very strong assumption, asserting that even
linear size CNF formulas cannot be analyzed for satisfiabil-
ity with an exponential speedup over exhaustive search. We
consider much safer assumptions, e.g. that such a speedup is
impossible for SAT on more expressive representations, like
subexponential-size NC circuits. Intuitively, this assumption
is much more plausible: NC circuits can implement linear
algebra and complex cryptographic primitives, while CNFs
cannot even approximately compute an XOR of bits.

Our main result is a surprising reduction from SAT on
Branching Programs to fundamental problems in P like Edit
Distance, LCS, and many others. Truly subquadratic algo-
rithms for these problems therefore have far more remark-
able consequences than merely faster CNF-SAT algorithms.
For example, SAT on arbitrary o(n)-depth bounded fan-in

∗This work was done in part while the authors were visiting
the Simons Institute for the Theory of Computing, Berkeley,
CA. A.A. and V.V.W. were supported by NSF Grants CCF-
1417238 and CCF-1514339, and BSF Grant BSF:2012338.
T.D.H. was supported by the Carlsberg Foundation, grant
no. CF14-0617. R.W. was supported by an Alfred P. Sloan
Fellowship and NSF CCF-1212372. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the NSF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC ’16 Cambridge, Massachusetts USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

circuits (and therefore also NC-Circuit-SAT) can be solved
in (2− ε)n time.

An interesting feature of our work is that we get major
consequences even from mildly subquadratic algorithms for
Edit Distance or LCS. For example, we show that if an ar-
bitrarily large polylog factor is shaved from n2 for Edit Dis-
tance then NEXP does not have non-uniform NC1 circuits.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Edit distance, longest common subsequence, lower bounds,
SETH, circuit complexity

1. INTRODUCTION
A central goal of complexity theory is to understand and

prove lower bounds for the time complexity of fundamen-
tal problems. One of the most important computational
problems is Edit-Distance, the problem of computing the
minimum number of edit operations (insertions, deletions,
and substitutions) required to transform one sequence into
another. A classical dynamic programming algorithm that
is taught in basic algorithms courses solves Edit-Distance
on sequences of length n in O(n2) time [25]. This quadratic
runtime is prohibitive in many applications, like computa-
tional biology and genomics where n is typically a few bil-
lions. A faster, e.g. linear time, algorithm would there-
fore have far-reaching consequences. Despite decades of at-
tempts, no upper bound below O(n2/ log2 n) is known for
Edit-Distance [31]. All the above applies to the simpler
looking Longest Common Subsequence problem (LCS), for
which the existence of a faster algorithm was already posed
as an important open question in combinatorics by Knuth
decades ago [24]. This is a situation where lower bounds
are highly desirable, but unfortunately, the current state of
the art in complexity is far from providing a lower bound

that is close to quadratic for any natural problem in NP,
let alone Edit-Distance. Therefore, researchers have turned
their attention to conditional lower bounds, and a recent
breakthrough by Backurs and Indyk [12] showed that Edit-
Distance cannot be solved in truly subquadratic O(n2−ε)
time, for some ε > 0, unless the strong exponential time hy-
pothesis (SETH), a well-known hypothesis on the complexity
of k-SAT, is false.

Hypothesis 1 (SETH). There does not exists an ε >
0 such that for all k ≥ 3, k-SAT on n variables and m
clauses can be solved in O(2(1−ε)n ·m) time.

Other interesting recent results show that under SETH,
the current algorithms for many central problems in diverse
areas of computer science are optimal, up to no(1) factors.
These areas include pattern matching [7, 2, 18, 1], graph
algorithms [35, 3, 5, 8, 6], parameterized complexity [32,
2], computational geometry [17, 19], and the list is grow-
ing by the day. Bringmann and Künnemann [18] generalize
many of the previous SETH lower bounds [7, 17, 12, 2] into
one framework; they prove that the problem of computing
any similarity measure δ over two sequences (of bits, sym-
bols, points, etc) will require quadratic time, as long as the
similarity measure has a certain property (namely, if δ ad-
mits alignment gadgets). Such similarity measures include
Edit-Distance and LCS (even on binary sequences), and the
Dynamic Time Warping Distance, which is an extensively
studied metric in time-series analysis.

These SETH lower bounds are a part of a more general
line of work in which one bases the hardness of important
problems in P on well-known conjectures about the exact
complexity of other famous problems. Other conjectures are
3-SUM and All-Pairs-Shortest-Paths, but in recent years,
SETH has been most “successful” at explaining barriers.

Evidence for SETH.
SETH was introduced [27, 21] as a plausible explanation

for the lack of (2−ε)n algorithms for CNF-SAT, despite of it
being one of the most extensively studied problems in com-
puter science. The fastest known algorithms for k-SAT run
in time 2n−n/O(k) (e.g. [33]), and for CNF-SAT the bound

is 2n−n/O(log ∆) where ∆ = m/n is the clause-to-variable ra-
tio [20, 26, 9]. That is, these algorithms are almost enough to
refute SETH. Evidence in favor of SETH is circumstantial.
For example, natural algorithmic approaches like resolution
were shown to require exponentially many steps [15].

There is evidence that SETH will be hard to refute, in
the form of a “circuit lower bounds barrier”: refuting SETH
is as hard as proving longstanding open lower bound re-
sults. Williams showed that faster-than-trivial Circuit-SAT
algorithms for many circuit classes C would imply interest-
ing new lower bounds against that class [40, 42]. Via this
connection, and known reductions from certain circuit fam-
ilies to CNF formulas, it is possible to show that refuting
SETH implies a new circuit lower bound [29]: ENP cannot
be solved by linear-size series-parallel circuits1. However,
this is a very weak lower bound consequence.

1The class ENP or TIME[2O(n)]NP is the class of problems
solvable in exponential time with access to an NP oracle.
Series-parallel circuits are a special kind of log-depth cir-
cuits, also known as Valiant-Series-Parallel circuits [38].

A hierarchy of SAT problems.
A weakness of SETH as a hardness hypothesis is that it

is an assumption about CNF SAT, as opposed to a more
general SAT problem. Consider a problem in which you are
given some representation of a function B on n input bits and
are asked whether B is satisfiable. If B is treated as a black-
box that we only have input/output access to, then any
algorithm will need to spend Ω(2n) time in the worst case.
Of course, a clever algorithm should attempt to analyze B
in order to decide satisfiability in o(2n) time. Whether this
is possible, depends on how complex and obfuscating the
representation is. There is a whole spectrum of increasing
complexity of representations, starting from simple objects
like DNFs, which are very bad at hiding their satisfiability,
up until large circuits or nondeterministic turing machines
that we have no idea how to analyze.

For each class of representations C we can define the cor-
responding C-SETH, stating that this abstract SAT problem
cannot be solved in (2 − ε)n time. For example, NC-SETH
would be the assumption that Circuit-SAT on polynomial
size polylog depth circuits (NC circuits) cannot be solved in
(2− ε)n time. It is well known that NC circuits are capable
of complex computations, including most linear-algebraic
operations. Moreover, they are believed to be capable of
implementing cryptographic primitives like One Way Func-
tions and Pseudorandom Generators, for which the ability to
hide satisfiability is essential. In sharp contrast, the original
SETH is equivalent (due to the sparsification lemma [28, 20])
to the assumption that even representations that are very
low on this spectrum, namely linear size CNF formulas, are
enough to obfuscate satisfiability. While from the viewpoint
of polynomial time solvability, CNF-SAT and NC-SAT are
equivalent, this is not the case from a more fine-grained per-
spective: an algorithm that can decide satisfiability of arbi-
trary polynomial size circuits faster than exhaustive search
is far more remarkable than a similar algorithm that can
handle only linear size CNF formulas.

As our class C gets more complex and rich, the C-SETH
becomes more credible and appealing as a basis for con-
ditional lower bounds than SETH. However, all previous
SETH lower bound proofs relied heavily on the simple na-
ture of CNFs. In this work, we prove the first lower bounds
under the much more reliable C-SETH, for classes C that are
far more expressive than CNFs.

Our results.
Our main result is a new efficient reduction from SAT

on super-polynomial size nondeterministic Branching Pro-
grams (BPs) to Edit-Distance, LCS and many other impor-
tant problems in P. As we discuss below, BPs are vastly
more expressive than CNFs. For example, our reduction al-
lows us to tightly reduce SAT on arbitrary polynomial size
NC circuits to problems in P. Thus, we are able to replace
SETH with NC-SETH, and derive far more remarkable con-
sequences from truly subquadratic algorithms for Edit Dis-
tance and LCS. Moreover, we show that any problem for
which the general framework of Bringmann and Künnemann
is capable of showing an n2−o(1) SETH lower bound, will suf-
fer from the much stronger NC-SETH hardness barrier. In
fact, we are able to show reductions even to problems that
fall outside their framework, like LCS on k sequences, a clas-
sical problem in parameterized complexity with an O(nk)
algorithm [16, 34, 2].

BPs are a popular non-uniform model of computation [11].
Roughly speaking, a nondeterministic Branching Program
on n input variables of width W and length T is a layered
directed graph on T layers, each layer having W nodes, such
that every edge is labelled with a constraint of the form
(xi = b) where xi is an input variable, and b ∈ {0, 1}. Note
that typically T � n and each node appears on many edges.
One of the nodes in the first layer is marked as the start node,
and one of the nodes in the last layer is marked as the accept
node. For an input x ∈ {0, 1}n let Gx be the subgraph of
edges whose constraints are satisfied by x. We say that the
BP accepts the input x iff the accept node is reachable from
the start node in Gx. The size of a BP is the total number
of edges, i.e. O(W 2T). We refer to Section 2 for additional
details about branching programs. Even when the width
is constant, BPs are surprisingly expressive: Barrington’s
Theorem states that any fan-in 2, depth d circuit can be
converted into an equivalent BP of width 5 and size 4d, over
the same set of inputs [14]. Therefore, any circuit with fan-in
2 of polylog depth of any size (in particular, NC circuits) can
be expressed as a BP of length 2polylogn and constant width.
Our reduction shows that truly subquadratic Edit Distance
would imply a (2− δ)n algorithm for SAT of constant-width

2o(n)-length BPs.

Theorem 2. There is a reduction from SAT on nonde-
terministic branching programs on n variables, length T , and
width W , to an instance of Edit-Distance or LCS on two
binary sequences of length N = 2n/2 · TO(logW), and the
reduction runs in O(N) time.

Besides the constant width case, another interesting set-

ting is where W and T are both 2o(
√
n), which corresponds

to BPs that can represent any nondeterministic Turing ma-
chine that uses o(

√
n) space [11]. Thus, truly subquadratic

Edit Distance or LCS would allow us to get an exponen-
tial improvement over exhaustive search for checking SAT
of complex objects that can easily implement cryptographic
primitives, and many of our favorite algorithms. This would
be much more surprising than a faster SAT algorithm on
linear size CNFs (as in SETH). To support this, we point
at a few strong circuit lower bounds that would follow from
such an algorithm.

If we assume that Edit-Distance or LCS can be solved in
truly subquadratic time, then (among other things) Theo-

rem 2 implies O(2n−εn/2) time algorithms for SAT on arbi-

trary formulas of size 2o(n) and for SAT on nondeterminis-

tic branching programs of size 2o(
√
n). Combining this with

connections between faster SAT algorithms and circuit lower
bounds from prior work (see the full version [4] for formal
statements and a sketch of the proof), we obtain the follow-
ing circuit lower bound consequences.

Corollary 1. If Edit Distance or LCS on two binary
sequences of length N is in O(N2−ε) time for some ε > 0,
then the complexity class ENP does not have:

1. non-uniform 2o(n)-size Boolean formulas,

2. non-uniform o(n)-depth circuits of bounded fan-in, and

3. non-uniform 2o(n
1/2)-size nondeterministic branching

programs.

Furthermore, NTIME[2O(n)] is not in non-uniform NC.

The above lower bound consequences are far stronger than
any state of the art. The first consequence is interesting due
to the rarity of 2Ω(n) circuit lower bounds: it is still open
whether the humongous class Σ2EXP has 2o(n) size depth-
three circuits. The third consequence is interesting because
it yields an exponential lower bound for arbitrary nondeter-
ministic BPs; this model is vastly bigger than NL/poly. The
fourth is interesting because the lower bound holds for the
smaller class NTIME[2O(n)]. These consequences are on a
different scale compared to the ones obtained from refuting
SETH, and therefore the “circuit lower bounds barrier” for
faster Edit Distance is much stronger.

Our first corollary was a strict improvement over the pre-
viously known SETH lower bounds, in terms of the signifi-
cance of the consequences. Next, we show that our reduc-
tion allows us to derive consequences even from mildly sub-
quadratic algorithms, a feature that did not exist in the
previous conditional lower bounds in P.

Given the status of Edit-Distance and LCS as core com-
puter science problems, any asymptotic improvement over
the longstanding O(n2/ log2 n) upper bound is highly de-
sirable. Recent algorithmic techniques were able to beat
similar longstanding bounds for other core problems like
All Pairs Shortest Path (APSP) [41, 23], 3-SUM [30], and
Boolean Matrix Multiplication[13, 22, 43]. For example, the
polynomial method [41] has allowed for superpolylogarithmic
shavings for APSP, and more recently to two other prob-
lems that are more closely related to ours, namely Longest
Common Substring [9], and Hamming Nearest Neighbors
[10]. A natural open question [41, 9, 10] is whether these

techniques can lead to an n2/ logω(1) n algorithm for Edit-
Distance as well. The lower bound of Backurs and Indyk
is not sufficient to address this question, and only a much
faster n2/2ω(logn/ log logn) would have been required to im-
prove the current CNF-SAT algorithms. Our approach of
considering C-SETH for more expressive classes C allows us
to prove strong“circuit lower bounds barriers”even for shav-
ing log factors.

Any formula of size O(nf) can be transformed into an
equivalent BP of width 5 and size O(n8f) (first rebalance
into a formula of depth 4f logn [37] and then use Barring-
ton’s Theorem [14]). Applying Theorem 1 to the resulting

BPs, we get LCS instances of size N = O(2n/2 · n8fd), for
some constant d ≤ 25 (the constant depends on the problem
and the alphabet size). Shaving an Ω((logN)8fd+f+10) fac-
tor would translate into an O(2n/(n10 · nf)) algorithm for
SAT of formulas of size O(nf). Thus, we get that if LCS
can be solved in O(n2/ log1000 n) time, then SAT on formu-
las of size O(n5) can be solved in O(2n/n15) time, which
would imply that ENP does not have such formulas. We
obtain that solving Edit-Distance or LCS in n2/ logω(1) n
time still implies a major circuit lower bound, namely that
NTIME[2O(n)] is not in non-uniform NC1.

Corollary 2. If Edit Distance or LCS on two binary
sequences of length N can be solved in O(n2/ logc n) time for

every c > 0, then NTIME[2O(n)] does not have non-uniform
polynomial-size log-depth circuits.

It is likely that these connections could be sharpened even
further and that similar consequences can be derived even
from shaving fewer log factors. Some inefficiencies in these
connections are due to constructions of certain gadgets in

our proofs, while others come from the framework for ob-
taining circuit lower bounds from faster SAT algorithms,
and the reductions from circuits to BPs.

One striking interpretation of these corollaries is that when
an undergraduate student learns the simple dynamic pro-
gramming algorithms for Edit-Distance or Longest Common
Subsequence and wonders whether there is a faster algo-
rithm, he or she is implicitly trying to resolve very difficult
open questions in complexity theory.

Technical remarks.
All known SETH lower bound proofs for problems in P

have relied as a first step on a reduction [39] to the fol-
lowing Orthogonal Vectors (OV) problem: given a set of n
boolean vectors S ⊆ {0, 1}d of dimension d = ω(logn), does
there exist a pair a, b ∈ S such that for all j ∈ [d] we have
(a[j] = 0) or (b[j] = 0), i.e. the vectors are orthogonal or
“disjoint”. If OV can be solved in O(n2−ε) time, then CNF-

SAT can be solved in O(2(1−ε/2)n) time. It is important
to notice that reductions in the direction are not known,
i.e. refuting SETH is not known to imply subquadratic al-
gorithms for some hard quadratic-time problems. There-
fore, lower bounds under the assumption that OV requires
n2−o(1) time are more reliable than SETH lower bounds.
However, the above weaknesses of SETH apply to OV as
well: a much harder problem is the C-Satisfying-Pair prob-
lem, where instead of searching for an orthogonal pair of
vectors, we ask for a pair of vectors that (together) satisfy
a certain function that can be represented in more complex
ways than an orthogonality check. Again, there is a spec-
trum of increasing expressiveness, and OV is quite low on
it. Indeed, we have no idea how to solve the NC-Satisfying-
Pair problem in O(n2/ log3 n) time (it would readily imply
faster NC-SAT algorithms), while for OV the current upper

bound n2−1/O(log (d/ logn)) is barely not truly subquadratic.
All the reductions in this paper (except for the k-LCS proof,
which has been deferred to the full version [4]) are via a cer-
tain Branching-Program-Satisfying-Pair problem, which can
be solved in quadratic time, while faster algorithms would
be very surprising and imply all the aforementioned conse-
quences.

Previous SETH lower bound proofs, when stripped of all
the gadgetry, are rather simple, due to the simplicity of
the OV problem (which, in turn, is due to the simplicity
of CNFs). Each vector is represented by some vector gad-
get, so that two gadgets “align well” if and only if the vec-
tors are good (in this case, orthogonal), and then all the
gadgets are combined so that the “total score” reflects the
existence of a good pair. Vector gadgets that are capable of
checking orthogonality can be constructed in natural ways
by concatenating coordinate gadgets that have straightfor-
ward functionality (checking that not both coordinates are
1), which in turn can be constructed via certain atomic se-
quences of constant size. We observe that these reductions
do not exhaust the expressive capabilities of problems like
Edit Distance and LCS.

Our new reductions follow this same scheme, except that
the functionality of the vector gadgets is no longer so simple.
Our main technical contribution is the construction of cer-
tain reachability gadgets, from which our vector gadgets are
constructed. These gadgets are capable of checking reacha-
bility between two nodes in a subgraph (e.g. ustart and uacc)
of a graph (the branching program) that is obtained from

two given vectors. These gadgets exhibit the ability of se-
quence similarity measures to execute nontrivial algorithmic
tasks. Our reduction can be viewed as encoding of graphs
into two sequences such that the optimal LCS must implic-
itly execute the classical small-space algorithm for directed
reachability of Savitch’s Theorem [36].

Previous work on better hypotheses.
Finding more reliable hypotheses (than SETH, 3-SUM,

APSP, etc) that can serve as an alternative basis for the
“hardness in P” is an important goal. Previous progress to-
wards this end was achieved by Abboud, Vassilevska Williams,
and Yu [8] where the authors prove tight lower bounds for
various graph problems under the hypothesis that at least
one of the SETH, APSP, and 3-SUM conjectures is true.
The C-SETH hypothesis (say, for C = NC) that we consider
in this work is incomparable in strength to theirs, yet it has
certain advantages. First, the known connections between
faster SAT algorithms and circuit lower bounds allow us to
point at remarkable consequences of refuting our hypothe-
sis, which is not known for any of the previous conjectures.
Second, it allows us to show barriers even for mildly sub-
quadratic algorithms. And third, it allows us to explain the
barriers for many problems like Edit Distance and LCS for
which a lower bound under 3-SUM or APSP is not known
(unless the alphabet size is near-linear [7]).

Organization of the paper.
The rest of the paper is organized as follows. In Section 2

we define the SAT problem on Branching Programs (BP-
SAT), and briefly describe how it is used as the source of
our reductions. In Section 3 we give a direct and simplified
reduction from BP-SAT to LCS. We present the framework
of Bringmann and Künnemann [18] in Section 4, along with
a sketch of our full reduction. We then present the details
of the full reduction in Section 5. The full reduction also
applies to LCS, and is more efficient than the simplified re-
duction from Section 3. Due to lack of space, many of the
details are deferred to the full version of the paper [4].

2. SATISFIABILITY OF BRANCHING PRO-
GRAMS

In this section we define the SAT problem on Branch-
ing Programs (BP-SAT), which we later reduce to various
sequence-problems such as Edit Distance and LCS.

A nondeterministic Branching Program (BP) of length T
and width W on n boolean inputs x1, . . . , xn is a layered
directed graph P with T layers L1, . . . , LT . The nodes of P
have the form (i, j) where i ∈ [T] is the layer number and
j ∈ [W] is the index of the node inside the layer. The node
ustart = (1, 1) is called the starting node of the program, and
the node uacc = (T, 1) is the accepting node of the program.
For all layers i < T except the last one: all nodes in Li
are marked with the same variable x(i) = xf(i), and each
node has an arbitrary number of outgoing edges, each edge
marked with 0 or 1. Note that typically T � n and each
variable appears in many layers.

An evaluation of a branching program P on an input
x1, . . . , xn ∈ {0, 1} is a path that starts at ustart and then
(nondeterministically) follows an edge out of the current
node: if the node is in layer Li we check the value of the cor-
responding variable xf(i), denote it by η ∈ {0, 1}, and then

we follow one of the outgoing edges marked with η. The BP
accepts the input iff the evaluation path ends in uacc. That
is, each input restricts the set of edges that can be taken,
and the BP accepts an input iff there is a path from ustart
to uacc in the subgraph induced by the input.

Definition 1 (BP-SAT). Given a Branching Program
P on n boolean inputs, decide if there is an assignment to
the variables that makes P accept.

To reduce BP-SAT to a sequence-problem we go through
the following problem: Let X1 = {x1, . . . , xn/2} and X2 =
{xn/2+1, . . . , xn} be the first and last half of the inputs to
the branching program, respectively. Do there exist a ∈
{0, 1}n/2 and b ∈ {0, 1}n/2, such that when viewed as partial
assignments to X1 and X2, respectively, together they form
an accepting input to the branching program? This prob-
lem is clearly just a reformulation of BP-SAT. Our reduc-
tions also work, however, when a and b are restricted to two
given sets of vectors S1, S2 ⊆ {0, 1}n/2, i.e., we ask whether
there exists an accepting pair (a, b) ∈ S1 × S2. We refer
to this problem as the satisfying pair problem on branching
programs (or BP-SAT-Pair). Proving a reduction from this
more general problem corresponds to proving a reduction
from the orthogonal vectors problem (OV) to get a SETH-
based lower bound (see [39]). To simplify the presentation

we assume, however, that S1 = S2 = {0, 1}n/2.
Our reductions construct for each partial assignment a ∈

S1 and b ∈ S2, respectively, a sequence whose length de-
pends on the branching program. When the branching pro-
gram is not too large these sequences have length at most
2o(n). The sequences from S1 are combined into one long
sequence of length N = 2(1/2+o(1))n, and the same is done
for S2. We then show that solving, e.g., the longest common
subsequence problem on these two strings of length N de-
cides whether the original branching program is satisfiable,
and gives us a satisfying assignment if possible. This estab-
lishes a connection between BP-SAT, which is solvable in
exponential time, and sequence-problems that are solvable
in quadratic time.

3. A SIMPLIFIED REDUCTION TO LON-
GEST COMMON SUBSEQUENCE

Given two strings of N symbols over some alphabet Σ,
the longest common subsequence (LCS) problem asks for the
length of the longest sequence that appears as a subsequence
in both strings. For two strings a, b, we let LCS(a, b) denote
the length of the longest common subsequence of a and b.
In this section we present a reduction from BP-SAT to LCS,
proving the following theorem. To simplify the presentation
we give a less efficient reduction that uses |Σ| = O(W log T)
symbols for branching programs of width W and length T .
We refer to sections 4 and 5 for a more efficient reduction
with |Σ| = 2, that is based on the framework of Bringmann
and Künnemann [18].

Theorem 3. There is a constant c such that if LCS can
be solved in time S(N), then BP-SAT on n variables and
programs of length T and width W can be solved in time
S(2n/2 · T c logW).

Abboud et al. [2] gave a similar reduction from CNF-SAT
to LCS, or more precisely from orthogonal vectors (OV) to

LCS. As a first step they reduced OV to the following prob-
lem of finding a pair of strings with a long common subse-
quence, which we refer to as the LCS-Pair problem.

Definition 2 (LCS-Pair). Let Y be a given integer,
and let S1, S2 ⊆ ΣL be two given sets of strings of length L
such that LCS(a, b) ≤ Y for every a ∈ S1 and b ∈ S2. The
LCS-Pair problem asks if there is a pair (a, b) ∈ S1×S2 with
LCS(a, b) = Y ?

Abboud et al. then reduced the LCS-Pair problem to LCS
by proving the following lemma. The proof of the lemma
uses normalized vector gadgets similar to those used in the
reduction by Backurs and Indyk [12] from OV to Edit Dis-
tance. We sketch the proof in Section 4 in the context of
Bringmann and Künnemann’s framework [18], and give a
formal proof of a corresponding lemma in Section 5.

Lemma 1 ([2]). Let (S1, S2, Y) be an LCS-Pair prob-
lem with |S1| = |S2| = M . Then one can construct two
strings A,B of length M · poly(L), where L is the length of
the strings from S1 and S2, such that for an integer E,

• LCS(A,B) = E if there exists a pair (a, b) ∈ S1 × S2

with LCS(a, b) = Y , and

• LCS(A,B) ≤ E − 1 otherwise.

To reduce BP-SAT to LCS we first apply the trivial re-
duction from Section 2 from BP-SAT to the satisfying pair
problem on branching programs (BP-SAT-Pair). We then
reduce BP-SAT-Pair to LCS-Pair, and use the reduction
from Lemma 1 to complete the proof of Theorem 3.

It should be noted that the main challenge for Abboud et
al. [2] was to prove Lemma 1, whereas the reduction from OV
to LCS-Pair was nearly trivial. Moreover, this is a common
phenomenon for SETH-based lower bounds. In our case
the main challenge was, however, to reduce BP-SAT-Pair to
LCS-Pair. This indicates that previous SETH-based lower
bounds, unlike our new reduction, do not fully exploit the
strength of the problems in question.

We next describe our reduction from BP-SAT-Pair to LCS-
Pair. Let P be a given branching program on n boolean in-
puts, and let F be the corresponding function. Furthermore,
let X1 = {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} be the
first and last half of the inputs to F , respectively. For two
partial assignments a and b in {0, 1}n/2, we use the notation
a � b to denote concatenation, forming a complete assign-
ment. We must decide whether there exist a, b ∈ {0, 1}n/2
such that F (a� b) = 1.

The reduction maps each partial assignment a ∈ {0, 1}n/2
for the first half of the input to a string G(a), and each par-

tial assignment b ∈ {0, 1}n/2 for the second half of the input
to another string G(b). We refer to G and G as sequence
gadgets. The strings G(a) and G(b) are constructed such
that

• LCS(G(a), G(b)) = Y if F (a� b) = 1, and

• LCS(G(a), G(b)) ≤ Y − 1 otherwise,

where Y is a known integer that depends on the width W
and length T of the branching program, but not on a and b.
Solving LCS for G(a) and G(b) can therefore be viewed as

evaluating F (a � b). To complete the reduction we simply
construct the two sets:

S1 = {G(a) | a ∈ {0, 1}n/2}

S2 = {G(b) | b ∈ {0, 1}n/2}

It follows that the branching program has a satisfying as-
signment if and only if the LCS-Pair problem (S1, S2, Y)
has a pair of strings (a, b) ∈ S1 × S2 with LCS(a, b) = Y .

Armed with Lemma 1, we see that in order to prove The-
orem 3, it suffices to create sequence gadgets G and G of
length TO(logW) such that for some Y , LCS(G(a), G(b)) =
Y if on input a� b, the starting state of the branching pro-
gram reaches the accepting state, and LCS(G(a), G(b)) ≤
Y − 1 otherwise. For the remainder of the section we there-
fore let a, b ∈ {0, 1}n/2 be fixed. Note, however, that we
must construct G(a) and G(b) independently.

To construct G(a) and G(b) we follow an inductive ap-
proach, mimicking Savitch’s theorem [36]. Since a and b
are fixed, G(a) and G(b) represent the corresponding sub-
sets of edges of the given branching program P , and the
goal is to decide if there is a directed path from ustart to
uacc in the resulting graph. Such a path must go through
some node in the middle layer, and if we can guess which
node then we can split P into two branching programs of
half the length and evaluate each part recursively. We use
reachability gadgets to implement this decomposition, and
an LCS algorithm must then make the correct guess to find
the longest common subsequence.

Before describing our reachability gadgets we first intro-
duce the use of weighted symbols.

Weighted LCS.
To simplify the proof we will work with the following

generalized version of LCS in which each letter in the al-
phabet can have a different weight. For two sequences P1

and P2 of length N over an alphabet Σ and a weight func-
tion w : Σ → [K], let X be the sequence that appears in
both P1, P2 as a subsequence and maximizes the expression

w(X) =
∑|X|
i=1 w(X[i]). We say that X is the Weighted

Longest Common Subsequence (WLCS) of P1, P2 and write
WLCS(P1, P2) = w(X). The WLCS problem asks us to
output WLCS(P1, P2).

Note that a common subsequence X of two sequences
P1, P2 can be thought of as an alignment or a matching

A = {(ai, bi)}|X|i=1, where ai, bi ∈ N are indices, between the
two sequences, so that for all i ∈ [|X|] : P1[ai] = P2[bi],
and a1 < · · · < a|X| and b1 < · · · < b|X|. Clearly, the

weight
∑|X|
i=1 w(P1[ai]) =

∑|X|
i=1 w(P2[bi]) of the matching A

corresponds to the weighted length w(X) of the common
subsequence X.

Abboud et al. [2] showed a simple reduction from WLCS
on length N sequences over an alphabet Σ with largest
weight K to LCS on (unweighted) sequences of length N ·K
over the same alphabet. The reduction simply copies each
symbol ` ∈ Σ in each of the sequences w(`) times and then
treats the sequences as unweighted. Abboud et al. showed
that the optimal solution is preserved under this reduction.

For a sequence over a weighted alphabet Σ we define the
total length of the sequence to be the sum of the weights of
all symbols in this sequence. Note that this is the real length
of the unweighted sequence that we obtain after applying the
reduction from WLCS to LCS.

Reachability gadgets.
Let P be the given branching program of length T and

width W , and assume for simplicity that T = 2t + 1 for
some t ≥ 0. Recall that the input a � b is fixed, and that
our goal is to decide whether there is a directed path from
ustart to uacc, which we do recursively by finding paths to
and from the middle layer. Let therefore u ∈ Li and v ∈ Lj
be two nodes in layers that are at distance j − i = 2k from
each other. Furthermore, let Yk be some integer that will be
specified later as a function of W and k. We refer to Yk as
a threshold.

The main component in our reduction are recursive con-
structions of two kinds of reachability gadgets RGu→vk (a) and
RG

u→v
k (b), with the following very useful property.

• LCS(RGu→vk (a),RG
u→v
k (b)) = Yk if on input a�b, one

can reach v from u in 2k steps, and

• LCS(RGu→vk (a),RG
u→v
k (b)) ≤ Yk − 1 otherwise.

Since F (a�b) = 1 if and only if uacc is reachable from ustart,
we define our sequence gadgets as:

G(a) = RGustart→uacct (a)

G(b) = RG
ustart→uacc
t (b)

To complete the proof we show that the total length Zk
of RGu→vk (a) and RG

u→v
k (b), respectively, is upper bounded

by W ck for some constant c. G(a) and G(b) therefore have

length TO(logW), and when we apply Lemma 1 we obtain
two strings of length 2n/2 · TO(logW) as desired.

We next show how to inductively construct such gadgets
and upper bound their lengths.

Base Case: k = 0.
Let u ∈ Li and v ∈ Li+1 be two nodes in adjacent layers.

Then u can reach v if and only if the edge (u, v) is present,
which requires (u, v) to be part of the branching program,
and the input variable x(i) = xf(i) for layer i to match the
boolean value associated with (u, v).

Recall that a is an assignment to the variables X1 =
{x1, . . . , xn/2}, and that b is an assignment to the variables
X2 = {xn/2+1, . . . , xn}. Let e, $1, and $2 be letters in the
alphabet Σ with weight w(e) = w($1) = w($2) = 1. For the
base case we define:

RGu→v0 (a) =

{
e if (u, v) is present or x(i) ∈ X2

$1 otherwise

RG
u→v
0 (b) =

{
e if (u, v) is present or x(i) ∈ X1

$2 otherwise

Note that WLCS(RGu→v0 (a), RG
u→v
0 (b)) is 1 if (u, v) is

present and 0 otherwise. Indeed, if (u, v) is present then
both strings consist of the single letter e, and otherwise one
of the strings will be $1 or $2. The gadgets therefore have
threshold Y0 = 1 and length Z0 = 1. (The letters $1 and
$2 will in fact only appear in their respective sequences and
can therefore alternatively be viewed as empty strings.)

Inductive step: k > 0.
Let now u ∈ Li and v ∈ Lj be two nodes at distance

j− i = 2k from each other, and let Lh = {y1, y2, . . . , yW } be
the nodes in layer h = i+j

2
, halfway between i and j. Any

path from u to v must pass through some y ∈ Lh. Let u; v
denote that v is reachable from u. We therefore have:

u; v ⇐⇒ OR


u; y1 AND y1 ; v

u; y2 AND y2 ; v

· · ·
u; yW AND yW ; v

The reachability gadgets will be similarly composed of AND
and OR gadgets.

AND gadget.
By recursion, each reachability expression, e.g., u; y1 is

mapped to a pair of strings (RGu→y1k−1 (a), RG
u→y1
k−1 (b)), such

that

• WLCS(RGu→y1k−1 (a), RG
u→y1
k−1 (b)) = Yk−1 if y1 is reach-

able from u, and

• WLCS(RGu→y1k−1 (a), RG
u→y1
k−1 (b)) < Yk−1 otherwise.

The purpose of the AND gadget is to combine two pairs of
strings corresponding to u ; y1 and y1 ; v into a single
pair that corresponds to u ; y1 ; v, i.e., the new pair
should share a long subsequence iff there is a path from u to
v through y1. As the following lemma shows, this is obtained
with a simple concatenation operation and the use of a new,
heavy letter.

Lemma 2. Let (a1, b1) and (a2, b2) be two pairs of strings
where each string has weight Z. Let & be a letter with weight
w(&) = 2Z that does not appear in a1, b1, a2, b2. Assume
that s1 := WLCS(a1, b1) ≤ Y and s2 := WLCS(a2, b2) ≤
Y . Then:

WLCS(a1&a2, b1&b2) = 2Y + 2Z if s1 = s2 = Y

WLCS(a1&a2, b1&b2) < 2Y + 2Z otherwise

Proof. The letter & must be matched in a longest com-
mon subsequence of a1&a2 and b1&b2 since it makes up half
the weight of the strings. The lemma then easily follows from
the fact that WLCS(a1&a2, b1&b2) = s1 + w(&) + s2.

OR gadget.
The OR gadget is significantly more involved. In this

case we wish to combine W pairs of strings corresponding
to u ; y1 ; v, u ; y2 ; v, . . . , u ; yW ; v into a
single pair of strings corresponding to u ; v. The new
pair of strings should share a long subsequence iff one of the
original W pairs shared a long subsequence.

Let therefore (a1, b1), (a2, b2), . . . , (aW , bW) be W pairs of
strings where each string has weight Z, and assume that
s` := WLCS(a`, b`) ≤ Y for all ` ∈ [W] = {1, . . . ,W}.
Furthermore, let % and # be two new letters with weight
w(%) = w(#) = 2Z, and let c`, for ` ∈ [W], be ` new letters
with weight w(c`) = Z. We then define two new strings as
follows, where %W means that % is copied W times:

OR(a1, . . . , aW) = %W

 ⋃
`∈[W]

a`c`#

%W

OR(b1, . . . , bW) =
⋃

`∈[W]

#W b`c`#
W%

The following is an example of A = OR(a1, a2, a3) and
B = OR(b1, b2, b3). Note that A is shorter than B. To
make the length of A match the length of B we add an
appropriate number of $1 letters (from the base case) to A.

A = %%%a1c1#a2c2#a3c3#%%%

B = ###b1c1###%###b2c2###%###b3c3###%

Lemma 3. Let the two strings A = OR(a1, . . . , aW) and
B = OR(b1, . . . , bW) be defined as above. Then:

WLCS(A,B) = 4WZ + Z + Y if s` = Y for some `

WLCS(A,B) < 4WZ + Z + Y otherwise

Proof. Observe first that A contains W of the letters #,
and that B contains W of the letters %. It is always possible
to match these letters, which gives a total weight of 4WZ.
The remaining # and % letters can never be matched. We
start by showing that this many # and % letters must be
matched in some longest common subsequence.

Claim 1. In some optimal WLCS, all % letters in B are
matched to % letters in A.

Suppose for the sake of contradiction that there is no
longest common subsequence where all % in B are matched.
Each % can be matched either to the left or the right part of
A, and these matchings cannot cross. In particular there is
some ` such that % letters to the left of b` are only matched
to the left part of A, and % letters to the right of b` are only
matched to the right part of A. Suppose some % to the left
of b` is unmatched. (The argument is analogous when the
unmatched % is to the right of b`.) Consider in particular
the first unmatched % in B. Matching this letter to the left
part of A adds a weight of 2Z to the matching, but removes
all matched letters until the previous % letter in B. Any
lost # letters can however be recovered by being matched
to the W copies of # that appear immediately after the
newly matched % in B. Hence, the total loss is at most 2Z
and comes from the a string and the c letter. This process
can be repeated until all % letters in B are matched, which
gives a contradiction.

Claim 2. In some optimal WLCS, all # letters in A are
matched to # letters in B.

The proof of Claim 2 is essentially the same as the proof
of Claim 1. Since we may assume that all % letters in B are
matched, the only remaining part of B that can be matched
to A is some substring of the form B′ = #W b`c`#

W . Here
the # letters again only appear to the left and to the right,
whereas in A they separate the string into substrings of
weight 2Z. We therefore again observe that there is some in-
dex m such that # letters to the left of am are only matched
to the left part of B′, and # letters to the right of am are
only matched to the right part of B′. The rest of the argu-
ment is the same as for Claim 1.

To complete the proof of Lemma 3 we observe that we may
assume that the indices ` and m from the proofs of Claim 1
and Claim 2 are the same. Indeed, when the maximum
number of % and # letters are matched, the only remaining
contribution to the WLCS must come from some pair of
substrings amcm and b`c`. Moreover, the c letters can only
be matched when ` = m, and they make up half of the

weight of the substrings. We may therefore assume that
` = m, which means that WLCS(A,B) = 4WZ + w(c`) +
WLCS(a`, b`). Since w(c`) = Z and the index ` can be
chosen freely from [W], this completes the proof.

Combining AND and OR gadgets.
To complete the inductive step it remains to combine the

AND and OR gadgets and thereby define the reachability
gadgets. We do so now:

RGu→vk (a) = OR(RGu→y1k−1 (a)&RGy1→vk−1 (a),

. . . ,

RGu→yWk−1 (a)&RGyW→vk−1 (a))

RG
u→v
k (b) = OR(RG

u→y1
k−1 (b)&RG

y1→v
k−1 (b),

. . . ,

RG
u→yW
k−1 (b)&RG

yW→v
k−1 (b))

Recall that Zk−1 is the length of, e.g., RGu→y1k−1 (a) and

RG
u→y1
k−1 (b). Applying the AND gadget increases the length

by a factor of 4, and applying the OR gadget increases the
length by a factor of 4W (W+1). It follows that the length of
RGu→vk (a) and RG

u→v
k (b) is Zk = 16W (W + 1)Zk−1. Since

Z0 = 1 we therefore get that Zk = (16W (W +1))k, and that

Zt = (16W (W + 1))t = TO(logW) as desired.
Recall also that Yk−1 is the threshold for, e.g., RGu→y1k−1 (a)

and RG
u→y1
k−1 (b). Applying the AND gadget increases the

threshold to Y ′ = 2Yk−1 + 2Zk−1, and applying the OR
gadget further increases the threshold to Yk = 16WZk−1 +
4Zk−1 + Y ′ = 16WZk−1 + 6Zk−1 + 2Yk−1. (Note that the
constants are larger than those appearing in Lemma 3 be-
cause applying the AND gadget multiplied the length by 4.)
We therefore see that Yk is expressed only as a function of
W and k as desired.

The correctness of the inductive step follows from Lemma 2
and Lemma 3. Indeed, the two strings generated by the
OR gadget in Lemma 3 have a common subsequence with
length that matches the threshold Yk iff one of the pairs of
strings generated by AND gadgets in Lemma 2 can match
the threshold Y ′ = 2Yk−1 + 2Zk−1, which by the induction
hypothesis happens iff there is a directed path from u to v.

Finally, we note that each level of the recursion adds an-
other W + 3 new letters to the alphabet. (1 for the AND
gadget and W + 2 for the OR gadget.) The total number of
letters used is thus O(W log T).

4. SEQUENCE PROBLEMS WITH ALIGN-
MENT GADGETS

Bringmann and Künnemann [18] introduced a framework
for showing SETH lower bounds for problems that compute
a similarity measure of two sequences of, e.g., bits, symbols,
or points. They showed that any sequence-problem that
implements so-called alignment gadgets cannot be solved in
truly subquadratic time under SETH. We show that align-
ment gadgets are actually much stronger. So strong, in
fact, that they can simulate nondeterministic branching pro-
grams. It follows that Edit-Distance, Longest Common Sub-
sequence (LCS), Dynamic Time Warping Distance, and ev-
ery other problem that implements alignment gadgets can
solve SAT on nondeterministic branching programs. This

proves our main result, Theorem 2. We start here with a
sketch of the proof, and then provide the details in Section 5.

A similarity measure δ is a function that measures the sim-
ilarity, e.g., Edit-Distance or LCS, of two given sequences A
and B. Suppose |A| ≥ |B|. A structured alignment maps
B to a consecutive subsequence A′ of A, and the cost of
the alignment is δ(A′, B). Note that the alignment does
not correspond to, e.g., a common subsequence. Instead the
alignment restricts the similarity measure to only work with
A′ and B. An alignment gadget is a gadget that takes two
collections of sequences and combines each collection into
a single sequence such that the minimum cost of a struc-
tured alignment closely approximates (within an additive
constant) the similarity measure of the two constructed se-
quences. An alignment gadget can thus be interpreted as a
way of forcing the similarity measure to respect the struc-
ture of the two collections of sequences. Alignment gadgets
are then combined recursively in order to obtain a reduction.
We next sketch how this is done for branching programs.

Let P be a given branching program on n boolean in-
puts, and let F be the corresponding function. To prove a
reduction from BP-SAT to a sequence-problem with align-
ment gadgets we again go through the satisfying pair prob-
lem on branching programs (see Section 2). Let therefore
X1 = {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} be the first
and last half of the inputs to the branching program, respec-
tively. We must decide whether there exist a, b ∈ {0, 1}n/2
such that F (a� b) = 1, where a� b is the concatenation of
a and b.

Our reduction uses alignment gadgets to construct for
each a ∈ {0, 1}n/2 a sequenceG(a), and for each b ∈ {0, 1}n/2
another sequence G(b). These sequences are constructed
such that their similarity measure is δ(G(a), G(b)) = Y , for
some integer Y , if F (a�b) = 1; and such that δ(G(a), G(b)) ≥
Y + ρ otherwise, where ρ > 0 is the same for all a and b. In
previous reductions from OV the construction of G(a) and
G(b) was nearly trivial, but as in Section 3 it is now the
main challenge when proving our reduction.

Once we have constructed G(a) and G(b) for all a, b ∈
{0, 1}n/2, we combine them into two sequences that will be
the output of the reduction. This step is almost identical
to a corresponding step in the reduction by Backurs and In-
dyk [12] from orthogonal vectors to Edit-Distance, and later
by Abboud et al. [2] to LCS, and by Bringmann and Kün-
nemann [18] to sequence-problems with alignment gadgets.

If there exist ai, bj ∈ {0, 1}n/2 with F (ai � bj) = 1, then
the goal is to make the structured alignment match G(ai)
and G(bj). It is therefore tempting to apply the alignment
gadget to A = (G(a1), . . . , G(aN), G(a1), . . . , G(aN)) and

B = (G(b1), . . . , G(bN)), where N = 2n/2, since we can then
freely map B to a consecutive subsequence of A such that
G(bj) maps to G(ai). The contribution to the similarity
measure from this pair would then be Y , but unfortunately
we have no control over the rest of the sequence. To finish
the proof we therefore need one more idea: the normalized
vector gadget. We put a dummy sequence next to every
subsequence in A, such that sequences in B always have
the option of mapping to dummy sequences, thereby con-
tributing Y + ρ to the similarity measure. (The alignment
gadgets framework allows gadgets of different types that are
implicitly padded to some specified length. This is used
to handle the technicality that, e.g., the length of subse-
quences in B no longer correctly match those in A.) We

finally get that if F evaluates to 1 for a pair of inputs then
δ(A,B) ≤ N(Y +ρ)−ρ, and otherwise δ(A,B) = N(Y +ρ).
This completes the reduction.

How to simulate branching programs.
The construction of G(a) and G(b) is essentially the same

as the one given in Section 3. We again mimic the proof of
Savitch’s theorem by implementing the reachability gadgets
recursively with alignment gadgets. At the k-th level of the
recursion we are given two nodes u ∈ Li and v ∈ Lj with
j − i = 2k, and we want to decide if there is a directed path
from u to v. We denote the sequence constructed in this case
for a by RGk,u→vX (a) and for b by RGk,u→vY (b). In particu-

lar G(a) = RGt,ustart→uaccX (a) and G(b) = RGt,ustart→uaccY (b),
where we assume that the branching program has length
T = 2t + 1. (Note that the notation differs slightly from the
notation used in Section 3. The parameters X and Y are
used to determine the types of the sequences, and thereby
their implicit length, but we ignore that aspect here.)

The base case, k = 0, is analogous to the base case in Sec-
tion 3, such that we produce sequences consisting of single
symbols. Such unit sequences are called coordinate values in
the framework of alignment gadgets, and it requires a proof
to show that the problem in question supports them. Bring-
mann and Künnemann [18] provided the relevant proofs for
our purposes.

For k > 0, we use an alignment gadget to pick the node
that the path from u to v passes through. This is again
done as in Section 3. Recall that in Section 3 we inserted
special symbols of large weight between the recursively de-
fined sequences, such that these symbols had to be matched
correctly. We now introduce index gadgets that serve a sim-
ilar function. We also use an OR gadget that is composed
of two alignment gadgets to put things together. In the
end we prove the following technical theorem, which implies
Theorem 2. The conditions for the theorem were proved
by Bringmann and Künnemann [18] for, e.g., Edit-Distance,
LCS, and Dynamic Time Warping.

Theorem 4. Let δ be a similarity measure over sequences
in I admitting an alignment gadget of size f(n) = cn and
coordinate values, and consider the problem of computing
δ(x, y) for sequences x, y ∈ I of length N . SAT of nondeter-
ministic Branching Programs over n variables of width W
and length T can be reduced to an instance of this problem

on sequences where N = O(n · T log2(12W2c3) · c2 · log2 W) =

TO(logW) · n.

4.1 Definitions
We start by defining the building blocks from which we

will implement our reduction. We will prove a generic re-
duction from BP-SAT to a generic problem of computing a
similarity measure δ of two sequences, for any δ that has a
certain property. This property will be the ability to im-
plement alignment gadgets which we define below. The ad-
vantage of this generic proof over a direct proof is that we
can reduce the amount of case-analysis that is required in
the proofs: many steps in the reduction will require similar
functionalities, and this framework allows us to only prove
this functionality once. We will borrow the notation of [18]
and reintroduce their alignment gadgets.

Let δ : I × I → N0 be a similarity measure for a pair
of inputs from I. As a running example it is convenient to

think of I as being all binary sequences of length n and let δ
be the Edit Distance between two sequences. For a sequence
x ∈ I we define its type to be a tuple encoding its length
and the sum of its entries, i.e. type(x) := (|x|,

∑
i x[i]). For

example, if x is a binary sequence, its type encodes its length
|x| and the number of ones in x. For a type t ∈ N×N0 we let
It := {x ∈ I | type(x) = t} be the set of all inputs of type
t. We remark that the exact definition of type will not be
crucial to the framework and for different measures it might
be convenient to use a different definition.

Alignments.
Let 0 ≤ k ≤ m ≤ n. A set A = {(i1, j1), . . . , (ik, jk)} is

called a (partial) alignment if 1 ≤ i1 < . . . < ik ≤ n and
1 ≤ j1 < . . . < jk ≤ m. We say that a pair (i, j) ∈ A
are aligned. Let An,m be the set of all partial alignments
with respect to n,m. A partial alignment of the form {(∆+
1, 1), . . . , (∆+m,m)} for some 0 ≤ ∆ ≤ n−m will be called
a structured alignment, and we will denote the set of all such
alignments by Sn,m ⊆ An,m.

Consider any sequences x1, . . . , xn ∈ I and y1, . . . , ym ∈
I. Let Q = max

i,j
δ(xi, yj) be the maximum distance between

a pair of sequences under our measure δ. We define the cost
of an alignment A ∈ An,m (with respect to our sequences)
by

cost(A) :=
∑

(i,j)∈A

δ(xi, yj) + (m− |A|) ·Q

so that any j ∈ [m] that is not aligned in A will incur the
maximal cost Q.

Alignment Gadget.
Intuitively, an alignment gadget combines two collections

of sequences x1, . . . , xn ∈ I and y1, . . . , ym ∈ I into two sin-
gle sequences X = GA(x1, . . . , xn) and Y = GA(y1, . . . , ym),
while preserving that δ(X,Y) is essentially equal to δ(A),
where A is the optimal structured alignment A ∈ Sn,m with
respect to our sequences. We will be interested in showing
and deriving consequences of the existence of efficient imple-
mentations of such gadgets for a similarity measure δ. The
formal definition introduces additional technicalities which
simplify the proofs of existence of these gadgets consider-
ably.

Definition 3 (Alignment Gadgets). The similarity
measure δ admits an alignment gadget of size f(n), if the
following conditions hold: Given instances x1, . . . , xn ∈ IτX
and y1, . . . , ym ∈ IτY with m ≤ n and types τX = (`X , sX)
and τY = (`Y , sY), we can construct new instances x =
GAm,τYX (x1, . . . , xn) and y = GAn,τXY (y1, . . . , ym) and C ∈ Z
such that:

• min
A∈An,m

cost(A) ≤ δ(x, y)− C ≤ minA∈Sn,m cost(A).

• type(x) and type(y) only depend on n,m, τX , and τY .

• |x|, |y| ≤ f(n) · (`X + `Y).

• This construction runs in O(n(`X + `Y)) time.

The second ingredient that is required in order to imple-
ment a reduction from SAT problems to computing simi-
larity measures are coordinate values which are atomic se-
quences of constant length that we will combine in various
ways with the alignment gadgets.

Definition 4 (Coordinate Values). We say that the
similarity measure δ admits coordinate values if there are
instances 1X ,0X ,1Y ,0Y ∈ I such that:

δ(1X ,1Y) > δ(0X ,1Y) = δ(1X ,0Y) = δ(0X ,0Y)

and type(1X) = type(0X) and type(1Y) = type(0Y).

4.2 OR Gadgets
In our reduction from BP SAT, it will be convenient to

work with an OR gadget, besides an alignment gadget. Next,
we define this gadget and then prove that any similarity
measure δ that can implement alignment gadgets will also
be able to implement OR gadgets (with some loss of effi-
ciency).

Definition 5 (OR Gadgets). The similarity measure
δ admits OR gadgets of size f(n), if the following conditions
hold: Given instances x1, . . . , xn ∈ IτX , y1, . . . , yn ∈ IτY
and types τX = (`X , sX), τY = (`Y , sY), we can construct
new instances

x = ORτYX (x1, . . . , xn)

y = ORτXY (y1, . . . , yn)

and C ∈ Z such that:

• δ(x, y) = C + mini,j∈[n] δ(xi, yj)

• type(x) and type(y) only depend on n, τX , and τY .

• |x|, |y| ≤ f(n) · (`X + `Y).

• This construction runs in O(n(`X + `Y)) time.

By combining two alignment gadgets in a careful way, we
obtain an OR gadget. Note that there is a quadratic blow
up in the size of the gadgets in the following lemma. For
this reason, we will only use OR gadgets when working with
a small number of sequences.

Lemma 4. Any similarity measure δ that admits align-
ment gadgets of size f(n) = c ·n, also admits OR gadgets of
size f ′(n) = c2n2.

Proof. Given instances x1, . . . , xn ∈ IτX and y1, . . . , yn ∈
IτY , and types τX = (`X , sX) and τY = (`Y , sY), we will
construct OR gadgets as follows. First, construct x′ :=
GAτY ,1X (x1, . . . , xn), and construct y′j := GAτX ,nY (yj) for all
j ∈ [n]. Let t′X = type(x′) and t′Y = type(y′j) (and note
that it is independent of j). Then, our final gadgets are

x := GA
t′Y ,n
X (x′) and y := GA

t′X ,1
Y (y′1, . . . , y

′
n).

First, note that type(x) and type(y) only depend on n, τX
and τY . Then, let us bound the lengths of x, y. We know
that |x′|, |y′j | ≤ c · n · (`X + `Y), and therefore |x|, |y| ≤
c · n · (|x′|+ |y′j |) ≤ c2 · n2 · (`X + `Y).

Finally, we prove the correctness. By definition of align-
ment gadgets, we have δ(x′, y′j) = C + mini∈[n] δ(xi, yj) for
all j ∈ [n] and some fixed integer C. Moreover, for some in-
teger C′, we have that δ(x, y) = C′+minj∈[n] δ(x

′, y′j) which
is equal to C′ + C + minj∈[n] mini∈[n] δ(xi, yj).

4.3 Similarity Measures with Alignment Gad-
gets

Bringmann and Künnemann [18] construct alignment gad-
gets for a few fundamental similarity measures. Combining
these gadgets with our main theorem implies significantly
stronger lower bounds for computing these measures. We
list these measures and the corresponding sizes of alignments
gadgets below.

Edit Distance.
The Edit Distance between two sequences x, y is the mini-

mum number of insertions, deletions, and substitutions that
is required to transform one sequence to the other. The most
basic case is when the sequences are binary, that is the set
of instances I is the set of binary sequences {0, 1}n.

Lemma 5 ([18]). There is a constant c ≤ 103 such that
Edit Distance similarity measure over binary sequences ad-
mits an alignment gadget of size f(n) ≤ c · n.

It is likely that smaller alignment gadgets can be obtain
if the alphabet size is larger.

Longest Common Subsequence.
In Section 3 we showed a direct reduction from BP-SAT

to LCS. We will use the alignment gadgets framework in
order to obtain the same reduction but to sequences over
binary inputs. That is, the surprising expressibility of LCS
that is exhibited by our proofs is already present when we
only have two distinct letters to match.

Lemma 6 ([18]). There is a constant c ≤ 103 such that
Longest Common Subsequence similarity measure over bi-
nary sequences admits an alignment gadget of size f(n) ≤
c · n.

Dynamic Time Warping Distance.
The DTWD over curves in various metric spaces is of great

practical interest. We are able to show lower bounds even
in the special case of one-dimensional curves. Let x, y ∈ Zn
be two sequences of n integers. The DTWD δDTWD(x, y)
of the two curves is the minimum cost of a joint traversal
of both curves. A traversal of two curves is a process that
places a marker at the beginning of each curve and during
each step one or both markers are moved forward one point,
until the end of both curves is reached. Each step aligns
two points, one from each curve. The cost of a traversal is
the sum of distances between all aligned points. In our case,
the distance is simply the absolute value of the difference
between the aligned integers.

Lemma 7 ([18]). There is a constant c ≤ 10 such that
Dynamic Time Warping Distance similarity measure over
one dimensional curves admits an alignment gadget of size
f(n) ≤ c · n.

5. THE FULL REDUCTION
We are now ready to prove our main theorem, from which

Theorem 2 follows, by the Lemmas in the previous section.
Due to lack of space, the proofs of many of the claims in this
section have been deferred to the full version [4].

Theorem 5 (Main). Let δ be a similarity measure over
sequences in I admitting an alignment gadget of size f(n) =
cn and coordinate values, and consider the problem of com-
puting δ(x, y) for sequences x, y ∈ I of length N . SAT of
nondeterministic Branching Programs over n variables of
width W and length T can be reduced to an instance of this

problem on sequences where N = O(n · T log2(12W2c3) · c2 ·
log2 W) = TO(logW) · n.

Proof. Let δ be a similarity measure that admits align-
ment gadgets and coordinate values. We will construct sev-
eral other gadgets with certain properties from these prim-
itives. Given an instance of SAT on BPs of on n variables
width W and length T we will construct and combine our
gadgets in a certain way into two sequences x, y such that
δ(x, y) will determine whether our instance is “yes” or “no”.

Let A and B both be the set of all binary vectors of length
n/2. The goal of the reduction is to find a pair a ∈ A, b ∈
B such that our given branching program is satisfied by
the assignment in which the first half of the variables are
assigned according to a while the second half are assigned
according to b.

We will use the parameters w := log2 W , and t = log2 T ,
and assume the these are integers.

Reachability gadgets.
The main component in our reduction are recursive con-

structions of two kinds of reachability gadgets RGX(a) and
RGY (b), with the following very useful property. For every
pair of vectors a ∈ A, b ∈ B and pair of nodes in the branch-
ing program u ∈ Li from layer i and v ∈ Lj from layer j,
such that j − i = 2k−1 is a power of two, we have that:

• the δ-distance between the two sequences RGk,u→vX (a)

and RGk,u→vY (b) is equal to a certain fixed value ρk that
depends only on k if the path of the branching starting
at u and induced by the assignment (a, b) reaches v,
and the δ-distance is greater than ρk otherwise.

• the total length of these gadgets can be upper bounded
by `k ≤ O(W 2c3)k.

We will now show how to construct such gadgets and prove
that they satisfy the above properties. Then, we will use
these gadgets in order to check whether a pair (a, b) makes
the accept node uacc reachable from the start node ustart.

Base Case: k = 1.
We start by defining the gadgets RG1,u→v for the case that

k = 1 and our two nodes u, v are in consecutive layers i and
i+1 for some i ∈ [s]. To do this, we consider the variable xj
that the layer i in our branching program is labelled with,
and check whether that variable appears in the vectors in A
or in B – that is, we check whether j ≤ d/2 or j > d/2 where
d is the number of variables in our branching program.

In the first case, the vector a is “responsible” for verifying
the consistency of the edge u→ v, and we define the gadgets
as follows: we set

RG1,u→v
X (a) := EGX(0) := GA2w+2,τY

X (0X , . . . ,0X ,1X ,0X)

if the edge u → v is labelled with the boolean value η ∈
{0, 1} which is the same as the boolean value that a assigns
to the variable xj , and otherwise we set

RG1,u→v
X (a) = EGX(1) := GA2w+2,τY

X (1X , . . . ,1X ,1X ,0X).

Note that inconsistency can either be caused by the edge not
existing in the branching program, or by the vector assigning
a different value to the corresponding variable. On the other
hand, since the vector b is not “responsible” for the edge
u→ v, we unconditionally set

RG1,u→v
Y (b) := EGY (1) := GA2w+2,τX

Y (1Y , . . . ,1Y ,0Y ,1Y).

The reason for defining these gadgets as a concatenation of
2w + 2 value gadgets instead of one is purely technical: we
want to ensure that these gadgets have the same type as
our “index gadgets” which we will define shortly. Also, the
last two coordinates are supposed to distinguish between
our “reachability gadgets” and our “index gadgets”, so that
matching an index gadget with a reachability gadget will
incur a loss due to these coordinates.

In the second case, the vector b is “responsible” for veri-
fying the consistency of the edge u → v, and we define the
gadgets in a symmetric way: The gadget RG1,u→v

X (a) will be
unconditionally set to EGX(1). While we set

RG1,u→v
Y (b) := EGY (0) := GA2w+2,τX

Y (0Y , . . . ,0Y ,0Y ,1Y)

if the edge u → v is labelled with the boolean value η ∈
{0, 1} which is the same as the boolean value that b assigns
to the variable xj , and otherwise we set it to EGX(1).

Let τ1
X := type(EGX(0)) = type(EGX(1)) = (`1X , s

1
X)

and τ1
Y := type(EGY (0)) = type(EGY (1)) = (`1Y , s

1
Y). Let

L0 = (`1X + `1Y) and note that L0 ≤ c · (2w + 2) · D where
D is some constant that upper bounds the lengths of our
coordinate values, and therefore L0 = O(cw).

Let ρT := δ(0X ,0Y) = δ(0X ,1Y) = δ(1X ,0Y) and ρF :=
δ(1X ,1Y), and by definition we have ρF ≥ ρT + 1. By
definition of alignment gadgets there is a constant C1 ∈ Z
such that

δ(EGX(0), EGY (0)) = δ(EGX(1), EGY (0)) =

δ(EGX(0), EGY (1)) = C1 + (2w + 2)ρT =: ρ1

while δ(EGX(1), EGY (1)) = C1 +2wρF +2ρT is larger than
ρ1. Combining these formulas with the definitions of our
gadgets proves the following claim.

Claim 3. For any two vectors a ∈ A, b ∈ B and two
nodes u, v in the branching program, the δ-distance between
the two gadgets RG1,u→v

X (a) and RG1,u→v
Y (b) is equal to ρ1

if there is an edge from u to v in the branching program
induced by the assignment (a, b), and the δ-distance is larger
otherwise.

Level 1 index gadgets.
For a boolean value b ∈ {0, 1} we let CVX(b), CVY (b) be

0X ,0Y respectively if b = 0 and 1X ,1Y otherwise. Recall
that w = log2 W , and for each number z ∈ [W] we let
z̄ = (z1, . . . , zw) ∈ {0, 1}w be the binary representation of z,
and define the level 1 index gadgets as follows.

IG1
X(z) := GA2w+2,τY

X

(
CVX(z1), . . . , CVX(zw),

CVX(¬z1), . . . , CVX(¬zw),0X ,1X
)

IG1
Y (z) := GA2w+2,τX

Y

(
CVY (¬z1), . . . , CVY (¬zw),

CVY (z1), . . . , CVY (zw),1Y ,0Y
)

Observe that by definition of our alignment gadgets, the
sequence IG1

X(z) will have the same type type(IG1
X(z)) = τ1

X

for all z ∈ [W], and similarly type(IG1
Y (z)) = τ1

Y for all
z ∈ [W], which are the same types we had in the level-1
reachability gadgets. This definition allows us to prove the
following property.

Claim 4. The distance δ(IG1
X(z), IG1

Y (z′)), for any z, z′ ∈
[W], is equal to ρ1 if z = z′ and it is larger otherwise.

Finally, we show that due to the last two coordinates, the
distance between an index gadget and a reachability gadget
is large.

Claim 5. For any z ∈ [W], and any two vectors a ∈
A, b ∈ B and two nodes u, v in the branching program, we
have that δ(IG1

X(z),RG1,u→v
Y (b)) and δ(RG1,u→v

X (a), IG1
Y (z))

are both larger than ρ1.

This proves the base case for the following lemma, which
is our main construction.

Lemma 8 (Reachability gadgets). For all integers
k ≥ 1, the following statement is true: For any vectors
a ∈ A, b ∈ B, integer z, z′ ∈ [W], nodes u, v ∈ V , we can
construct gadgets:

RGk−1,u→v
X (a) ∈ Iτk

X
and RGk−1,u→v

Y (b) ∈ Iτk
Y

IGk−1
X (z) ∈ Iτk

X
and IGk−1

Y (z′) ∈ Iτk
Y

such that for some value ρk:

• δ(RGk,u→vX (a),RGk,u→vY (b)) is equal to ρk if there is a

path of length 2k−1 from u to v in the branching pro-
gram induced by the assignment (a, b), and is larger
otherwise.

• δ(IGkX(z), IGkY (z′)) is equal to ρk if z = z′ and is larger
otherwise.

• δ(IGkX(z),RGk,u→vY (b)), and δ(RGk,u→vX (a), IGkY (z′)) are
larger than ρk.

• τkX = (`kX , s
k
X) and τkY = (`kY , s

k
Y) only depend on k.

• The construction can be computed in O(`X +`Y) time.

• The length of these gadgets can be upper bounded by
`kX , `

k
Y ≤ (12W 2c3)k · L0.

Proof. To prove the lemma, it remains to show the in-
ductive step. Fix any k > 1 and from now on, assume that
the statement of the lemma is true for k − 1, and we will
show that it is also true for k.

The k > 1 Case.
Let u = (i, iz) ∈ [T] × [W] be a node on layer i and let

v = (j, jz) ∈ [T] × [W] be a node on layer j. Assume that
j− i = 2k−1 and we are at level k ∈ [log2 T] of the recursive
construction. We define h = i+j

2
to be the layer in the

middle between i and j and note that h− i = j − h = 2k−2.
For each node w = (h, z) for z ∈ [W] in layer h we will add a
gadget that enables the path from u to v to pass through this
node w. We do this by recursively adding the two gadgets
RGk−1,u→w and RGk−1,w→v.

To do this formally, we will combine an alignment gadget
with an OR gadget.

We start by defining path gadgets, which will be used to
determine whether there is a path from u to v through a
specific node w = (h, z). For all vectors a ∈ A, b ∈ B and
all numbers z ∈ [W], we define:

PGk,u→vX (a, z) :=

GA
3,τk−1

Y
X

(
RG

k−1,u→(h,z)
X (a),RG

k−1,(h,z)→v
X (a), IGk−1

X (z)
)

PGk,u→vY (b, z) :=

GA
3,τk−1

X
Y

(
RG

k−1,u→(h,z)
Y (b),RG

k−1,(h,z)→v
Y (b), IGk−1

Y (z)
)

and note that the types

τ
(1),k
X := type(PGk,u→vX (a, z)) = (`

(1),k
X , s

(1),k
X) and

τ
(1),k
Y := type(PGk,u→vY (b, z)) = (`

(1),k
Y , s

(1),k
Y)

depend only k, and that `
(1),k
X , `

(1),k
Y ≤ c · 3 · (`k−1

X + `k−1
Y) ≤

3c · 2 · (12W 2c3)k−1 · L0.

Claim 6. There is a constant C
(1)
k ∈ Z such that for all

vectors a ∈ A, b ∈ B and integers z, z′ ∈ [W] we have that

δ(PGk,u→vX (a, z),PGk,u→vY (b, z′)) = C
(1)
k + 3 · ρk−1

if z = z′ and there is a path from u to v through (h, z) in
the branching program induced by (a, b), and the δ-distance
is larger otherwise.

We are now ready to define our reachability gadgets, using
OR gadgets. Recall that by Lemma 4, any measure that
admits alignment gadgets of size cn also admits OR gadgets
of size c2n2.

RGk,u→vX (a) :=

OR
W,τ

(1),k
Y

X

(
PGk,u→vX (a, 1), . . . ,PGk,u→vX (a,W)

)
RGk,u→vY (b) :=

OR
W,τ

(1),k
X

Y

(
PGk,u→vY (b, 1), . . . ,PGk,u→vY (b,W)

)
Note that the types τkX := type(RGk,u→vX (a)) = (`kX , s

k
X)

and τkY := type(RGk,u→vY (b)) = (`kY , s
k
Y) depend only k, and

that

`kX , `
k
Y ≤ c2 ·W 2 · (`(1),k

X + `
(1),k
Y) ≤

c2W 2 · (2 · 6c · (12W 2c3)k−1 · L0) = (12W 2c3)k · L0 .

Claim 7. There is a constant ρk ∈ Z such that for all
vectors a ∈ A, b ∈ B we have that

δ(RGk,u→vX (a),RGk,u→vY (b)) = ρk

there is a path from u to v in the branching program induced
by (a, b), and the δ-distance is larger otherwise.

To complete the proof of Lemma 8 we need to construct
index gadgets. These gadgets have straightforward function-
ality, but their definitions are a bit complicated because we
must enforce that the type of these gadgets is exactly the
same as the types of the reachability gadgets.

For all z ∈ [W] we define

IG
(1),k
X (z) := GA

3,τk−1
Y

X (IGk−1
X (z), IGk−1

X (z), IGk−1
X (z))

IG
(1),k
Y (z) := GA

3,τk−1
X

Y (IGk−1
Y (z), IGk−1

Y (z), IGk−1
Y (z))

so that the types are τ
(1),k
X and τ

(1),k
Y . By an argument sim-

ilar (but simpler) to the one in Claim 6, we get that for

all integers z, z′ ∈ [W] we have δ(IG
(1),k
X (z), IG

(1),k
X (z′)) =

C
(1)
k + 3 · ρk−1 if z = z′ and the δ-distance is larger oth-

erwise. Another straightforward consequence of these def-
initions is that for any vectors a ∈ A, b ∈ B and integers

z, z′ ∈ [W] we have that δ(IG
(1),k
X (z),PGk,u→vY (b, z′)) and

δ(PGk,u→vX (a, z′), IG
(1),k
Y (z)) are larger than C

(1)
k + 3 · ρk−1.

Finally, we define

IGkX(z) := OR
W,τ

(1),k
Y

X

(
IG

(1),k
X (z), . . . , IG

(1),k
X (z)

)
IGkY (z) := OR

W,τ
(1),k
X

Y

(
IG

(1),k
Y (z), . . . , IG

(1),k
Y (z)

)
so that the types are τkX and τkY . Again, by an argument
similar (but simpler) to the one in Claim 7, we have that
δ(IGkX(z), IGkY (z′)) = ρk if z = z′ and is larger otherwise.
And, moreover, that δ(IGkX(z),RGkY (b)), δ(RGkX(a), IGkY (z))
are larger than ρk, for all a, b, z.

To complete the proof of Lemma 8, we remark that this
construction takes linear time in its output, since the run-
time is dominated by the constructions of alignment and OR
gadgets.

We now continue with the reduction from BP-SAT to the
problem of computing the δ-similarity of two sequences.

Recall that t = log2 T , and let the start node of the
branching program be ustart = (1, 1) and the only accept
node be uacc = (2t, 1). Intuitively, we would like to de-
fine vector gadgets of the form V G(a) = RGt,ustart→uacc(a)
and V G(b) = RGt,ustart→uacc(b) so that δ(V G(a), V G(b)) will
tell us whether (a, b) is a satisfying pair or not (whether it
induces a path from the start node to the accepting node).
However, this does not quite work for the following technical
reason: When we combine all these 2n vector gadgets into
two sequences x, y, the score of δ(V G(a′), V G(b′)) of other
pairs a′, b′ will affect the overall score, and could potentially
hide the contribution of the satisfying pair.

To fix this, we “normalize” the vector gadgets so that
the distance δ(V G(a′), V G(b′)) of unsatisfying pairs is fixed
(and is slightly worse than the distance of satisfying pairs).
This “normalization” trick was introduced by Backurs and
Indyk in their reduction from OV to Edit-Distance.

We will need the following simple constructions of in-
stances Sk such that the distance between Sk and any reach-
ability gadget is fixed, and is slightly worse than the score
of a “good pair”.

Claim 8. For all k ≥ 1, there are sequences Sk, T k ∈ Iτk
X

such that for all vectors b ∈ B and nodes u, v we have that
δ(Sk,RGk,u→vY) = ρk + (ρF − ρT) and δ(T k,RGk,u→vY) = ρk.

We can now define our normalized vector gadgets. For all
vectors a ∈ A, b ∈ B we define:

NVGX(a) := GA
1,τtY
X (St,RGt,ustart→uaccX (a))

NVGY (b) := GA
2,τtX
Y (RGt,ustart→uaccY (b))

We denote the types of these gadgets by type(NVGX(a)) =:
τ ′X and type(NVGY (b)) =: τ ′Y and remark that they are in-
dependent of a, b. Also, note that the length of these gadgets
can be upper bounded by c·2·(`tX+`tY) ≤ 2c·(12W 2c3)t·L0 =
O((12W 2c3)log2 T · c log2 W).

Lemma 9 (Vector Gadgets). There is a constant C ∈
Z such that for any two vectors a ∈ A, b ∈ B we have that:

δ(NVGX(a),NVGY (b)) = C + ρt

if the pair (a, b) satisfies the branching program, and other-
wise

δ(NVGX(a),NVGY (b)) = C + ρt + (ρF − ρT).

Proof. The proof follows from the definition of align-
ment gadgets and from Lemma 8 and Claim 8.

Let A = {a1, . . . , a2n/2} and B = {b1, . . . , b2n/2} be our
sets of vectors. Our final sequences are defined as follows:

x := GA
2n/2,τ ′Y
X

(
NVGX(a1), . . . ,NVGX(a2n/2),

NVGX(a1), . . . ,NVGX(a2n/2)
)

y := GA
2·2n/2,τ ′X
Y (NVGY (b1), . . . ,NVGY (b2n/2))

First, we upper bound the length of these sequences:

|x|, |y| ≤ c · 2 · 2n/2 ·O((12W 2c3)log2 T · c log2 W)

= O((12W 2c3)log2 T · 2n/2 · c2 log2 W)

= TO(logW) · 2n/2

Finally, the theorem follows from this claim which shows
that the answer to our BP-SAT can be deduced from δ(x, y).

Claim 9. There is a constant C∗ ∈ Z such that

δ(x, y) ≤ C∗ + (2n/2 − 1) · (C + ρt + (ρF − ρT)) + (C + ρt)

if and only if there is a pair a ∈ A, b ∈ B that satisfies the
branching program.

6. ACKNOWLEDGEMENT
We thank Arturs Backurs for comments on an earlier ver-

sion.

7. REFERENCES
[1] A. Abboud, A. Backurs, T. D. Hansen, V. Vassilevska

Williams, and O. Zamir. Subtree isomorphism
revisited. In Proc. of 27th SODA, pages 1256–1271,
2016.

[2] A. Abboud, A. Backurs, and V. Vassilevska Williams.
Tight Hardness Results for LCS and other Sequence
Similarity Measures. In Proc. of 56th FOCS, pages
59–78, 2015.

[3] A. Abboud, F. Grandoni, and V. Vassilevska
Williams. Subcubic equivalences between graph
centrality problems, APSP and diameter. In Proc. of
26th SODA, pages 1681–1697, 2015.

[4] A. Abboud, T. D. Hansen, V. Vassilevska Williams,
and R. Williams. Simulating branching programs with
edit distance and friends or: A polylog shaved is a
lower bound made. CoRR, abs/1511.06022, 2015.

[5] A. Abboud and V. Vassilevska Williams. Popular
conjectures imply strong lower bounds for dynamic
problems. In Proc. of 55th FOCS, pages 434–443, 2014.

[6] A. Abboud, V. Vassilevska Williams, and J. R. Wang.
Approximation and fixed parameter subquadratic
algorithms for radius and diameter in sparse graphs.
In Proc. of 27th SODA, pages 377–391, 2016.

[7] A. Abboud, V. Vassilevska Williams, and
O. Weimann. Consequences of faster sequence
alignment. In Proc. of 41st ICALP, pages 39–51, 2014.

[8] A. Abboud, V. Vassilevska Williams, and H. Yu.
Matching triangles and basing hardness on an
extremely popular conjecture. In Proc. of 47th STOC,
pages 41–50, 2015.

[9] A. Abboud, R. Williams, and H. Yu. More
applications of the polynomial method to algorithm
design. In Proc. of 26th SODA, pages 218–230, 2015.

[10] J. Alman and R. Williams. Probabilistic polynomials
and hamming nearest neighbors. In Proc. of 56th
FOCS, pages 136–150, 2015.

[11] S. Arora and B. Barak. Computational complexity: a
modern approach. Cambridge University Press, 2009.

[12] A. Backurs and P. Indyk. Edit Distance Cannot Be
Computed in Strongly Subquadratic Time (unless
SETH is false). In Proc. of 47th STOC, pages 51–58,
2015.

[13] N. Bansal and R. Williams. Regularity lemmas and
combinatorial algorithms. In Proc. of 50th FOCS,
pages 745–754, 2009.

[14] D. A. Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages
in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

[15] C. Beck and R. Impagliazzo. Strong ETH holds for
regular resolution. In Proc. of 45th STOC, pages
487–494, 2013.

[16] H. Bodlaender, R. G. Downey, M. Fellows, and H. T.
Wareham. The parameterized complexity of sequence
alignment and consensus. In Combinatorial Pattern
Matching, pages 15–30, 1994.

[17] K. Bringmann. Why walking the dog takes time:
Frechet distance has no strongly subquadratic
algorithms unless seth fails. In Proc. of 55th FOCS,
pages 661–670, 2014.

[18] K. Bringmann and M. Kunnemann. Quadratic
Conditional Lower Bounds for String Problems and
Dynamic Time Warping. In Proc. of 56th FOCS,
pages 79–97, 2015.

[19] K. Bringmann and W. Mulzer. Approximability of the
Discrete Fréchet Distance. In Proc. of 31st SoCG,
pages 739–753, 2015.

[20] C. Calabro, R. Impagliazzo, and R. Paturi. A duality
between clause width and clause density for SAT. In
Proc. of 21st CCC, pages 252–260, 2006.

[21] C. Calabro, R. Impagliazzo, and R. Paturi. The
complexity of satisfiability of small depth circuits. In
Proc. of 4th IWPEC, pages 75–85, 2009.

[22] T. M. Chan. Speeding up the four russians algorithm
by about one more logarithmic factor. In Proc. of 26th
SODA, pages 212–217, 2015.

[23] T. M. Chan and R. Williams. Deterministic apsp,
orthogonal vectors, and more: Quickly derandomizing
razborov-smolensky. In Proc. of 27th SODA, pages
1246–1255, 2016.

[24] V. Chvatal, D. Klarner, and D. E. Knuth. Selected
combinatorial research problems. Technical Report
STAN-CS-72-292, Computer Science Department,
Stanford University.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[26] E. Dantsin and E. A. Hirsch. Worst-case upper
bounds. In Handbook of Satisfiability, pages 403–424.
2009.

[27] R. Impagliazzo and R. Paturi. On the complexity of
k-sat. Journal of Computer and System Sciences,
62(2):367–375, 2001.

[28] R. Impagliazzo, R. Paturi, and F. Zane. Which
problems have strongly exponential complexity?
Journal of Computer and System Sciences,
63:512–530, 2001.

[29] H. Jahanjou, E. Miles, and E. Viola. Local reductions.
In Proc. of 42nd ICALP, pages 749–760, 2015.

[30] A. G. Jørgensen and S. Pettie. Threesomes,
degenerates, and love triangles. In Proc. of 55th
FOCS, pages 621–630, 2014.

[31] W. J. Masek and M. S. Paterson. A faster algorithm
computing string edit distances. Journal of Computer
and System sciences, 20(1):18–31, 1980.

[32] M. Patrascu and R. Williams. On the possibility of
faster SAT algorithms. In Proc. of 21st SODA, pages
1065–1075, 2010.

[33] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An
improved exponential-time algorithm for k -sat. J.
ACM, 52(3):337–364, 2005.

[34] K. Pietrzak. On the parameterized complexity of the
fixed alphabet shortest common supersequence and
longest common subsequence problems. Journal of
Computer and System Sciences, 67(4):757–771, 2003.

[35] L. Roditty and V. Vassilevska Williams. Fast
approximation algorithms for the diameter and radius
of sparse graphs. In Proc. of 45th STOC, pages
515–524, 2013.

[36] W. J. Savitch. Relationships between nondeterministic
and deterministic tape complexities. Journal of
computer and system sciences, 4(2):177–192, 1970.

[37] P. M. Spira. On time-hardware complexity tradeoffs
for boolean functions. In Proceedings of the 4th Hawaii
Symposium on System Sciences, pages 525–527, 1971.

[38] L. G. Valiant. Graph-theoretic arguments in low-level
complexity. Springer, 1977.

[39] R. Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer
Science, 348(2):357–365, 2005.

[40] R. Williams. Improving exhaustive search implies
superpolynomial lower bounds. SIAM J. Comput.,
42(3):1218–1244, 2013.

[41] R. Williams. Faster all-pairs shortest paths via circuit
complexity. In Proc. of 46th STOC, pages 664–673,
2014.

[42] R. Williams. Nonuniform ACC circuit lower bounds.
J. ACM, 61(1):2:1–2:32, 2014.

[43] H. Yu. An improved combinatorial algorithm for
boolean matrix multiplication. In Proc. of 42nd
ICALP, pages 1094–1105, 2015.

[44] S. Žák. A turing machine time hierarchy. Theoretical
Computer Science, 26(3):327–333, 1983.

