
Conditional hardness and equvalences for

Virginia V. Williams

Stanford

Important graph parameters

 Eccentricities: the eccentricity e(x) of x is maxy d(x, y)

 Diameter: maxx e(x) = maxx, y d(x, y)

 Radius: minx e(x) = minx maxy d(x, y)

 Median: minx y d(x, y)

Best algorithms: compute all pairs shortest paths (APSP):

~n3-o(1) for dense graphs (m~n2), ~n2 for sparse (m~n)

Can one get n3- for dense? Can one get n2- for sparse?

What about for approximations?

Undirected G, weigthed, n nodes, m edges

Outline

 Hardness and equivalences for dense graphs

 Hardness for sparse graphs

The dense graph regime: beating n3

Theorem [VW’10, AGV’14]: APSP is

equivalent to Radius, Median and many

other graph problems, under subcubic

reductions.

Equivalence of problems A and B means:

any O(n3 -) time alg for problem B can be

converted to an O(n3 -) time alg for problem

A, and vice versa.

A

n3-δ

B B B B

B instance sizes

n1, …, nk so that

Σi ni
3-ε < n3-δ

Subcubic reduction

from problem A to

problem B

Size n

APSP Research

5

Author Runtime Year

Fredman n3 log log1/3 n / log1/3 n 1976

Takaoka n3 log log1/2 n / log1/2 n 1992

Dobosiewicz n3 / log1/2 n 1992

Han n3 log log5/7 n / log5/7 n 2004

Takaoka n3 log log2 n / log n 2004

Zwick n3 log log1/2 n / log n 2004

Chan n3 / log n 2005

Han n3 log log5/4 n / log5/4 n 2006

Chan n3 log log3 n / log2 n 2007

Han, Takaoka n3 log log n / log2 n 2012

Williams n3 / exp(log n) 2014

Big Open Problem: APSP in

truly subcubic time?

APSP Conjecture: APSP

requires n3-o(1) time.

The dense graph regime: beating n3

Theorem [VW’10, AGV’14]: APSP is

equivalent to Radius, Median and many

other graph problems, under subcubic

reductions.

Equivalence of problems A and B means:

any O(n3 -) time alg for problem A can be

converted to an O(n3 -) time alg for problem

B, and vice versa.

A

n3-δ

B B B B

B instance sizes

n1, …, nk so that

Σi ni
3-ε < n3-δ

Subcubic reduction

Some known equivalences to APSP

APSP

Neg.

Triangle

Distance

product

Radius

Metricity

2nd Shortest

path

Replacement

paths

Betweenness

centrality

Wiener index

Dist Product

Verification
Median

Distance product

Distance product: Given two matrices A, B:

(A * B)[i, j] = mink (A[i, k] + B[k, j])

APSP in T(n) time Dist. Prod. in T(n) time

1
5

3

2 2

2

1 ∞ ∞
5 2 ∞
∞ ∞ 2

3 ∞ ∞
2 2 ∞
∞ ∞ 2

A B i

j

2 2
k

A[i, k] B[k, j]

Distance product and APSP

Distance product

in T(n) time

log n

Fischer, Meyer’71

APSP and Distance product are equivalent.

APSP in T(n)

Weighted adjacency matrix of a graph:

A[u,v] =

w(u,v) for edges (u,v) and

∞ for non-edges (u,v)

0 for u=v

time

Ak [u,v] = weight of shortest path on · k edges

Some known equivalences to APSP

APSP

Neg.

Triangle

Distance

product

Radius

Metricity

2nd Shortest

path

Replacement

paths

Betweenness

centrality

Wiener index

Median

Dist Product

Verification

V,W’10

Negative triangle

Input: Graph G with integer edge weights

Output:

 ‘Yes’ if there exist nodes i,j,k in G such that

 w(i,j) + w(j,k) + w(k,i) < 0

 ‘No’ otherwise.

In general, no O(n3-ε) algorithm known.

10

3

-8

-8

-3

Easy cubic time

algorithm!!

1. Distance product to

 All pairs negative triangles:

 For every j,i in G,

 is there a k so that w(i,k) + w(k,j) < -w(j,i) ?

2. All pairs negative triangles to

 Negative triangle:

 Are there i,j,k in G, so that

 w(i,k) + w(k,j) < -w(j,i) ?

Distance product to negative

triangle

(A*B)[i, j] = mink (A[i, k]+B[k, j])

is there a k so that A[i,k]+B[k,j] < -w(j,i)?

is mink A[i,k]+B[k,j] < -w(j,i)?

Add edges from J to I with carefully chosen weights w(¢ , ¢)
All pairs negative triangles: for every j, i in J x I,

Reducing distance product to

all pairs negative triangle

1

5

3

2 2

2

1 ∞ ∞
5 ∞ ∞
∞ ∞ 2

3 ∞ ∞
∞ 2 ∞
∞ ∞ 2

-8

0 I J

K

Simultaneous

binary search!

A B

(A*B)[i, j] =

mink (A[i, k]+B[k, j])

j i

k

A[i,k] A[k,j]

w(j, i)

1. Distance product to

 All pairs negative triangles:

 For every j,i in G,

 is there a k so that w(i,k) + w(k,j) < -w(j,i) ?

2. All pairs negative triangles to

 Negative triangle:

 Are there i,j,k in G, so that

 w(i,k) + w(k,j) < -w(j,i) ?

Distance product to negative

triangle

(A*B)[i, j] = mink (A[i, k]+B[k, j])

Idea:

1. Split I, J, K into pieces

of small size s

2. Consider all (n/s)3

triples of pieces (Ii,Jj,Kk)

3. Find negative triangles

in each triple

All pairs negative triangle to negative triangle

All Pairs Negative Triangle

Initialize C : n x n matrix of all-zeros

For every triple (Ix,Jy,Kz) in turn:

 while (Ix,Jy,Kz) has a negative triangle

 report negative triangle ax,ay,az

 set C[ax,ay] = 1

 set w(ax,ay) = ∞

 (ax, ay) doesn’t

appear in any more

negative triangles!

All Pairs Negative Triangle

Initialize C : n x n matrix of all-zeros

For every triple (Ix,Jy,Kz) in turn:

 while (Ix,Jy,Kz) has a negative triangle

 report negative triangle ax,ay,az

 set C[ax,ay] = 1

 set w(ax,ay) = ∞

(ax,ay) doesn’t appear in any more

negative triangles!

Runtime:
[(#triples) + (#triangles found)] • T(neg. triangle in triple)

= ((n/s)3 + n2) • NegTriangle(s)

NegTriangle(n) = nd

= n2+(d/3) for s=n1/3. Subcubic if d<3.

Some known equivalences to APSP

APSP

Neg.

Triangle

Distance

product

Radius

Metricity

2nd Shortest

path

Replacement

paths

Betweenness

centrality

Wiener index

Median

Dist Product

Verification

AGV’14

Reducing Neg. Triangle to Radius

WLOG,

in the Negative triangle problem:

 The given graph G is tripartite:

 create 3 copies of the vertex set

and add 3 copies of each edge

a

b

c

c

a

b

b

c

a

1

2

2

3 1

3

2

1

 G is a complete tripartite graph: if the largest

edge weight were M, make each non-edge

between different partitions into an edge of

weight 3M. 3M is the new M.

3

9

Reducing Neg. Triangle to Radius

a

b

c

e

Copy 1 of

nodes of A

Nodes of B Copy 2 of

nodes of A
Nodes of C

w(a,b)
w(b,c)

a’
w(a,c)

x

y

3M+2W

if a e

Tripartite G with partitions A,B,C, weights

in {–M ,…, M}, find triangle of weight <0.

Weights between W and

2M+W, find triangle of weight <

3M+3W. (W>>M: 4W>3M+3W)

M+W
z

w

2M+W

2M+W

M+W

The radius is < 3M+3W if and only if there was a negative triangle

+M+W

(wlog AxB, BxC, AxC are complete bipartite, M = no edge)

Some known equivalences to APSP

APSP

Neg.

Triangle

Distance

product

Radius

Metricity

2nd Shortest

path

Replacement

paths

Betweenness

centrality

Wiener index

Median

Dist Product

Verification

Outline

 Hardness and equivalences for dense graphs

 Hardness for sparse graphs

Algorithms for sparse graphs

 Eccentricities, diameter, radius, median

can be solved in Õ(n2) time in graphs

with Õ(n) edges, and this is the best

known even for unweighted graphs!

 Output is a single integer, unlike APSP

 What about approximation algorithms?

Algorithms for sparse graphs

Best subquadratic time approximations:

 Diameter: 3/2-approx. in min {m3/2, mn2/3} time [1]

 Radius: 3/2-approx. in min {m3/2, mn2/3} time [1]

 All eccentricities: 5/3-approx. in m3/2 time [1]

 Median: (1+) approximation in m/poly() time [2]

[1] Chechik et al.’14, [2] Indyk’99

We’ll show that these approximation ratios are

TIGHT for subquadratic algs (under conjectures).

Sparse graphs: conjectures

 Orthogonal vectors (OV):

given two sets U and V of n vectors in {0, 1}O(log n), are there
u 2 U, v 2 V such that u ¢ v = 0?

OV conjecture (OVC): OV requires n2-o(1) time.

Theorem [W’04]: SETH implies OVC.

 Hitting set (HS):

given two sets U and V of n subsets of [O(log n)], is there
some u 2 U such that for all v 2 V, u Å v ; ?

HS conjecture (HSC): HS requires n2-o(1) time.

Theorem [AVW’15]: HSC implies OVC.

Sparse graphs world
Best known subquadratic time approximations:

 Diameter: 3/2

 Radius: 3/2

 All eccentricities: 5/3

 Median: (1+), any > 0

HS OV

k-SAT

3/2 -

approx for

diameter 3/2 -

approx for

radius

5/3 - approx

for all

eccentricities median

n2-

n2-’

n2-’

n2-

n2-’

n2-’

(2 -)n

Diameter 2 or 3

Any two vector nodes from the same side are at dist 2.

Any coordinate is at dist 2 from everyone, X and Y are at dist 2 from everyone.

Two vectors u and v from different sides are at

 dist 2 if exists a c with u[c]=v[c]=1, and at dist 3 otherwise.

Node per

vector Node per

coordinate

Node per

vector

For each v,c

edge (v,c) if

v[c]=1

For each d,

u edge (d,u)

if u[d]=1

X Y

Graph has O(n) nodes

m=O(n log n) edges

Thm: Diameter 2 or

3 in O(m2-) time

implies O(n2-) time

for OV and hence

SETH is false.

Reduce from OV on n vectors

Diameter is 3 if

exists orthogonal

pair, and is 2

otherwise. v

c

d

u

[RV’13]

Sparse graphs world
Best known subquadratic time approximations:

 Diameter: 3/2

 Radius: 3/2

 All eccentricities: 5/3

 Median: (1+), any > 0

HS OV

k-SAT

3/2 -

approx for

diameter 3/2 -

approx for

radius

5/3 - approx

for

eccentricities median

n2-

n2-’

n2-’

n2-

n2-’

n2-’

(2 -)n

Radius 2 or 3

Any two orange nodes are at dist 2.

Every orange node is at distance at most 2 from every non-yellow node.

Two sets u and v from different sides (one yellow, one orange) are at

 dist 2 if exists a c with c 2 u Å v, and at dist 3 otherwise.

Every non-orange node is at distance at least 3 from r or s

Node per set Node per

element
Node per set

For each v,c

edge (v,c) if
c 2 v

For each d,u

edge (d,u) if
d 2 u

X Y

Graph has O(n) nodes

m=O(n log n) edges

Thm: Radius 2 or 3 in

O(m2-) time implies

O(n2-) time for HS.

Reduce from HS on n sets

The center node is

orange, and the

radius is 2 if a

hitting set exists,

and is 3 otherwise. v

c

d

u

r

s

[AVW’15]

Radius and diameter

 So far, any algorithm for one of radius and diameter

has also been modified to work for the other

 The two problems only differ in the quantifiers:

max,max vs min,max, but this also seems to make

them different

 Diameter might be easier than APSP in dense

graphs, or might be hard for a different reason

 Some problems are equivalent to Diameter in dense

graphs (e.g. approximating betweenness centrality).

Open questions

 Any hardness for diameter in dense graphs?

 Other equivalent graph problems?

 Can we relate the sparse and dense cases to each

other? E.g. does an n1.9 time algorithm for sparse

diameter imply an n2.9 algorithm for dense diameter?

 Approximation hardness for dense graphs? The

reductions do not preserve approximability.

 What about the runtimes for 3/2 approximating the

diameter / radius? Are they optimal?

THANK YOU!

