In this lecture we will continue the discussion of additive spanners, completing the description of +4-spanners. Then we will begin the topic of approximate distance oracles.

1 Additive 4-Spanners

In this section, a node in an n-node graph is high degree if it has degree greater than $n^{2/5}$ and is low degree otherwise.

Theorem 1.1. There exists an $\tilde{O}(n^{7/5})$ edge additive 4-spanner in any n-node m-edge graph $G = (V, E)$.

Proof. The algorithm for constructing a +4-spanner H from G is as follows:

1. For all low degree $v \in V$, add v's $\leq n^{2/5}$ edges to H. This contributes at most $n \cdot n^{2/5} = n^{7/5}$ edges.

2. Let S be a random subset of V on $O(n^{2/5} \log n)$ nodes. For each $s \in S$, add the entire breadth-first-search tree rooted at s into H. Here, we add $O(n^{2/5} \log n \cdot n) \in \tilde{O}(n^{7/5})$ edges because each BFS-tree has at most n edges.

3. Let T be a random sample on $O(n^{3/5} \log n)$ nodes. With high probability, T hits the neighborhood of each high degree node. For each high degree node v, we pick one of its neighbors in T, $t(v)$ and we add $(v, t(v))$ to H (adding $O(n)$ edges; $t(v)$ exists for each high degree v since T is a hitting set).

4. For each $t \in T$, we define t’s ball as the set of high degree vertices assigned to it:

$$B(t) = \{ v \in V | v \text{ high degree , } t = t(v) \}.$$

We continue adding edges to H with Algorithm 1.

Algorithm 1: Adding final edges to H

```
foreach distinct $t, t' \in T$ do
    $P_{t, t'} = \{ \};$
    foreach $u \in B(t), v \in B(t')$ do
        if shortest path $P$ from $u \rightarrow v$ has $< n^{1/5}$ high degree nodes then
            $P_{t, t'}$.insert($P$);
        if $P = \{ \}$ then
            break;
        $p =$ shortest path in $P_{t, t'}$;
        foreach edge $e \in p$ do
            $H$.insert($e$);
```

The path added to H corresponding to t and t' will be referred to as the (t, t')-linking path.

How many edges are added to H? There are $\tilde{O}(n^{6/5})$ pairs of t, t'. For each pair, we may add the edges from some path P connecting u and v in $B(t)$ and $B(t')$ respectively. The only edges in P not already in H are those between two high degree nodes (by Step (1)), of which there are $\leq n^{1/5}$ in P. Thus each pair t, t' adds $O(n^{1/5})$ edges to H. Summing over the $\tilde{O}(n^{6/5})$ pairs, $O(n^{7/5})$ edges are added.

1 The constant behind the big O needs to be picked as sufficiently large for a hitting set argument appearing later to work.
We have constructed H to be of size $\tilde{O}(n^{7/5})$. It remains to show that H is an additive 4-spanner of G.

If a pair of vertices u and v in G have a shortest path using no high degree nodes, then that path is in H due to Step (1).

The following claim helps resolve the case where u and v have a shortest path using more than $n^{1/5}$ high degree nodes.

Claim 1. Let P be a uv-shortest path for some $u, v \in V$. If P has $> n^{1/5}$ high degree nodes, then P has $\Omega(n^{3/5})$ distinct neighbors.

Proof. Each node x in G can have at most 3 neighbors in P. Otherwise, P could be shortened by taking a path through x, a contradiction since P is a uv-shortest path for some $u, v \in V$. Since P has $> n^{1/5}$ high-degree nodes, each of which has at least $n^{2/5}$ neighbors, it follows that P has $> n^{3/5}$ edges incident on it. Each neighbor of P can account for at most 3 of these edges, and hence P must have $\geq n^{3/5}/3$ distinct neighbors. \hfill \blacksquare

It follows from Claim 1 that for every $u, v \in V$ with a shortest path hitting $> n^{1/5}$ high degree nodes, S hits a neighbor node of a shortest path from u to v. In other words, such paths from u to v each have enough distinct neighbor nodes ($\Omega(n^{3/5})$) that S forms a hitting set on them. Thus the edges added in Step (2) include a $+2$-approximation for a shortest path between such u and v.

The only remaining case is uv-shortest paths hitting between 1 and $n^{1/5}$ high degree nodes.

Claim 2. If a uv-shortest path hits between 1 and $n^{1/5}$ high degree nodes, then after Step (4), $d_H(u, v) \leq d(u, v) + 4$.

Proof. Let P be a shortest path from u to v hitting between 1 and $n^{1/5}$ high degree nodes. Let h_1 be the first and h_2 be the last high degree nodes in P (possibly not distinct). Let $t_1 = t(h_1)$ and $t_2 = t(h_2)$. Let x and y be the neighbors of t_1 and t_2 respectively connected by the (t_1, t_2)-linking path. Note that the (t_1, t_2)-linking path exists because there is at least one pair of elements of $B(t_1)$ and $B(t_2)$ connected by a shortest path using $\leq n^{1/5}$ nodes, namely h_1 and h_2.

Since the subset of P from u to h_1 and from h_2 to v is in H (Step (1)), we have

$$d_H(u, v) \leq d(u, h_1) + d_H(h_1, h_2) + d(h_2, v).$$

Thus we need only show that $d_H(h_1, h_2) \leq d(h_1, h_2) + 4$. Observe that

$$d_H(h_1, h_2) \leq d(h_1, x) + d(x, y) + d(y, h_2) = d(x, y) + 4.$$

Recall that x and y have the shortest path between them in G of any pair of elements in $B(t_1)$ and $B(t_2)$, excluding paths with greater than $n^{1/5}$ high degree nodes. Namely, since $h_1 \in B(t_1)$ and $h_2 \in B(t_2)$, we have that $d(x, y) \leq d(h_1, h_2)$. Plugging this in yields

$$d_H(h_1, h_2) \leq d(h_1, h_2) + 4,$$

completing the proof. \hfill \blacksquare

2 \hspace{1cm} t-approximate distance oracles

Let $G = (V, E)$ be an n-node m-edge graph (with possibly non-negative weights). In this section, such G are the inputs of t-approximate distance oracles.
A t-approximate distance oracle is defined by its \textit{preprocessing algorithm} and \textit{query algorithm}:

Preprocessing algorithm: Given G, produces a summary $S(G)$ in memory.

Query Algorithm: Given $(u, v, S(G))$, returns the approximate distance $D(u, v)$ in G satisfying

$$d(u, v) \leq D(u, v) \leq t \cdot d(u, v).$$

A t-approximate distance oracle has three characteristic properties:

1. Preprocessing time $T(m, n)$.
2. Query time $q(n)$ (which is preferably constant).
3. Storage space $|S(G)|$, measured in bits.

Example 1. Multiplicative spanner trees are an example of distance oracles, however lack constant query time. t-spanners on $O(n^{1+1/k})$ edges are $(2k-1)$-approximate distance oracles of size $O(n^{1+1/k})$, but query time $O(n^{1+1/k})$.

Eventually, we will prove the following theorem of Thorup and Zwick '05 (not today though):

Theorem 2.1. For all $k \geq 1$, there is a $(2k-1)$-distance oracle with space $\tilde{O}(k \cdot n^{1+1/k})$, query time $O(k)$, and preprocessing time $\tilde{O}(mn^{1/k})$.

First, however, we will consider the limitations of distance oracles in terms of space usage. Recall the following conjecture of Erdős:

Conjecture 1. For all k and large enough n, there exists n-node graphs on $\Omega(n^{1+1/k})$ edges with girth at least $2k+2$.

Combining this with the following cool result bounds how well a t-approximate oracle can do at space usage.

Theorem 2.2. Let $m_k(n)$ be the minimum # of edges such that for all k, there exists an n node graph on $m_k(n)$ edges with girth at least $2k+2$. Then any t-approximate distance oracle algorithm with $t < 2k+1$ must use at least $m_k(n)$ bits of space for some n node graph G for some n.

\textbf{Proof.} Let D be a t-approximate distance oracle with less than $m_k(n)$ bits of storage space for some graph G having at least $m_k(n)$ edges and girth at least $2k+2$. Observe that G has at least $2m_k(n)$ subgraphs. If the distance oracle uses less than $m_k(n)$ bits on n node graphs, then some two subgraphs of G, H_1 and H_2, must share the same representation $S(H_1) = S(H_2)$ (by the Pigeon Hole Principle).

Since $H_1 \neq H_2$, we can assume without loss of generality that some edge (u, v) is in H_1 but not H_2. Thus $D_{H_1}(u, v) = 1$. But $D_{H_2}(u, v) \geq 2k+1$ because G has girth at least $2k+2$. Indeed, if there were a path from u to v in H_2 of fewer than $2k+1$ nodes, then adding the edge (u, v) would result in a cycle of size less than $2k+2$, a contradiction.

Since D is a t-approximate distance oracle and $S(H_1) = S(H_2)$, it follows that a query of $(u, v, S(H_1))$ yields the same result as a query of $(u, v, S(H_2))$ which returns a value at least $2k+1$. This is a contradiction since $t < 2k+1$, whereas a query of $(u, v, S(H_1))$ needs to return a value at most $t \cdot 1 < 2k+1$, but we showed that the query needs to be at least $2k+1$. \hfill \square

It follows from Conjecture 1 and theorem 2.2, that the space usage in Theorem 2.1 is in some sense close to optimal, even for unweighted graphs.

In fact, recent research has achieved $O(1)$ query time for $(2k-1)$-distance oracles using $\tilde{O}(k \cdot n^{1+1/k})$ space (Chechik '13). Additional research suggests that approximate distance oracles that are optimal under the assumption of the Erdős Girth Conjecture with $O(1)$ query time and $O(n^{1+1/k})$ are not far away.

We will now direct our attention to the special case of 3-approximate distance oracles (i.e., Theorem 2.1 for $k = 2$).
Theorem 2.3. There is a 3-approximate distance oracle with

- Storage $|S(G)| \in \tilde{O}(n^{3/2})$;
- Query time $q(n) \in O(1)$;
- Preprocessing time $T(m, n) \in \tilde{O}(m \sqrt{n})$.

Proof. **Preprocessing Phase:** For all $v \in V$, let T_v be the closest \sqrt{n} nodes to v (ties broken arbitrarily). Let S be a hitting set for $\{T_v | v \in V\}$ of size $O(\sqrt{n} \log n)$. For all $v \in V$, let $p(v)$ be the closest node to v in S (ties broken arbitrarily). Let the *ball* of v (not the same as defined in the previous section) be

$$B(v) = \{ u \in V | d(v, u) < d(v, p(v)) \}.$$

Moreover, let the *extended ball* of v be $\hat{B}(v) = B(v) \cup S$.

The preprocessing algorithm is Algorithm 2.

Algorithm 2: Preprocessing(G)

```plaintext
foreach $v \in V$ do
  Store $p(v)$ in $S(G)$;
  foreach $u \in \hat{B}(v)$ do
    Store $d(u, v)$ in $S(G)$;

for each $v \in V$, $|\hat{B}(v)| = |B(v)| + |S|$. Since $p(v)$ is among the $\sqrt{n}$ closest nodes to $v$, $|B(v)| \leq |T_v| \leq \sqrt{n}$. Thus $|\hat{B}(v)| \in O(\sqrt{n} \log n)$. Summing over $v \in V$, space usage is $|S(G)| \in \tilde{O}(n^{3/2})$.

**Queries:**

**Algorithm 3:** Query$(u, v, S(G))$

```plaintext
if $u \in \hat{B}(v)$ then
 return $d(u, v)$;
 Lookup $p(v)$ in $S(G)$;
 return $d(u, p(v)) + d(p(v), v)$;
```

Observe that if $u \in \hat{B}(v)$, then the distance $d(u, v)$ is stored in $S(G)$ and that otherwise, $d(u, p(v))$ and $d(p(v), v)$ are stored in $S(G)$. The following claim establishes that the query algorithm correctly approximates $d(u, v)$.

**Claim 3.** If $u \notin \hat{B}(v)$, then $d(u, p(v)) + d(p(v), v) \leq 3 \cdot d(u, v)$.
Proof. Let \( d_1 = d(u, v), d_2 = d(u, p(v)), d_3 = d(v, p(v)) \) (See Figure 1). If \( u \notin \hat{B}(v) \), then \( d_1 \geq d_3 \).

By the triangle inequality,
\[
    d_2 + d_3 \leq (d_1 + d_3) + d_3 = d_1 + 2d_3.
\]

Since \( u \notin \hat{B}(v) \), we have that \( d_1 \geq d_3 \). Thus
\[
    d_1 + 2d_3 \leq 3d_1,
\]
completing the proof.

Preprocessing time is \( \tilde{O}(m\sqrt{n}) \) because the algorithm described is equivalent to performing a BFS on each vertex of \( S \) and a BFS limited to \( \sqrt{n} \) nodes on every other vertex of \( G \). \( |S| \in \tilde{O}(\sqrt{n}) \), so the searches from \( S \) take \( \tilde{O}(m\sqrt{n}) \) time. We can perform the \( n \) searches limited to \( \sqrt{n} \) nodes together by considering every edge in \( G \) and updating \( T_v \) for all sets that the edge’s existence affects.