Problem 1

Let \(R \) be an integer between 1 and \(n \). Modify Dijkstra’s algorithm to design an \(O(R^2 \log n) \) time algorithm that given any \(n \)-node graph \(G = (V, E) \) with nonnegative integer edge weights \(w : E \rightarrow \mathbb{Z}^+ \), and a source \(s \), finds the closest \(R \) vertices \(T_s \) to \(s \), and the distance between \(s \) and every \(v \in T_s \), under the following assumptions:

1. There is a data structure \(F \) (e.g. Binomial heap) that stores up to \(n \) pairs \((e, k)\) (where \(e \) is an element and \(k \) is an integer value) and supports the following operations each in \(O(\log n) \) time:
 - \(\text{insert}(e, k) \): insert an element \(e \) into \(F \) with value \(k \), provided \(e \) is not in \(F \) yet with any value
 - \(\text{decrease-key}(e, k) \): if \(e \) is in \(F \) with value \(k' \geq k \), change its value to \(k \)
 - \(\text{extract-min} \): return \((e, k)\) where \(e \) has the minimum value \(k \) over all elements in \(F \), deleting \((e, k)\) from \(F \)

2. \(G \) is given in adjacency list representation, and for each \(u \in V \), the neighbors of \(u \), \(N(u) \) are sorted in nondecreasing order of their edge weight.

Give pseudocode for your algorithm, prove that it is correct and that it runs in \(O(R^2 \log n) \) time.

Problem 2

The radius of a graph is given by \(R = \min_v \max_u d(u, v) \). In this problem we will adapt the diameter approximation algorithm given in class to obtain an \(\tilde{O}(m\sqrt{n}) \) time \(3/2 \)-approximation algorithm for the radius \(R \) of any given undirected graph on \(n \) nodes and \(m \) edges, whenever \(R \) is even.

The eccentricity \(\epsilon(v) \) of a node \(v \) is defined as the maximum distance from \(v \) to another node, i.e. \(\epsilon(v) := \max_{u \in V} d(u, v) \).

The center \(c \) of a graph \(G \) is the node in \(G \) of minimum eccentricity, i.e. \(c := \arg \min_{v \in V} \epsilon(v) \).

Assume below that the radius of the given graph \(G \) is even. Let \(S \) be a random sample of \(O(\sqrt{n} \log n) \) nodes, let \(w \) be the node furthest from \(S \) and \(T_w \) be the closest \(\sqrt{n} \) nodes to \(w \), just as in the diameter algorithm from class. You can assume that \(S \) hits \(T_w \), as we showed in class that it will do so with high probability.

- Show that if for some node \(s \) in the random sample \(S \), \(d(s, c) \leq R/2 \), then \(R \leq \min_{s \in S} \epsilon(s) \leq 3R/2 \), and hence one can return an estimate \(R' \) of the radius so that \(R \leq R' \leq 3R/2 \).
- Show that if for all nodes \(s \in S \), \(d(s, c) > R/2 \), then all nodes at distance \(R/2 \) from \(w \) are in \(T_w \).
- Show that if \(d(w, c) \leq R/2 \), then \(R \leq \epsilon(w) \leq 3R/2 \).
- Show that if \(d(w, c) > R/2 \) and for all nodes \(s \in S \), \(d(s, c) > R/2 \), then there is some node \(x \) in \(T_w \) with \(\epsilon(x) \leq 3R/2 \), and hence \(R \leq \min_{x \in T_w} \epsilon(x) \leq 3R/2 \).
- Give pseudocode for the radius approximation algorithm.
Problem 3

Design an $O(n^{2.5} \log n)$ time algorithm that, given an n-node graph with nonnegative edge weights, computes for all pairs of vertices u, v an estimate $D(u, v)$, such that with high probability, for all pairs of vertices u, v for which there is a shortest path that uses at least \sqrt{n} nodes, $D(u, v)$ is the distance between u and v. (Your algorithm does not need to know for which pairs u, v, $D(u, v)$ is the correct distance.)