
Lecture 8 Compact Routing (cont.) & Dynamic Algorithms
Scribe: Chuanqi Shen Date: February 5, 2014

1 Recap

To recap, we are attempting to apply distance oracles to solve the compact routing problem, defined as
follows. There is an underlying graph G = (V,E). Each vertex v in V has an “address label” L(v). When
a vertex u wants to send a packet P to v, it adds L(v) to the header of P . Additionally, each vertex x of
G stores a routing table Rx. When x receives a packet, it looks at the header, reads L(v) and uses L(v)
together with its routing table Rx to decide which of its neighbors it should send the packet to.

A compact routing scheme consists of a preprocessing algorithm that constructs Rx and L(x) for each
node x, and of a routing algorithm that given Rx and L(v) finds a neighbor of x to route the packet to. We
want both Rv and L(v) to be small. Notice that this also entails that if a node has many neighbors it cannot
know all of them. We assume that the neighbors are accessed via ports; intuitively, these are just edges that
the node x gains knowledge about, either from L(v) or from Rx.

To create a compact routing scheme, we will use distance oracles. As with our distance oracle construction,
we randomly select k subsets of the vertex set A0, A1..., Ak−1 with V = A0 ⊃ A1 ⊃ ... ⊃ Ak−1 such

that |Ai| ≈ |Ai−1|
n1\k . Also, we define pi(v) ∈ Ai to be the node in Ai closest to v, and B(v) = Ak−1 ∪(⋃

i<k−1{x ∈ Ai | d(v, x) < d(v, pi+1(v)}
)
.

In the previous lecture, we said that Rv will store p0(v), p1(v), ..., pk−1(v) and B(v). Also, for each
x ∈ B(v), we will store the next node on the shortest path from v to x. L(v) will store p0(v), p1(v), ..., pk−1(v).

Suppose we want to route from u to v. We would like to find the minimum j such that pj(v) ∈ B(u)∩B(v).
Then, if we route on the shortest path from u to pj(v) to v, then we will get 4k− 3 approximation as proven
in the previous lecture.

2 Problems

We presented a first approach last time. However, we encountered problems in the implementation.

1. Suppose we route from x to x′ where x′ is the next node after x on the shortest path to pj(v). What
happens if pj(v) 6∈ B(x′)?

2. Suppose the current node x is pj(v). How do we route down to v?

As it turns out, problem 1 will never happen due to the following lemma.

Lemma 2.1. If pj(v) ∈ B(x) and x′ is the next node after x on the shortest path to pj(v), then pj(v) ∈ B(x′).

Proof. Note pj(v) ∈ B(x) implies d(x, pj(v)) < d(x, pj+1(x)). But

d(x, pj(v)) = d(x, x′) + d(x′, pj(v)) < d(x, pj+1(x)) ≤ d(x, pj+1(x′)) = d(x, x′) + d(x′, pj+1(x′)),

where the first equality follows by the definition of x′, the first < inequality follows from the fact that
pj(v) ∈ Aj ∩B(x), the second inequality follows by the definition of pj+1(x) and since pj+1(x′) ∈ Aj+1.

Therefore
p(x′, pj(v)) < p(x′, pj+1(x′)) =⇒ pj(v) ∈ B(x′).

�

1

Now we consider problem 2. Firstly, notice that the route from pj(v) to v is along the edges of the
shortest path tree rooted at pj(v), so we will try to make use of that. We will try to achieve this using
additional O(log n) memory for our routing tables and O(log2 n) memory for our headers.

For every node x in the graph, let’s compute a shortest path tree Tx rooted at x. Suppose that there
is some scheme that given a tree T , creates labels LT (u) for each node u ∈ T and routing tables RT (u) for
each node u ∈ T , so that given LT (v) and RT (x), x can route to the next node x′ on the tree path from x
to v in T .

Then, we can augment our routing scheme for general graphs as follows:

The labels L(u). The label L(u) of u contains p0(u), . . . , pk−1(u) and for each j ∈ {0, . . . , k− 1} the label
LTpj(u)

(u) for the node u in the shortest paths tree rooted at pj(u).

The routing tables Rx. The routing table Rx of x contains for each y ∈ B(x), the routing table RTy
(x)

for x in the shortest paths tree Ty rooted at y.

Routing. Suppose node u wants to send a message to v. First it looks at L(v) and finds the minimum
j such that pj(v) ∈ B(v). It can do this since B(v) is in Ru. Now let y = pj(v) and let T = Ty be the
shortest paths tree rooted at y. First, u writes y and L(v) in the header of the message. Then u accesses
LT (v) from L(v) and RT (u) from Ru and uses these to route to the next node u′ on the shortest path from
u to v in T . From then on, each node that gets the message learns L(v) and y, and can access RTy (x) since
by Lemma 2.1 above and Lemma 2.2 below, y ∈ B(x). Thus every node on the path u −→ pj(v) = y −→ v
can route to the next node of the path until v is reached. By the results from the previous class, we are
guaranteed to route along a 4k − 3-approximate path.

Lemma 2.2. Suppose that x lies on the shortest path between pj(v) and v. Then pj(v) ∈ B(x).

Proof. Let J be the largest index such that pj(v) ∈ AJ . Then in particular, pj(v) = pJ(v), and for
pJ+1(v) 6= pj(v). Suppose that pj(v) /∈ B(x). Then, d(x, pj(v)) ≥ d(x, pJ+1(x)) by the definition of B(x)
and J . However, then we have

d(v, pJ+1(v)) ≤ d(v, pJ+1(x) ≤ d(v, x) + d(x, pJ+1(x)) ≤ d(v, x) + d(x, pj(v)) = d(v, pj(v)),

which implies that pJ+1(v) = pj(v) and contradicts pJ+1(v) 6= pj(v). Thus, pj(v) ∈ B(x). �

3 Routing on trees

Here we show that one can route along a tree T with routing tables of size O(log n) and labels of size
O(log2 n). This increases the routing table size of the general graph algorithm by a O(log n) factor, and the
label size there by a O(log2 n) factor.

Let T be a tree rooted at a node r.

First Attempt. Let us perform a DFS traversal of T and label the nodes in DFS traversal order. Identify
each node with its DFS number. Observe that after doing so, the nodes in any subtree of T can be represented
as a consecutive interval of integers as follows. For each x ∈ T , let f(x) denote the descendent of x with
largest DFS label. Then x is on the shortest path from the root to any node in [x, f(x)]. Hence, one potential
protocol is as follows. Suppose we are at x and we want to route to y. Then, search for a child c of x such
that v ∈ [c, f(c)]. Once we find such a child c, we will route to c.

However, since a node can have Ω(n) children, that can make some of our routing tables huge. Therefore,
we need to find some way to reduce the number of edges to children that we store for each node.

2

Second Attempt For x ∈ T and for each child x′ of x, denote x′ a “light” child of x if the subtree
rooted at x′ contains at most half the nodes in the subtree rooted at x. Otherwise, denote x′ as a “heavy”
child. Observe that each node x has at most 1 heavy child. Also, any path along T from a node x to some
descendant v can contain at most O(log n) light children since at each light child the number of descendents
halves. We will make use of these two properties.

For each x ∈ T , we store the heavy child h(x) of x in RT (x). As in the first attempt we also store f(x)
and x in RT (x). Now, when we route a packet to v we first check if v ∈ [h(x), f(x)]. If so, then we can route
to the heavy child h(x) that we access from RT (x). If not, we check if v ∈ [x, f(x)] and if not, we route to
the parent p(x) of x that we also store in RT (x). Otherwise, we conclude that the next node on the path to
v is a light child of x. We will get this light child from LT (v).

Now we describe what we store in LT (v). Let e1, e2, . . . , et be all the light children along the path from
the root r to v. We will store the pairs (p(ei), ei) in our header LT (v) (p(x) denotes the parent of x). Now
suppose that as above we are at x and have established that the path to v goes through a light child of x.
Then we search through LT (v) for a pair (p(ei), ei) where x = p(ei). If v is a descendent of x but not of
h(x) then this pair will be in LT (v). Then we route to ei.

By the two properties that we described, the size of RT (x) for each x is just 4 integers, x, f(x), h(x), p(x)
each having O(log n) bits, thus taking O(log n) space. The size of LT (x) is O(log n) integer pairs, which
takes O(log2 n) space as promised.

Below, we give the steps to the entire tree routing algorithm.

Algorithm 1: Route(x, L(v))

if v is not contained in [x, f(x)] then
Route(p(x), L(v));
Report done;

else
if x = v then

Report done.;

if x has heavy child then
Let h(x) be heavy child of x;
if v is contained in [h(x), f(h(x))] then

Route(h(x), L(v));
Report done;

Find pair (p(ei), ei) in L(v) such that p(ei) = x;
Route(ei, L(v));
Report Done;

Note that for our application for general graphs we get |Rv| ≈ |B(v)| = O(kn1\k) and |L(v)| = O((k +
log n) log n), both of which are pretty good.

4 Dynamic Algorithms

So far, the algorithms we have discussed work only on static graphs. However, we want to know if we
can build algorithms that can handle changes to the graphs. If we only change the graph by a tiny bit, it
seems that we may only need to find a little extra bit of information with an additional bit of computation.
Algorithms that can handle changes to the graph are called dynamic algorithms.

Dynamic algorithms can be decomposed into 3 parts

1. Preprocessing: The original graph is preprocessed, and some data structure is created and stored.

2. Query: Some information about the graph is queried.

3

3. Update: Some change is made to the graph (e.g. edges are inserted/removed, weights are changed etc).

As an example, in the reachability problem, given a query (u, v), we want to know if it is possible to find
a path from u to v. We can also be given update instructions that tell us to insert or remove an edge.

There are two naive ways to write a dynamic algorithm. The first way is to redo preprocessing whenever a
update is made. For example, whenever an edge is inserted removed, we can preprocess reachability between
all pairs of nodes again to answer queries in constant time. The second way is to do nothing when updating
the graph, and compute the result when the query is given. For example, we can merely update the graph
when an update instruction is given, and only compute reachability between (u, v) then the query (u, v) is
given.

When creating dynamic algorithms, it is sometimes hard to support both insertion and deletion of edges.
Therefore, we can create algorithms that only support insertion or deletion. The former kind is called an
incremental algorithm while the latter is called a decremental algorithm.

Also, sometimes a dynamic algorithm may take a while when handling certain updates or queries, but
perform efficiently in the long run. Therefore, we often look at the amortized runtime when doing complexity
analysis.

4

