Conditional hardness and equvalences for GRAPH PROBLEMS

Virginia V. Williams Stanford

Important graph parameters

- Eccentricities: the eccentricity $e(x)$ of x is $\max _{y} d(x, y)$
- Diameter: $\max _{\mathrm{x}} \mathrm{e}(\mathrm{x})=$ max $_{\mathrm{x}, \mathrm{y}} \mathrm{d}(\mathrm{x}, \mathrm{y})$
- Radius: $\min _{x} \mathrm{e}(\mathrm{x})=\min _{\mathrm{x}} \max _{\mathrm{y}} \mathrm{d}(\mathrm{x}, \mathrm{y})$
- Median: $\min _{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{d}(\mathrm{x}, \mathrm{y})$

Best algorithms: compute all pairs shortest paths (APSP):
$\sim n^{3-0(1)}$ for dense graphs ($m \sim n^{2}$), $\sim n^{2}$ for sparse ($m \sim n$)

Can one get $\mathrm{n}^{3-\varepsilon}$ for dense? Can one get $\mathrm{n}^{2-\varepsilon}$ for sparse? What about for approximations?

Outline

- Hardness and equivalences for dense graphs
- Hardness for sparse graphs

The dense graph regime: beating n^{3}

Theorem [VW'10, AGV'14]: APSP is equivalent to Radius, Median and many other graph problems, under subcubic reductions.

Equivalence of problems A and B means: any $O\left(n^{3-\varepsilon}\right)$ time alg for problem B can be converted to an $\mathrm{O}\left(\mathrm{n}^{3-\delta}\right)$ time alg for problem A, and vice versa.

Subcubic reduction from problem A to problem B

Size n A

B instance sizes $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ so that
$\sum_{i} n_{i}^{3-\varepsilon}<n^{3-\delta}$

Author	Runtime	APSP Conjecture: A requires $\mathrm{n}^{3-0(1)}$ tim
Fredman	$\mathrm{n}^{3} \log \log ^{1 / 3} \mathrm{n} / \log ^{1 / 3} \mathrm{n}$	1976
Takaoka	$\mathrm{n}^{3} \log \log ^{1 / 2} \mathrm{n} / \log ^{1 / 2} \mathrm{n}$	1992
Dobosiewicz	$\mathrm{n}^{3} / \log ^{1 / 2} \mathrm{n}$	1992
Han	$\mathrm{n}^{3} \log \log ^{5 / 7} \mathrm{n} / \log ^{5 / 7} \mathrm{n}$	2004
Takaoka	$n^{3} \log \log ^{2} n / \log n$	2004
Zwick	$\mathrm{n}^{3} \log \log ^{1 / 2} \mathrm{n} / \log \mathrm{n}$	2004
Chan	$\mathrm{n}^{3} / \log \mathrm{n}$	2005
Han	$\mathrm{n}^{3} \log \log ^{5 / 4} \mathrm{n} / \log ^{5 / 4} \mathrm{n}$	2006
Chan	$\mathrm{n}^{3} \log \log ^{3} \mathrm{n} / \log ^{2} \mathrm{n}$	2007
Han, Takaoka	$n^{3} \log \log n / \log ^{2} n$	2012
Williams	$\mathbf{n}^{3} / \exp (\sqrt{ } \log n)$	2014

The dense graph regime: beating n^{3}

Theorem [VW'10, AGV'14]: APSP is equivalent to Radius, Median and many other graph problems, under subcubic reductions.

Equivalence of problems A and B means: any $\mathrm{O}\left(\mathrm{n}^{3-8}\right)$ time alg for problem A can be converted to an O($\mathrm{n}^{3-\delta}$) time alg for problem B, and vice versa.

Subcubic reduction

A

B instance sizes
$\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ so that
$\sum_{i} n_{j}^{3-\varepsilon}<n^{3-\delta}$

Some known equivalences to APSP

Distance product

Distance product: Given two matrices A, B :

$$
\left(A^{*} B\right)[i, j]=\min _{k}(A[i, k]+B[k, j])
$$

APSP in $T(n)$ time \longrightarrow Dist. Prod. in $T(n)$ time

Distance product and APSP

Distance product in $T(n)$ time

APSP in $T(n) \log n$ time
Fischer, Meyer’71

Weighted adjacency matrix of a graph:

$$
A[u, v]=\left\{\begin{array}{lc}
w(u, v) & \text { for edges }(u, v) \text { and } \\
\infty & \text { for non-edges }(u, v) \\
0 & \text { for } u=v
\end{array}\right.
$$

$A^{k}[u, v]=$ weight of shortest path on $\leq k$ edges APSP and Distance product are equivalent.

Some known equivalences to APSP

Negative triangle

Input: Graph G with integer edge weights
Output:
'Yes' if there exist nodes i,j,k in G such that

$$
w(i, j)+w(j, k)+w(k, i)<0
$$

‘No' otherwise.

Easy cubic time algorithm!!

In general, no $\mathrm{O}\left(\mathrm{n}^{3-\mathrm{s}}\right)$ algorithm known.

Distance product to negative triangle

1. Distance product to

All pairs negative triangles:
For every j,i in G, is there a k so that $w(i, k)+w(k, j)<-w(j, i) ?$
2. All pairs negative triangles to Negative triangle:
Are there i, j, k in G, so that

$$
\mathrm{w}(\mathrm{i}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{j})<-\mathrm{w}(\mathrm{j}, \mathrm{i}) ?
$$

Reducing distance product to all pairs negative triangle

$1 \infty \infty$
$5 \infty \infty$ $\infty \infty 2$

Add edges from J to I with carefully chosen weights $\mathrm{w}(\cdot$, . $)$ All pairs negative triangles: for every j , i in $\mathrm{J} \times \mathrm{I}$,

Distance product to negative triangle

1. Distance product to

All pairs negative triangles:
For every j,i in G, is there a k so that $w(i, k)+w(k, j)<-w(j, i) ?$
2. All pairs negative triangles to Negative triangle:
Are there i, j, k in G, so that

$$
\mathrm{w}(\mathrm{i}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{j})<-\mathrm{w}(\mathrm{j}, \mathrm{i}) ?
$$

All pairs negative triangle to negative triangle

Idea:

1. Split I, J, K into pieces of small size
2. Consider all triples of pieces $\left(\mathrm{I}_{\mathrm{i}}, \mathrm{J}_{\mathrm{j}}, \mathrm{K}_{\mathrm{k}}\right)$ 3. Find negative triangles in each triple

All Pairs Negative Triangle

Initialize C : n x n matrix of all-zeros
For every triple ($\mathrm{I}_{\mathrm{x}}, \mathrm{J}_{y}, \mathrm{~K}_{\mathrm{z}}$) in turn:
while $\left(\mathrm{I}_{\mathrm{x}}, \mathrm{J}_{y}, \mathrm{~K}_{z}\right)$ has a negative triangle report negative triangle a_{x}, a_{y}, a_{z} set $C\left[a_{x}, a_{y}\right]=1$ set $w\left(a_{x}, a_{y}\right)=\infty$

(a_{x}, a_{y}) doesn't

appear in any more negative triangles!

All Pairs Negative Triangle

Initialize C : n x n matrix of all-zeros For every triple $\left(\mathrm{I}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}, \mathrm{K}_{\mathrm{z}}\right)$ in turn:
while $\left(I_{x}, J_{y}, K_{z}\right)$ has a negative triangle report negative triangle $\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}, \mathrm{a}_{\mathrm{z}}$ set $C\left[a_{x}, a_{y}\right]=1$ set $w\left(a_{x}, a_{y}\right)=\infty$
$\left(\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}\right)$ doesn't appear in any more negative triangles!

Runtime:

[(\#triples) + (\#triangles found)] • T(neg. triangle in triple)

$$
\begin{gathered}
=\left((\mathrm{n} / \mathrm{s})^{3}+\mathrm{n}^{2}\right) \cdot \text { NegTriangle(s) } \\
=\mathrm{n}^{2+(d / 3)} \text { for } \mathrm{s}=\mathrm{n}^{1 / 3} .
\end{gathered}
$$

NegTriangle(n) $=\mathrm{n}^{\mathrm{d}}$
Subcubic if d<3.

Some known equivalences to APSP

Reducing Neg. Triangle to Radius

WLOG, in the Negative triangle problem:

- The given graph G is tripartite: create 3 copies of the vertex set and add 3 copies of each edge

- G is a complete tripartite graph: if the largest edge weight were M, make each non-edge between different partitions into an edge of weight 3 M . 3 M is the new M .

Reducing Neg. Triangle to Radius

Tripartite G with partitions A,B,C, weights in $\{-\mathrm{M}, \ldots, \mathrm{M}\}$, find triangle of weight <0. (wlog AxB, BxC, AxC are complete bipartite, $\mathrm{M}=$ no edge)
$+M+W$

Weights between W and $2 \mathrm{M}+\mathrm{W}$, find triangle of weight < $3 M+3 W$. (W>>M: 4W>3M+3W)

The radius is $<3 \mathrm{M}+3 \mathrm{~W}$ if and only if there was a negative triangle

Some known equivalences to APSP

Outline

- Hardness and equivalences for dense graphs
- Hardness for sparse graphs

Algorithms for sparse graphs

- Eccentricities, diameter, radius, median can be solved in $\tilde{O}\left(\mathrm{n}^{2}\right)$ time in graphs with $\tilde{O}(\mathrm{n})$ edges, and this is the best known even for unweighted graphs!
- Output is a single integer, unlike APSP
- What about approximation algorithms?

Algorithms for sparse graphs

Best subquadratic time approximations:
o Diameter: 3/2-approx. in $\min \left\{\mathrm{m}^{3 / 2}, \mathrm{mn}^{2 / 3}\right\}$ time [1]
o Radius: 3/2-approx. in $\min \left\{\mathrm{m}^{3 / 2}, \mathrm{mn}^{2 / 3}\right\}$ time [1]
o All eccentricities: 5/3-approx. in $\mathrm{m}^{3 / 2}$ time [1]

- Median: $(1+\varepsilon)$ approximation in $m / p o l y(\varepsilon)$ time [2]
[1] Chechik et al.'14, [2] Indyk'99
We'll show that these approximation ratios are TIGHT for subquadratic algs (under conjectures).

Sparse graphs: conjectures

- Orthogonal vectors (OV):
given two sets U and V of n vectors in $\{0,1\}^{\circ(\log n)}$, are there $u \in U, v \in V$ such that $u \cdot v=0$?

OV conjecture (OVC): OV requires $\mathrm{n}^{2-0(1)}$ time.
Theorem [W'04]: SETH implies OVC.

- Hitting set (HS):
given two sets U and V of n subsets of $[\mathrm{O}(\log \mathrm{n})$], is there some $u \in U$ such that for all $v \in V, u \cap v \neq \emptyset$?

HS conjecture (HSC): HS requires $\mathrm{n}^{2-0(1)}$ time.
Theorem [AVW'15]: HSC implies OVC.

Best known subquadratic time approximations:

Sparse graphs world

> Diameter: 3/2

- Radius: 3/2
$>$ All eccentricities: 5/3
- Median: $(1+\varepsilon)$, any $\varepsilon>0$

Diameter 2 or 3

Node per vector

Node per coordinate
vector

For each d, u edge (d, u) if $u[d]=1$

Graph has $O(n)$ nodes $m=O(n \log n)$ edges

Diameter is 3 if exists orthogonal pair, and is 2 otherwise.

Thm: Diameter 2 or 3 in $O\left(m^{2-\varepsilon}\right)$ time implies $\mathrm{O}\left(\mathrm{n}^{2-8}\right)$ time for OV and hence SETH is false.

Any two vector nodes from the same side are at dist 2.
Any coordinate is at dist 2 from everyone, X and Y are at dist 2 from everyone.
Two vectors u and v from different sides are at
dist 2 if exists a c with $\mathrm{u}[\mathrm{c}]=\mathrm{v}[\mathrm{c}]=1$, and at dist 3 otherwise.

Best known subquadratic time approximations:

Sparse graphs world

> Diameter: 3/2

- Radius: 3/2
$>$ All eccentricities: 5/3
- Median: $(1+\varepsilon)$, any $\varepsilon>0$

Radius 2 or 3

Node per element

Graph has O(n) nodes $m=O(n \log n)$ edges

The center node is orange, and the radius is 2 if a hitting set exists, and is 3 otherwise.

Thm: Radius 2 or 3 in $\mathrm{O}\left(\mathrm{m}^{2-\varepsilon}\right)$ time implies $\mathrm{O}\left(\mathrm{n}^{2-\delta}\right)$ time for HS.

Any two orange nodes are at dist 2.
Every orange node is at distance at most 2 from every non-yellow node.
Two sets u and v from different sides (one yellow, one orange) are at
dist 2 if exists a \mathbf{c} with $\mathbf{c} \in \mathbf{u} \cap \mathbf{v}$, and at dist 3 otherwise.
Every non-orange node is at distance at least 3 from r or s

Radius and diameter

- So far, any algorithm for one of radius and diameter has also been modified to work for the other
- The two problems only differ in the quantifiers: max, max vs min, max, but this also seems to make them different
- Diameter might be easier than APSP in dense graphs, or might be hard for a different reason
- Some problems are equivalent to Diameter in dense graphs (e.g. approximating betweenness centrality).

Open questions

- Any hardness for diameter in dense graphs?
- Other equivalent graph problems?
- Can we relate the sparse and dense cases to each other? E.g. does an $\mathrm{n}^{1.9}$ time algorithm for sparse diameter imply an $\mathrm{n}^{2.9}$ algorithm for dense diameter?
- Approximation hardness for dense graphs? The reductions do not preserve approximability.
- What about the runtimes for 3/2 approximating the diameter / radius? Are they optimal?

