Problem 1

Let R be an integer between 1 and n. Modify Dijkstra’s algorithm to design an $O(R^2 \log n)$ time algorithm that given any n-node graph $G = (V,E)$ with nonnegative integer edge weights $w : E \to \mathbb{Z}^+$, and a source s, finds the closest R vertices T_s to s, and the distance between s and every $v \in T_s$, under the following assumptions:

1. There is a data structure F (e.g. Binomial heap) that stores up to n pairs (e,k) (where e is an element and k is an integer value) and supports the following operations each in $O(\log n)$ time:
 - insert(e,k): insert an element e into F with value k, provided e is not in F yet with any value
 - decrease-key(e,k): if e is in F with value $k' \geq k$, change its value to k
 - extract-min: return (e,k) where e has the minimum value k over all elements in F, deleting (e,k) from F

2. G is given in adjacency list representation, and for each $u \in V$, the neighbors of u, $N(u)$ are sorted in nondecreasing order of their edge weight.

Give pseudocode for your algorithm, prove that it is correct and that it runs in $O(R^2 \log n)$ time.

Problem 2

The radius of a graph is given by $R = \min_s \max_u d(u,v)$. In this problem we will adapt the diameter approximation algorithm given in class to obtain an $\tilde{O}(m \sqrt{n})$ time 3/2-approximation algorithm for the radius R of any given undirected graph on n nodes and m edges, whenever R is even.

The eccentricity $\epsilon(v)$ of a node v is defined as the maximum distance from v to another node, i.e. $\epsilon(v) := \max_{u \in V} d(u,v)$.

The center c of a graph G is the node in G of minimum eccentricity, i.e. $c := \arg \min_{v \in V} \epsilon(v)$.

Assume below that the radius of the given graph G is even. Let S be a random sample of $O(\sqrt{n} \log n)$ nodes, let w be the node furthest from S and T_w be the closest \sqrt{n} nodes to w, just as in the diameter algorithm from class. You can assume that S hits T_w, as we showed in class that it will do so with high probability.

- Show that if for some node s in the random sample S, $d(s,c) \leq R/2$, then $R \leq \min_{s \in S} \epsilon(s) \leq 3R/2$, and hence one can return an estimate R' of the radius so that $R \leq R' \leq 3R/2$.
- Show that if for all nodes $s \in S$, $d(s,c) > R/2$, then all nodes at distance $R/2$ from w are in T_w.
- Show that if $d(w,c) \leq R/2$, then $R \leq \epsilon(w) \leq 3R/2$.

• Show that if $d(w,c) > R/2$ and for all nodes $s \in S$, $d(s,c) > R/2$, then there is some node x in T_w with $\epsilon(x) \leq 3R/2$, and hence $R \leq \min_{x \in T_w} \epsilon(x) \leq 3R/2$.

- Give pseudocode for the radius approximation algorithm.
Problem 3

Design an $O(n^{2.5} \log n)$ time algorithm that, given a graph with nonnegative edge weights, finds with high probability, the distances between all pairs of vertices for which there is a shortest path that uses at least \sqrt{n} nodes.