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Important graph parameters 

 Eccentricities: the eccentricity e(x) of x is maxy d(x, y) 

 Diameter: maxx e(x) = maxx, y d(x, y) 

 Radius: minx e(x) = minx maxy d(x, y) 

 Median: minx  y d(x, y) 

 

Best algorithms: compute all pairs shortest paths (APSP):  

~n3-o(1) for dense graphs (m~n2), ~n2 for sparse (m~n) 

 

Can one get n3- for dense? Can one get n2- for sparse? 

What about for approximations? 

Undirected G, weigthed, n nodes, m edges 



Outline 

 

 Hardness and equivalences for dense graphs 

 

 Hardness for sparse graphs 

 



The dense graph regime: beating n3 

Theorem [VW’10, AGV’14]: APSP is 

equivalent to Radius, Median and many 

other graph problems, under subcubic 

reductions. 

 

Equivalence of problems A and B means:  

any O(n3 - ) time alg for problem B can be 

converted to an O(n3 - ) time alg for problem 

A, and vice versa. 
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APSP Research 
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Author  Runtime Year 

Fredman n3 log log1/3 n / log1/3 n 1976 

Takaoka n3 log log1/2 n / log1/2 n 1992 

Dobosiewicz n3 / log1/2 n 1992 

Han n3 log log5/7 n / log5/7 n 2004 

Takaoka n3 log log2 n / log n  2004 

Zwick n3 log log1/2 n / log n  2004 

Chan n3 / log n 2005 

Han n3 log log5/4 n / log5/4 n 2006 

Chan n3 log log3 n / log2 n 2007 

Han, Takaoka n3 log log n / log2 n 2012 

Williams n3 / exp( log n) 2014 

Big Open Problem: APSP in 

truly  subcubic time? 

APSP Conjecture: APSP 

requires n3-o(1) time. 



The dense graph regime: beating n3 

Theorem [VW’10, AGV’14]: APSP is 

equivalent to Radius, Median and many 

other graph problems, under subcubic 

reductions. 

 

Equivalence of problems A and B means:  

any O(n3 - ) time alg for problem A can be 

converted to an O(n3 - ) time alg for problem 

B, and vice versa. 
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B B B B 
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n1, …, nk so that  

Σi ni
3-ε < n3-δ 

Subcubic reduction 



Some known equivalences to APSP 
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Distance product 

Distance product: Given two matrices A, B: 
 

(A * B)[i, j] = mink (A[i, k] + B[k, j]) 

 
APSP in T(n) time               Dist. Prod. in T(n) time 
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Distance product and APSP 

Distance product  

in T(n) time 

log n 

Fischer, Meyer’71 

APSP and Distance product are equivalent. 

APSP in T(n) 

Weighted adjacency matrix of a graph: 

 

A[u,v] = 

 

w(u,v)  for edges (u,v) and 

∞     for non-edges (u,v) 

0     for u=v 

 

time 
 

Ak [u,v] = weight of shortest path on · k edges 



Some known equivalences to APSP 
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Negative triangle 

Input: Graph G with integer edge weights 

Output:  

 ‘Yes’ if there exist nodes i,j,k in G such that  

   w(i,j) + w(j,k) + w(k,i) < 0 

 ‘No’ otherwise. 

 

 

In general, no O(n3-ε) algorithm known. 
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-3 

Easy cubic time 

algorithm!! 



1. Distance product to  

 All pairs negative triangles:  

 For every j,i in G, 

     is there a k so that w(i,k) + w(k,j) < -w(j,i) ? 

 

2. All pairs negative triangles to  

 Negative triangle: 

     Are there i,j,k in G, so that  

   w(i,k) + w(k,j) < -w(j,i) ? 

Distance product to negative 

triangle 

(A*B)[i, j] = mink (A[i, k]+B[k, j]) 



is there a k so that A[i,k]+B[k,j] < -w(j,i)? 
 

is mink A[i,k]+B[k,j] < -w(j,i)? 
 

Add edges from J to I with carefully chosen weights w(¢ , ¢) 
All pairs negative triangles: for every j, i in J x I, 

Reducing distance product to  

all pairs negative triangle 
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Simultaneous 

binary search! 

A B 

(A*B)[i, j] =  

mink (A[i, k]+B[k, j]) 
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1. Distance product to  

 All pairs negative triangles:  

 For every j,i in G, 

     is there a k so that w(i,k) + w(k,j) < -w(j,i) ? 

 

2. All pairs negative triangles to  

 Negative triangle: 

     Are there i,j,k in G, so that  

   w(i,k) + w(k,j) < -w(j,i) ? 

Distance product to negative 

triangle 

(A*B)[i, j] = mink (A[i, k]+B[k, j]) 



Idea: 

1. Split I, J, K into pieces 

of small size s 

2. Consider all (n/s)3 

triples of pieces (Ii,Jj,Kk) 

3. Find negative triangles 

in each triple  

All pairs negative triangle to negative triangle 



All Pairs Negative Triangle 

Initialize C : n x n matrix of all-zeros 

For every triple (Ix,Jy,Kz) in turn: 

    while (Ix,Jy,Kz) has a negative triangle 

         report negative triangle ax,ay,az 

         set C[ax,ay] = 1 

         set w(ax,ay) = ∞ 

     

  (ax, ay) doesn’t 

appear in any more 

negative triangles! 



All Pairs Negative Triangle 

Initialize C : n x n matrix of all-zeros 

For every triple (Ix,Jy,Kz) in turn: 

    while (Ix,Jy,Kz) has a negative triangle 

         report negative triangle ax,ay,az 

         set C[ax,ay] = 1 

         set w(ax,ay) = ∞ 

     

 
(ax,ay) doesn’t appear in any more 

negative triangles! 

Runtime: 
[(#triples) + (#triangles found)] • T(neg. triangle in triple) 

 

= ((n/s)3 + n2) • NegTriangle(s) 

 

NegTriangle(n) = nd 

= n2+(d/3)   for s=n1/3. Subcubic if d<3. 
 



Some known equivalences to APSP 
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Reducing Neg. Triangle to Radius 

WLOG,  

in the Negative triangle problem: 

 The given graph G is tripartite: 

 create 3 copies of the vertex set 

and add 3 copies of each edge 
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 G is a complete tripartite graph: if the largest 

edge weight were M, make each non-edge 

between different partitions into an edge of 

weight 3M. 3M is the new M. 
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Reducing Neg. Triangle to Radius 

a 

b 

c 

e 

Copy 1 of 

nodes of A 

Nodes of B Copy 2 of 

nodes of A 
Nodes of C 

w(a,b) 
w(b,c) 

a’ 
w(a,c) 

x 

y 

3M+2W 

if a  e 

Tripartite G with partitions A,B,C, weights  

in {–M ,…, M}, find triangle of weight <0. 

Weights between W and 

2M+W, find triangle of weight < 

3M+3W.  (W>>M: 4W>3M+3W) 

M+W 
z 

w 

2M+W 

2M+W 

M+W 

The radius is < 3M+3W if and only if there was a negative triangle 

+M+W 

(wlog AxB, BxC, AxC are complete bipartite, M = no edge) 



Some known equivalences to APSP 
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Outline 

 Hardness and equivalences for dense graphs 

 

 Hardness for sparse graphs 

 



Algorithms for sparse graphs 

 Eccentricities, diameter, radius, median 

can be solved in Õ(n2) time in graphs 

with Õ(n) edges, and this is the best 

known even for unweighted graphs! 

 

 Output is a single integer, unlike APSP 

 What about approximation algorithms? 



Algorithms for sparse graphs 

Best subquadratic time approximations: 

 

 Diameter: 3/2-approx. in min {m3/2, mn2/3} time [1] 

 Radius: 3/2-approx. in min {m3/2, mn2/3} time [1] 

 All eccentricities: 5/3-approx. in m3/2 time [1] 

 Median: (1+ ) approximation in m/poly() time [2] 

 
[1] Chechik et al.’14, [2] Indyk’99 

 

 
We’ll show that these approximation ratios are 

TIGHT for subquadratic algs (under conjectures). 



Sparse graphs: conjectures 

 Orthogonal vectors (OV):  

given two sets U and V of n vectors in {0, 1}O(log n), are there  
u 2 U, v 2 V such that u ¢ v = 0? 

OV conjecture (OVC): OV requires n2-o(1) time. 
 

Theorem [W’04]: SETH implies OVC. 

 

 Hitting set (HS):  

given two sets U and V of n subsets of [O(log n)], is there 
some u 2 U such that for all v 2 V, u Å v  ; ? 

HS conjecture (HSC): HS requires n2-o(1) time. 
 

Theorem [AVW’15]: HSC implies OVC. 



Sparse graphs world 
Best known subquadratic time approximations: 

 Diameter:  3/2 

 Radius:  3/2 

 All eccentricities: 5/3 

 Median: (1+ ), any  > 0 

HS OV 

k-SAT 

3/2 -  

approx for 

diameter 3/2 -  

approx for 

radius 

5/3 -  approx 

for all 

eccentricities median 

n2- 

n2-’ 

n2-’ 

n2- 

n2-’ 

n2-’ 

(2 - )n 



Diameter 2 or 3  

Any two vector nodes from the same side are at dist 2. 

Any coordinate is at dist 2 from everyone, X and Y are at dist 2 from everyone. 

Two vectors u and v from different sides are at 

 dist 2 if exists a c with u[c]=v[c]=1, and at dist 3 otherwise. 

 

 

Node per 

vector Node per 

coordinate 

Node per 

vector 

For each v,c 

edge (v,c) if 

v[c]=1 

For each d, 

u edge (d,u) 

if u[d]=1 

X Y 

Graph has O(n) nodes 

m=O(n log n) edges 

Thm: Diameter 2 or 

3 in O(m2-) time 

implies O(n2-) time 

for OV and hence 

SETH is false. 

Reduce from OV on n vectors 

Diameter is 3 if 

exists orthogonal 

pair, and is 2 

otherwise. v 

c 

d 

u 

[RV’13] 



Sparse graphs world 
Best known subquadratic time approximations: 

 Diameter:  3/2 

 Radius:  3/2 

 All eccentricities: 5/3 

 Median: (1+ ), any  > 0 

HS OV 

k-SAT 

3/2 -  

approx for 

diameter 3/2 -  

approx for 

radius 

5/3 -  approx 

for 

eccentricities median 

n2- 

n2-’ 

n2-’ 

n2- 

n2-’ 

n2-’ 

(2 - )n 



Radius 2 or 3  

Any two orange nodes are at dist 2. 

Every orange node is at distance at most 2 from every non-yellow node. 

Two sets u and v from different sides (one yellow, one orange) are at 

 dist 2 if exists a c with c 2 u Å v, and at dist 3 otherwise. 

Every non-orange node is at distance at least 3 from r or s 

 

Node per set Node per 

element 
Node per set 

For each v,c 

edge (v,c) if 
c 2 v 

For each d,u 

edge (d,u) if 
d 2 u 

X Y 

Graph has O(n) nodes 

m=O(n log n) edges 

Thm: Radius 2 or 3 in 

O(m2-) time implies 

O(n2-) time for HS. 

Reduce from HS on n sets 

The center node is 

orange, and the 

radius is 2 if a 

hitting set exists, 

and is 3 otherwise. v 

c 

d 

u 

r 

s 

[AVW’15] 



Radius and diameter 

 So far, any algorithm for one of radius and diameter 

has also been modified to work for the other 

 The two problems only differ in the quantifiers: 

max,max vs min,max, but this also seems to make 

them different 

 Diameter might be easier than APSP in dense 

graphs, or might be hard for a different reason 

 Some problems are equivalent to Diameter in dense 

graphs (e.g. approximating betweenness centrality). 



Open questions 

 Any hardness for diameter in dense graphs? 

 Other equivalent graph problems? 

 Can we relate the sparse and dense cases to each 

other? E.g. does an n1.9 time algorithm for sparse 

diameter imply an n2.9 algorithm for dense diameter? 

 Approximation hardness for dense graphs? The 

reductions do not preserve approximability. 

 What about the runtimes for 3/2 approximating the 

diameter / radius? Are they optimal? 

THANK YOU! 


