
29

Roundtrip Spanners and Roundtrip Routing
in Directed Graphs

IAM RODITTY

Weizmann Institute

MIKKEL THORUP

AT&T Labs – Research

AND

URI ZWICK

Tel Aviv University

Abstract. We introduce the notion of roundtrip-spanners of weighted directed graphs and describe

efficient algorithms for their construction. We show that for every integer k ≥ 1 and any ε > 0, any

directed graph on n vertices with edge weights in the range [1, W] has a (2k + ε)-roundtrip-spanner

with O(min{(k2/ε) n1+1/k log (nW) , (k/ε)2 n1+1/k (log n)2−1/k}) edges. We then extend these con-

structions and obtain compact roundtrip routing schemes. For every integer k ≥ 1 and every ε > 0,

we describe a roundtrip routing scheme that has stretch 4k + ε, and uses at each vertex a routing

table of size Õ((k2/ε)n1/k log (nW)). We also show that any weighted directed graph with arbitrary
positive edge weights has a 3-roundtrip-spanner with O(n3/2) edges. This result is optimal. Finally,

we present a stretch 3 roundtrip routing scheme that uses local routing tables of size Õ(n1/2). This

routing scheme is essentially optimal. The roundtrip-spanner constructions and the roundtrip routing

schemes for directed graphs that we describe are only slightly worse than the best available spanners

and routing schemes for undirected graphs. Our roundtrip routing schemes substantially improve

previous results of Cowen and Wagner. Our results are obtained by combining ideas of Cohen, Cowen

and Wagner, Thorup and Zwick, with some new ideas.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-

numerical Algorithms and Problems—Computations on discrete structures; G.2.2 [Discrete Mathe-
matics]: Graph Theory—Graph algorithms

A preliminary version of this article appeared in Proceedings of the 13th Annual Symposium on
Discrete Algorithms (SODA’02), ACM, New York, 2002, pp. 844–851.

The research of M. Thorup and U. Zwick was supported by BFS grant no. 2006261.

Authors’ addresses: L. Roditty, Faculty of Mathematics and Computer Science, Weizmann Institute,

Rehovot 76100, Israel, e-mail: liam.roditty@weizmann.ac.il; M. Thorup, AT&T Labs – Research,

180 Park Avenue, Florham Park, NJ 07932, e-mail: mthorup@research.att.com; U. Zwick, School of

Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel, e-mail: zwick@tau.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along with the

full citation. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute

to lists, or to use any component of this work in other works requires prior specific permission and/or

a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,

New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1549-6325/2008/06-ART29 $5.00 DOI 10.1145/1367064.1367069 http://doi.acm.org/

10.1145/1367064.1367069

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:2 L. RODITTY ET AL.

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Routing, spanners, roundtrip, distances, shortest paths

ACM Reference Format:
Roditty, L., Thorup, M., and Zwick, U. 2008. Roundtrip spanners and roundtrip Routing in directed

graphs. ACM Trans. Algor. 4, 3, Article 29 (June 2008), 17 pages. DOI = 10.1145/1367064.1367069

http://doi.acm.org/10.1145/1367064.1367069

1. Introduction

The main results of this article are improved roundtrip routing schemes for directed

graphs. To obtain a clearer presentation of these schemes, and the techniques used

to construct them, we begin with a discussion of spanners and roundtrip-spanners.

A spanning tree is the sparsest subgraph that preserves the connectivity of a

graph. A spanner is a relatively sparse subgraph that preserves, to a certain extent,

the distances in a graph. More formally, let G = (V, E) be an undirected graph

with a weight (or length) function w : E → IR+ defined on its edges. If u, v ∈ V ,

we let δG(u, v) be the distance between u and v in G. A subgraph H = (V, E ′)
of G is said to be a t-spanner of G if and only if δH (u, v) ≤ t · δG(u, v), for

every u, v ∈ V . The number t is said to be the stretch factor of the spanner. For

any integer k ≥ 1, any weighted undirected graph on n vertices has a (2k − 1)-

spanner with O(n1+1/k) edges. (See Althöfer et al. [1993], Peleg [2000], Thorup

and Zwick [2005].) This trade-off between the stretch of a spanner and its size is

known to be tight for k = 1, 2, 3, 5, and is believed to be tight for any k. (See, e.g.,

the discussion in Thorup and Zwick [2005].) Spanners have many applications in

distributed computing (see Peleg [2000]).

Can the notion of spanners be extended to directed graphs? The definition of

spanners still makes sense in the directed setting, but the notion becomes uninter-

esting. Take a complete directed bipartite graph. Removing any edge changes the

reachability in the graph, so no strict subgraph is a t-spanner of this graph, for any

finite t . Thus, no general tradeoff between stretch and size is possible for directed

graphs.

Cowen and Wagner [1999, 2000], working on routing problems, made the very

nice observation that some of the techniques related to approximated distances and

paths in undirected graphs can be used on directed graphs, if roundtrip distances,

instead of one way distances are considered. Here the roundtrip distance from u
to v is the one-way distance from u to v plus the one way distance from v to u.

Roundtrip distances in directed graphs are very natural generalizations of distances

in undirected graphs. In particular, roundtrip distances are symmetric, and hence

they define a metric for directed graphs.

Implicit in the work of Cowen and Wagner [1999, 2000] is the notion of roundtrip
spanners. We make this notion explicit and obtain vastly improved constructions of

roundtrip spanners. Let G = (V, E) be a directed graph with a weight (or length)

function w : E → IR+ defined on its edges. A subgraph H = (V, E ′) of G is said

to be a t-roundtrip-spanner of G if and only if δH (u →← v) ≤ t ·δG(u →← v), for

every u, v ∈ V . (Here δG(u →← v) = δG(u → v) + δG(v → u) is the roundtrip

distance between u and v in G.)

The results of Cowen and Wagner [1999, 2000] imply that, for any integer k ≥ 1,

any weighted directed graph on n vertices has a (2k − 1)-roundtrip-spanner of size

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:3

Õ(n1+1/k). For k = 2, this result is very close to being optimal. For larger values

of k, the stretch obtained is extremely large. We show that for any k ≥ 1 and any

fixed ε > 0, any weighted directed graph on n vertices with edge weights in the

range [1, W] has a (2k + ε)-roundtrip-spanner of size O((k2/ε) n1+1/k log (nW)).

We can also remove the dependence of the number of edges in the spanner on W, and

show that any directed graph on n vertices with arbitrary positive edge weights has

a (2k + ε)-roundtrip-spanner of size O((k/ε)2 n1+1/k (log n)2−1/k). These results

are very close to the best available results for undirected graphs cited above. For

k = 2 we have a specialized construction that shows that any n-vertex digraph

has a 3-roundtrip-spanner of size O(n3/2). This improves the corresponding result

of Cowen and Wagner [1999, 2000] by a polylogarithmic factor and makes it

completely tight.

There are several different techniques for constructing sparse spanners for undi-

rected graphs. (See Althöfer et al. [1993], Awerbuch et al. [1999], Cohen [1999],

Peleg [2000], and Thorup and Zwick [2005].) Interestingly, some of these tech-

niques can be adapted to the directed setting while others cannot, at least not in an

obvious way. The technique of Thorup and Zwick [2005], for example, which gives

the fastest way of constructing (2k − 1)-spanners of size O(n1+1/k) for undirected

graphs, extends to the directed case when k = 2, but not for larger values of k.

Using it we obtain the optimal construction of 3-roundtrip-spanners. To obtain

sparser roundtrip-spanners with a larger stretch, we use an extension of the nice

technique of Cohen [1999].

One of the uses of spanners in distributed computing is the design of compact

routing schemes. Let G = (V, E) be a graph with port numbers assigned to its

links. (In a directed graph a link is simply a directed edge. In undirected graphs,

each undirected edge represent two links, one in each direction.) The port number

assigned to each edge is unique. A routing scheme assigns to each vertex v ∈ V a

short label, or name, denoted label (v). Each vertex v ∈ V also has a local routing

table RT (v). A vertex u that wants to send a packet p to vertex v is assumed to

know label (v). It constructs a message (label (v), p) that contains label (v) as its

header and passes it to its routing handler. When a vertex w of the network receives

a message with label (v) as its header, it has to decide, based on label (v) and on its

local routing table RT (w), on which out-going link to forward this message. This

out-going link is identified by its port number. For more on routing schemes, see

Peleg [2000] and Thorup and Zwick [2001].

The stretch of a routing scheme is the worst possible ratio between the length of

the route that a message follows from u to v , divided by the distance from u to v in

the graph. The roundtrip-stretch of a routing scheme is the corresponding quantity

for a roundtrip route from u to v and back.

It is easy to obtain stretch 1, that is, route along shortest paths, if a full routing

table of size O(n) is stored at each vertex. (We measure the size of a routing table in

O(log n)-bit words.) However, it is unrealistic to expect each vertex of a network

to hold a routing table that is almost as big as the network itself. Hence, there is

great interest in what stretches are attainable with much smaller routing tables.

Preferably, we would like all routing tables to be small.

Thorup and Zwick [2001], improving many previous results, obtained essentially

optimal routing schemes for undirected graphs. For every integer k ≥ 1, they

describe a routing scheme that uses o(log 2n)-bit labels, local routing tables of size

Õ(n1/k), and has stretch 2k − 1. For k ≥ 3, these routing schemes rely on an initial

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:4 L. RODITTY ET AL.

handshaking process (see Thorup and Zwick [2001] for details). Without such a

handshaking process, the stretch increases to 4k − 5.

Many real communication networks cannot be modeled accurately by undirected

graphs. Some of the links in a network may be one-directional, and in some of the

bidirectional links, the speed, or capacity, may depend on the direction. Thus, the

study of routing schemes for directed graphs is well motivated. However, attempts

to design compact routing schemes for directed graphs meet essentially the same

obstacles met when trying to construct spanners for directed graphs.

It is in this context that Cowen and Wagner [1999, 2000] suggest the consideration

of roundtrip routing schemes. This is also supported by the fact that many of the real-

life applications actually require roundtrip routes. The TCP protocol, for example,

requires an acknowledgment to be sent after each packet is received.

Cowen and Wagner [1999, 2000] describe, for any integer k ≥ 1, a roundtrip

routing scheme of stretch 2k − 1 that uses local routing tables of average size

Õ(n1/k). The size of some of the routing tables in their schemes may be as large

as �(n). They also describe a variant of their scheme in which the maximum table

size is Õ(n(3k−1+1)/(2·3k−1)) and the stretch is still 2k − 1. Note, however, that the

maximum table size is still �(n1/2), for any k ≥ 1.

We substantially improve these results and obtain, for any integer k ≥ 1 and

any fixed ε > 0, a roundtrip routing scheme of stretch 4k + ε and maximum
table size Õ(n1/k), assuming that the edge weights are polynomially bounded.

With routing tables of total size Õ(n1+1/k), we thus get stretch 4k + ε, instead

of 2k −1. Furthermore, we do that while keeping the maximum table size at Õ(n1/k),

instead of �(n1/2). For k = 2, we have an improved roundtrip routing scheme that

has stretch 3 and uses routing tables of maximum size Õ(n1/2). This scheme is

essentially optimal. Our roundtrip routing schemes do not use handshaking.

Our improvements, for general k, over the results of Cowen and Wagner [1999,

2000] are based on a construction of Cohen [1999] that predates the results of

Cowen and Wagner [1999, 2000]. Our improvement for stretch 3 extends a recent

work by Thorup and Zwick [2005, 2001].

Note that the stretch, 4k + ε, of our roundtrip routing schemes is about twice as

large as the stretch of our spanners. This is the price paid for being able to make local

routing decisions. On the positive side, note that our roundtrip routing schemes do

not lag much behind the best known routing schemes for undirected graphs that do

not use handshaking that, for the same table size, have stretch 4k − 5 (see [Thorup

and Zwick 2001]).

The rest of this article is organized as follows: In the next section, we present

efficient constructions of sparse roundtrip-spanners. In Section 4, we present our

roundtrip routing schemes. In Section 5, we present an essentially optimal roundtrip

routing scheme with stretch 3. We end in Section 6 with some concluding remarks

and open problems.

2. Roundtrip-Spanners

Let G = (V, E) be an undirected graph with a weight (or length) function w :

E → IR+ defined on its edges. Recall that a subgraph H = (V, E ′) of G is said to

be a t-spanner of G if and only if δH (u, v) ≤ t ·δG(u, v), for every u, v ∈ V. (Here

δG(u, v) is the distance between u and v in G.) For any integer k ≥ 1, any weighted

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:5

undirected graph on n vertices has a (2k − 1)-spanner with O(n1+1/k) edges. (See

Althöfer et al. [1993], Peleg [2000], and Thorup and Zwick [2005].)

The spanner definition can also be applied to directed graphs. But, as mentioned

in the introduction, there are n-vertex graphs with �(n2) edges that do not have

nontrivial spanners. (Consider a complete bipartite graph with all edges directed in

the same direction.)

Cowen and Wagner [1999, 2000], in the context of routing problems, suggested

considering roundtrip distances in directed graphs, instead of one-way distances.

They showed that some of the techniques that were used in connection with distances

in undirected graphs could be used in connection with roundtrip distances in directed

graphs.

Let G = (V, E) be a weighted directed graph. We let δ(u → v) and δ(v ← u) be

the one-way distance from u to v in the graph G. We let δ(u →← v) = δ(u → v) +
δ(u ← v) be the roundtrip distance from u to v in G. Clearly, δ(u →← v) =
δ(v →← u). When we want to stress the fact that the distances considered are in

the graph G, we add G as a subscript, as in δG(u → v) and δG(u →← v). The fol-

lowing definition is now natural:

Definition 2.1 (ROUNDTRIP-SPANNERS). Let G = (V, E) be a weighted di-

rected graph. A subgraph H = (V, E ′) is said to be a t-roundtrip-spanner of G if

and only if δH (u →← v) ≤ t ·δG(u →← v), for every u, v ∈ V .

Note that, if G = (V, E) is an undirected graph, then δG(u →← v) = 2δ(u, v),

for every u, v ∈ V , and thus roundtrip-spanners of undirected graphs are just con-

ventional spanners.

Although the explicit definition of roundtrip-spanners is new, the following result

is implicit in Cowen and Wagner [2000]:

THEOREM 2.2 (COWEN AND WAGNER 2000). For every integer k ≥ 1, every
weighted directed graph on n vertices has a (2k − 1)-roundtrip-spanner with
Õ(n1+1/k) edges.

We substantially improve this result and prove:

THEOREM 2.3. For every integer k ≥ 1 and every ε > 0, every weighted
directed graph on n vertices with edge weights taken from [1, W] has a (2k + ε)-
roundtrip-spanner with O((k2/ε) n1+1/k log (nW)) edges.

If the edge weights in the graph are of polynomial size, then, for roughly the

same number of edges, the stretch is reduced from 2k − 1 to 2k + ε, an exponential

improvement. The rest of this section is devoted to the proof of Theorem 2.3,

which uses an adaptation a technique introduced by Cohen [1999] for undirected

graphs.

Let G = (V, E) be an n-vertex graph with edge weights taken from [1, W]. Let

1 ≤ R ≤ 2nW . Following Cohen [1999], we construct a subgraph H = (V, E ′)
of G, with |E ′| = O(kn1+1/k), such that, for every u, v ∈ V , if δG(u →← v) ≤
R, then δH (u →← v) ≤ 2k · R. Clearly, if we take the union of such subgraphs,

corresponding to R = (1 + ε)i , for 1 ≤ i ≤ log 1+ε(2nW), we get a 2k(1 + ε)-

roundtrip-spanner of G with O(kn1+1/k log 1+ε(nW)) edges.

The subgraph H = H (R) is constructed as follows. Let V ′ ⊆ V be a subset of

vertices. For every v ∈ V and r ≥ 0, we let ballV ′(v, r) be the set of vertices that are

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:6 L. RODITTY ET AL.

FIG. 1. Cohen’s algorithm for constructing a (k, R)-(roundtrip)-cover.

of roundtrip distance at most r from v in the subgraph G ′ = G[V ′] induced by V ′.
In other words,

ballV ′(v, r) = {u ∈ V ′ | δG ′(v →← u) ≤ r} .

We say that a set B is a ball centered at v if and only if B = ballV ′(v, r), for some

V ′ ⊆ V and r ≥ 0. Next, following Cohen [1999], we define:

Definition 2.4 ((k, R)-(roundtrip)-cover). A collection C of balls is a (k, R)-

(roundtrip)-cover of a directed graph G = (V, E) if and only if each ball in C is of

radius at most k R, and for every u, v ∈ V such that δG(u →← v) ≤ R, there is a ball

B ∈ C such that u, v ∈ B.

For brevity, we usually refer to (k, R)-roundtrip-covers simply as (k, R)-covers.

Figure 1 gives an extremely simple algorithm for constructing a (k, R)-roundtrip-

cover of a graph. In the algorithm, sample(Vi , p) is a procedure that returns a

random subset of Vi . Each element of Vi belongs to the returned set, independently,

with probability p. The algorithm chooses collections of balls of decreasing radii.

At the first iteration, when i = k − 1, about n1/k balls of radius k R are chosen. In

the second iteration, with i = k −2, about n2/k balls of radius (k −1)R are chosen,

etc. In each iteration, when a ball ballVi (v, (i +1)R) is added to the cover C, its core
ballVi (v, i R) is removed from the graph. The following theorems are adaptations,

and slight improvements of results of Cohen [1999]. Our proofs are slightly different

from the proofs given by Cohen, allowing us to get logarithmic improvements over

her results. Our arguments are somewhat reminiscent of arguments used in Thorup

and Zwick [2005].

THEOREM 2.5. The collection C constructed by calling cover(G, k, R) is a
(k, R)-roundtrip-cover of the directed graph G = (V, E). For every v ∈ V , the
expected number of balls in the cover containing v is at most kn1/k .

PROOF. We first argue that the set C generated by the algorithm is indeed a

(k, R)-cover. Let u, v ∈ V be such that δG(u →← v) ≤ R. Let c be a closed tour in G
of total length at most R that contains u and v . Let i be the largest index for which a

vertex u′ on c is contained in the core ballVi (w, i R) of a ball ballVi (w, (i +1)R) that

is added to the cover. By the maximality of i , all the vertices on c are contained in Vi .

Thus, δG[Vi](w →← v) ≤ δG[Vi](w →← u′) + δG[Vi](u
′ →← v) ≤ i R + R = (i + 1)R,

and v ∈ ballVi (w, (i + 1)R). Similarly, u ∈ ballVi (w, (i + 1)R), as required.

We now bound the expected number of balls in the cover that contain a given ver-

tex v ∈ V . We show that, at each iteration, the expected number of balls containing v

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:7

that are added to the cover is at most n1/k . Clearly, this is so in the first iteration,

when i = k − 1, as then the expected number of balls added to the cover is only

n1/k .

Consider B = ballVi+1
(v, (i +1)R), the set of vertices that are at distance at most

(i + 1)R from v at the beginning of the (i + 1)-st iteration. (We number an iteration

according to the value of the variable i at that iteration. Thus, the iteration following

the (i +1)-st iteration would be the i th iteration.) Let � = |B| be the number of these

vertices. Each vertex u ∈ B has a probability of n−(i+1)/k of being chosen to Si+1.

If a vertex u is chosen, then v would be contained in the core ballVi+1
(u, (i + 1)R),

and v would be removed from the graph and would not be contained in any ball

added to the cover at the i th iteration. Note that, if v ∈ ballVi (u, (i + 1)R), then

clearly v ∈ ballVi+1
(u, (i + 1)R), and thus u ∈ B.

Thus, for every u ∈ B, the probability that u is chosen at the i th iteration and that

v ∈ ballVi (u, (i + 1)R) is at most (1 − n−(i+1)/k)� · n−i/k . (None of the vertices of B
should be chosen at the (i + 1)-st, i.e., previous, iteration, and u has to be chosen at

the i th, i.e., current, iteration.) The expected number of balls that contain v in the

i th iteration is therefore, at most �(1 − n−(i+1)/k)� · n−i/k .

It is easy to check that the function x(1 − p)x , where 0 < p < 1 is a fixed

constant, attains it maximum value of 1
ep when x = − 1

ln(1−p)
. It follows easily that

the expected number of balls containing v that are added to the cover at the i th

iteration is at most n1/k/e, as required.

THEOREM 2.6. If the sampling probability in the i th iteration of algorithm
cover is increased from n−i/k to (n/ ln n)−i/k , then with very high probability, each
vertex v ∈ V is contained in at most 4kn1/k(ln n)1−1/k balls of the collection C
returned by the algorithm. The collection C is still a (k, R)-cover of G.

PROOF. The proof is a relatively simple modification of the proof of The-

orem 2.5. We show that at each iteration, with very high probability, for every

vertex v ∈ V , the number of balls containing v that are added to the cover is at most

4n1/k(ln n)1−1/k . For brevity, we let pi = (ln n/n)i/k be the probability that a vertex

is added to the sample Si at the i-th iteration of algorithm cover.

The number of balls added to the cover in the first iteration, that is, when i = k−1,

is a random variable distributed according to the binomial distribution B(n, pk−1).

Using the Chenoff bound, we easily get that the probability that this number is more

than, say, 4n1/k(ln n)1−1/k is exponentially small.

Let v ∈ V . To bound the number of balls containing v that are added to the

cover in the i th iteration, we consider again the ball B = ballVi+1
(v, (i + 1)R). Let

�i+1 = 2n(i+1)/k(ln n)1−(i+1)/k . Note that pi+1�i+1 = 2 ln n. We consider two cases.

If |B| ≥ �i+1, then with a probability of at least 1 − n−2, at least one of the vertices

of B is added to Si+1. This is so because

(1 − pi+1)�i+1 ≤ exp(−pi+1�i+1) ≤ n−2.

If a vertex from u ∈ B is sampled, then the core ballVi+1
(u, (i + 1)R), which con-

tains v , is removed from the graph and v would not be contained in any additional

ball.

Assume therefore that |B| < �i+1 and that B ∩ Si+1 = φ. The number of balls

added to the cover in the i-iteration that contain v is at most |B ∩ Si |, the number

of vertices in B that are sampled in the i-iteration. This is a random variable that is

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:8 L. RODITTY ET AL.

stochastically dominated by a random variable distributed according to the binomial

distribution B(�i+1, pi). The expectation of this random variable is μ = pi�i+1 =
2n1/k(ln n)1−1/k . Using the Chernoff bound, we easily get that the probability that

this number exceeds, say, 2μ = 4n1/k(ln n)1−1/k is again exponentially small. This

completes the proof of the theorem.

Definition 2.7 (IN AND OUT TREES). Let G = (V, E) be a weighted directed

graph. Let V ′ ⊆ V , v ∈ V and r ≥ 0. Let B = ballV ′(v, r). We let OutTree(B, v)

be a tree containing directed shortest paths in G ′ = G[V ′] from v to all the vertices

of B. Similarly, we let InTree(B, v) be a tree containing directed shortest paths from

all the vertices of B to v . We let InOutTrees(B, v) = InTree(B, v)∪OutTree(B, v).

We refer to InOutTrees(B, v) as a double-tree. We sometimes omit the center v
from these notations when it is clear from the context.

Let B = ballV ′(v, r). It is easy to check that if u ∈ B, and w is on a shortest path

from u to v , or from v to u in G ′ = G[V ′], then w ∈ B. This follows from the fact that

δG ′(v →← w) ≤ δG ′(v →← u). Thus, all the vertices in InTree(B) and OutTree(B),

and thus in InOutTrees(B), are in the ball B. It follows that the number of edges

in InOutTrees(B) is at most 2(|B| − 1). (Note that InTree(B) and OutTree(B) may

share edges.) We also need the following lemma:

LEMMA 2.8. Let B = ballV ′(v, r), where V ′ ⊆ V ,and let u1, u2 ∈ B. Then,
InOutTrees(B, v) contains a closed directed tour containing u1 and u2 of length at
most 2r .

PROOF. Let G ′ = G[V ′]. By definition, InOutTrees(B, v) contained a closed

tour of length δG ′(v →← u1) containing v and u1, and a closed tour of length

δG ′(v →← u2) containing v and u2. By combining these tours we get a tour of

length at most δG ′(v →← u1) + δG ′(v →← u2) ≤ 2r containing u1 and u2.

We can now present a proof of Theorem 2.3:

PROOF (OF THEOREM 2.3). Let ε′ = ε
2k . For every 1 ≤ i ≤ log 1+ε′(2nW), let Ci

be a (k, Ri)-cover of G, where Ri = (1+ε′)i , constructed by calling cover(G, k, Ri).

Let H be composed of the union of InOutTrees(B), for every B ∈ ∪i Ci . Clearly,

the obtained graph is a (2k + ε)-roundtrip-spanner of G and the expected number

of edges in it is O((k2/ε)n1+1/k log (nW)).

Our roundtrip-spanner construction actually proves a stronger result:

Definition 2.9 (DOUBLE-TREE COVERS). Let G = (V, E) be a weighted di-

rected graph. A collection T of double-trees of G is said to be a t-double-tree-cover

of G if and only if, for every u, v ∈ V , there is a double-tree T ∈ T such that u, v ∈ T
and δT (u →← v) ≤ t ·δG(u →← v).

As the roundtrip spanners constructed in the proof of Theorem 2.3 are com-

posed of double-trees corresponding to collections of balls that cover the graph, we

immediately get:

THEOREM 2.10. For every integer k ≥ 1 and every ε > 0, every weighted
directed graph on n vertices with edge weights taken from [1, W] has a
(2k + ε)-double-tree-cover such that every vertex v ∈ V is contained in at most
O((k2/ε) n1/k (log n)1−1/k log (nW)) double-trees.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:9

FIG. 2. Constructing a (2k + ε)-roundtrip-spanner of a directed graph.

3. Removing the Dependence on the Edge Weights

In the previous section, we showed that any directed graph on n vertices with

edge weights in the range [1, W] has a (2k + ε)-roundtrip-spanner with at most

O((k2/ε) n1+1/k log (nW)) edges. In this section, we show that the dependence of

the number of edges in the spanner on W , the largest edge weight can be removed.

Algorithm spanner, described in Figure 2, constructs a (2k + ε)-roundtrip-spanner

of a weighted directed graph that contains only O((k/ε)2 n1+1/k (log n)2−1/k) edges.

We still assume, however, that the edge weights in the graph are in the range [1, W].

We should note, however, that the dependence on W becomes an issue only

when W is extremely large, that is, super-polynomial in n. Some edges may

then belong to �(log �/ log (1 + ε)) of the covers constructed in the proof of

Theorem 2.3, where � = 2nW is a bound on the largest finite roundtrip distance

in the graph.

It is not too difficult, however, to remove this dependence on W. To illustrate

the basic idea used to accomplish this, suppose for a moment that the graph is

undirected, and that we are only considering distances in the range [R, 2R). Then

clearly, we do not need to consider edges of weight larger than 2R. Also, with a

marginal decrease of distances, we can contract all edges of length o(R/n). As a

consequence, an edge of length w is only considered for distances between w and

O(nw). Thus, when exponentially increasing distances are considered, the number

of times each edge is considered is logarithmic in n. Below, we get this basic idea

to work for our roundtrip spanners in directed graphs.

Algorithm spanner is fairly similar to the algorithm sketched in the proof of

Theorem 2.3 for the construction of roundtrip-spanners. The main difference is

that balls that are contained in a (k, Ri j)-cover, were Ri j = (1 + ε′)i A j and A =
n3, are now contracted before the next cover is constructed. The contraction is

peformed by a call to algorithm contract. Algorithm contract receives a graph G
and a collection of balls C. The vertices of each ball B ∈ C are merged into a

single vertex. Nondisjoint balls are also merged together. Thus, if, for example,

B1, B2, . . . , B� ∈ C and for every 1 ≤ i < j ≤ � there are indices i = i1 < i2 <
· · · < ir = j such that Bi j ∩ Bi j+1

�= φ, for 1 ≤ j < r , then all the vertices

of ∪�
i=1 Bi are merged into a single vertex. After these merge operations, internal

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:10 L. RODITTY ET AL.

edges are removed. It is also possible to replace each set of parallel edges by the

cheapest edge in this set, but this is not essential. Each nonremoved edge retains its

original endpoints in the original graph. Thus, edges added to the set F of edges

are considered to be edges of the original graph.

To simplify the analysis of algorithm spanner, we assume that it uses the version

of algorithm cover in which the sampling probability at the i th iteration is slightly

raised to (n/ ln n)−i/k . As shown in Theorem 2.6, with high probability, each vertex

of the graph is contained in at most 4kn1/k(ln n)1−1/k balls of the produced cover.

We further assume that each vertex is indeed contained in at most this number of

balls, as otherwise, we may simply run algorithm cover again.

THEOREM 3.1. Let k ≥ 1 be an integer, let ε > 0, and let G be a weighted
directed graph on n vertices with edge weights in the range [1, W]. Then, a
call to algorithm spanner produces a (2k + ε)-roundtrip-spanner of G with
O((k/ε)2 n1+1/k (log n)2−1/k) edges.

PROOF. We begin by bounding the number of edges in the subgraph constructed

by the algorithm. Let I =
3 log 1+ε′n� = O((k/ε) log n) be the number of itera-

tions of the outer loop of spanner, and let J =
 log n3 (2nW)� be the number of

iteration of the inner loop of spanner. We show that in each iteration of the outer

loop, the number of edges added to F is O((k/ε) n1+1/k (log n)1−1/k). The total

number of edges is therefore O((k/ε)2 n1+1/k (log n)2−1/k), as required.

Let D = 4kn1/k(ln n)1−1/k be the bound, obtained in Theorem 2.6, on the number

of balls in a cover that may contain a given vertex. At the start of each iteration of

the outer loop the graph G0 is initialized to be G. For the sake of the analysis, we

assign each vertex of G0 at that stage D units of credit. Each unit of credit can pay

for the inclusion of two edges in the spanner. When the vertices of G j are merged

by algorithm contract, producing G j+1, the unused credits of the vertices of G j
are passed on to the vertices of G j+1. We show that at each stage, the vertices of G j
can pay for the inclusion of all the edges added to the spanner at the j th iteration

of the inner loop, without ever running out of credits. It would follow then that the

number of edges added to the spanner in each iteration of the outer loop is at most

O(nD) = O((k/ε) n1+1/k (log n)1−1/k).

To show that the vertices of the graphs G j , for 1 ≤ j ≤ J , never run out of credit,

we show that, when the graph G j is formed, each of its vertices has at least D units

of credit. This clearly holds for j = 0. We then show that, if each vertex of G j
starts with D credits, then so will each vertex of G j+1.

Algorithm cover constructs in each graph G j a cover C j . For each ball B ∈ C j ,

a double-tree InOutTrees(B) is added to the spanner. This double tree contains

2(|B| − 1) edges. As each vertex is contained in at most D balls of the cover, the

vertices of G j clearly have enough credit to pay for the addition of these double-

trees to the spanner. Furthermore, we show that there is enough “leftover” credit to

assign each vertex of G j+1 with at least D units of credit.

Let B1, B2, . . . , B� ∈ C j be a collection of balls that are all merged into a single

vertex of Gj+1. The vertices of ∪�
i=1 Bi have, altogether, at least D | ∪�

i=1 Bi | units

of credit. Of these,
∑�

i=1(|Bi |−1) units are used to pay for the edges of the double-

trees. To show that the vertex of G j+1 fomred by merging B1, B2, . . . , B� inherits

at least D credits, we have to show that D | ∪�
i=1 Bi | − ∑�

i=1(|Bi | − 1) ≥ D, or

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:11

equivalently, that

D
(| ∪�

i=1 Bi | − 1
) ≥

�∑

i=1

(|Bi | − 1) .

To show that this inequality holds, we argue as follows: Let d be the maximum

number of balls, out of B1, B2, . . . , B�, that all contain the same vertex. Clearly,

d | ∪�
i=1 Bi | ≥ ∑�

i=1 |Bi |. As d ≤ �, and d ≤ D, we get that

D
(| ∪�

i=1 Bi | − 1
) ≥ d

(| ∪�
i=1 Bi | − 1

) ≥
�∑

i=1

(|Bi | − 1) ,

as required.

We next have to bound the stretch of the spanner constructed by spanner. We

focus now on the i th iteration of the outer loop of algorithm spanner. For brevity,

we supress the index i from the notations introduced below. Let Vj be the vertex

set of G j . Each vertex of G j corresponds to a set of vertices in the original graph

G = G0. If v ∈ V is a vertex in G, we let vj denote the vertex of Gj that “absorbed” v .

We let Fj = ∪B ∈ C j InOutTrees(B) denote the edges added to F , that is, to the

spanner, at the j th iteration of the inner loop of spanner.

Define a sequence d0 = 0 and d j+1 = 2n(k Ri j + d j), for 0 ≤ j ≤ J . We claim:

CLAIM 3.2. If u, v ∈ V and u j = v j , that is, u and v are absorbed into the
same vertex of G j , then δF (u →← v) ≤ d j .

PROOF. The proof is by induction on j . For j = 0, the claim is obvious. Let

j ≥ 0, and suppose that the claim holds for j . We show that it also holds for j + 1.

Let u, v ∈ V such that u j+1 = v j+1. Then, C j contains balls B1, . . . , B�, where

� ≤ n, such that u j ∈ B1, v j ∈ B�, and Br ∩ Br−1 �= φ, for 2 ≤ r ≤ �. Let w1 = u j ,

w�+1 = v j , and for 2 ≤ r ≤ �, let wr be an arbitrary vertex from Br ∩ Br−1. As

wr , wr+1 ∈ Br , we get that δFj (wr →← wr+1) ≤ 2k Ri j . It follows that

δFj (u j →← v j) = δFj (w1
→← w�+1) ≤

�∑

r=1

δFj (wr →← wr+1) ≤ 2kn Ri j .

We now want to translate this upper bound on δFj (u j →← v j) into an upper bound

on δF (u, v). We claim that δF (u →← v) ≤ δFj (u j →← v j) + 2nd j . To show this, we

argue as follows: Let P be the shortest roundtrip path from u j to v j in (Vj , Fj). Let

e1, e2, . . . , et be the edges on this path. Note that t ≤ 2(n − 1). Each one of these

edges corresponds to an edge in the original graph. Let er = (xr , yr), for 1 ≤ r ≤ t ,
be the endpoints of these edges in G. We then have (yr) j = (xr+1) j , for 1 ≤ r ≤ t ,
where we let xt+1 = x1. We also have (x1) j = u j , and (x p) j = (yp−1) j = v j , for

some 1 ≤ p ≤ t . It follows that

δF (x1
→← x p) ≤

t∑

r=1

δF (xr → yr) +
t∑

r=1

δF (yr → xr+1).

Now,
∑t

r=1 δF (xr → yr) is just the length of P , that is, δFj (u j →← v j). As (yr) j =
(xr+1) j , for 1 ≤ r ≤ t , we get by the inductive hypothesis that δF (yr → xr+1) ≤

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:12 L. RODITTY ET AL.

δF (yr →← xr+1) ≤ d j . It follows, therefore, that

δF (x1
→← x p) ≤ δFj (u j →← v j) + 2(n − 1)d j .

As u j = (x1) j and v j = (x p) j , we finally get that

δF (u →← v) ≤ δF (u →← x1)+δF (x1
→← x p)+δ(x p →← v) ≤ δFj (u j →← v j)+2nd j .

Combining this with δFj (u j →← v j) ≤ 2kn Ri j , we get

δF (u →← v) ≤ 2kn Ri j + 2nd j = 2n(k Ri j + d j) = dj+1,

as required.

CLAIM 3.3. The sequence d0 = 0 and d j+1 = 2n(k Ri j + d j), for j ≥ 0,

satisfies d j ≤ 4k(n/A)Ri j , for j ≥ 1.

PROOF. Recall that Ri j = (1 + ε′)i A j and that A = n3. It is easy to prove, by

induction, that d j = k Ri j
∑ j

r=1(2n
A)r , for j ≥ 1. As

∑ j
r=1(2n

A)r ≤ 4n
A , for n ≥ 2,

we get that d j ≤ 4k(n/A)Ri j , for j ≥ 1.

We can now finally bound the stretch of the spanner constructed by algorithm

spanner. Let u, v ∈ V be two vertices of G. Clearly, there exist 0 ≤ i ≤ I and

0 ≤ j ≤ J such that (1 + ε′)−1 Ri j ≤ δG(u →← v) ≤ Ri j , where Ri j = (1+ ε′)i A j .

Consider the (i, j)-th iteration of the algorithm. As δG(u →← v) ≤ Ri j , we clearly

have δG j (u j →← v j) ≤ Ri j . Thus, the cover C j must contain a ball B ∈ C j such that

u j , v j ∈ B and thus δFj (u j →← v j) ≤ 2k Ri j . If j = 0, then we get that δF (u, v) ≤
2k Ri j . Assume, therefore, that j ≥ 1. Using the same arguments, we have used in

the proof of Claim 3.2, and using the bound on d j , we get

δF (u →← v) ≤ δFj (u j →← v j)+2nd j ≤ 2k Ri j +8k(n2/A)Ri j ≤ 2k(1+ε′)Ri j .

Thus, the stretch of the spanner is at most 2k(1 + ε′)2 ≤ 2k + ε, as required.

4. Roundtrip Routing Schemes

Fraigniaud and Gavoille [2001] and Thorup and Zwick [2001] describe an extremely

efficient way of routing on trees:

THEOREM 4.1 (FRAIGNIAUD AND GAVOILLE 2001; THORUP AND ZWICK 2001).

Let T = (V, E) be an undirected tree on n vertices with each edge e ∈ E assigned
a unique O(log n)-bit port number. Then, it is possible to efficiently assign each
vertex v ∈ V an O(log 2n/ log log n)-bit label, denoted label (v), such that if
u, v ∈ V , then given label (u) and label (v), and nothing else, it is possible to find,
in constant time, the port number assigned to the first edge on the path in T from u
to v.

Let B be a ball centered at v . We can convert each double-tree InOutTrees(B, v)

into a standard tree InOutTree(B, v) (note the slight difference in notation) by

considering InTree(B, v) and OutTree(B, v) as being trees on different sets of

vertices, and joining them at v . For every u ∈ B, u �= v , we let u′ be the copy

of u in the InTree(B, v), and u′′ be the copy of u in OutTree(B, v). We also let

v ′ = v ′′ = v . For every u1, u2 ∈ B, there is a directed path in InOutTree(B, v)

from u′
1 to u′′

2. Although Theorem 4.1 was stated for undirected trees, it is easy

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:13

to extend it to directed trees like InOutTree(B, v), and thus to double-trees like

InOutTrees(B, v).

Theorem 2.10 essentially reduces the problem of roundtrip routing in general

directed graphs into the problem of routing in double-trees. Routing in double-

trees could be done using the techniques of Fraigniaud and Gavoille [2001] and

Thorup and Zwick [2001].

One big problem still remains, however. Suppose that u wants to route a message

to v . We know that the double-tree cover T contains a double-tree T in which

δT (u →← v) ≤ (2k + ε)·δG(u →← v). But, how does u identify this tree?

For any R j = (1 + ε) j , where 1 ≤ j ≤ log 1+ε(nW), and any 0 ≤ i ≤ k − 1,

the double-tree cover T of Theorem 2.10 contains at most Õ(n1/k) double-trees

of radius (i + 1)R j containing v . A naive solution to the problem posed above

would be to specify all these trees in label (v). But label (v) would then be of

length �(kn1/k log 1+ε(nW)), which is too much, as we are aiming for labels of

polylogarithmic size.

We can decrease the labels to polylogarithmic size at the price of doubling the

resulting stretch. We need the notion of extended core and the following lemma:

LEMMA 4.2. Let C be a (k, R)-(roundtrip)-cover of a weighted directed graph
G = (V, E) constructed using algorithm cover of Figure 1. Let v ∈ V . Let i be
the largest index for which there is a ball B = ballVi (w, (i + 1)R) ∈ C, such that
v ∈ B ′ = ballVi (w, (i + 1/2)R) ∈ C. (We refer to B ′ as the extended core of B.)
Then, if u ∈ V and δG(u →← v) ≤ R/2, then u ∈ B.

PROOF. Let c be a shortest closed tour containing u and v . We show that

c ⊆ Vi , and therefore, δG[Vi](w →← u) ≤ δG[Vi](w →← v) + δG[Vi](v →← u) ≤
(i + 1/2)R + R/2 ≤ (i + 1)R, and thus u ∈ B, as required.

Suppose, therefore, for the sake of contradiction, that there is a vertex u′
on c that is not in Vi . This means that there is a vertex w ′ ∈ Sj , for j > i
such that u′ ∈ ballVj (w

′, j R). But then δG[Vj](w
′ →← v) ≤ δG[Vj](w

′ →← u′) +
δG[Vj](u

′ →← v) ≤ j R + R/2 ≤ (j + 1/2)R, a contradiction to the maximality

of i .

Let ε′ = ε
4k . Let v ∈ V be a vertex. For every R j = (1 + ε′) j , where 1 ≤ j ≤

� =
 log 1+ε(nW)�, we choose a single ball ballVi (w, (i + 1)R j) ∈ C, such that

v ∈ ballVi (w, (i +1/2)R j) ∈ C, as in Lemma 4.2, and let cent j (v) = w be its center.

We let

label j (v) = (cent j (v), tree-label j (v)) ,

where tree-label j (v) is the label of v in the double-tree of the ball centered at

cent j (v), assigned by the tree routing scheme of Theorem 4.1. Finally, we let

label (v) = (label 1(v), label 2(v), . . . , label �(v)).

The routing table RT (u) of a vertex u ∈ V is composed of � =
 log 1+ε(nW)�
(two-level) hash tables. The j th table RTj (u) holds the centers of the balls of the

(k, R j)-cover that contain u. (It is possible to combine these tables into a single

hash table, but for simplicity, we assume that they are separate.) For each one

of these centers, RTj (u) holds the tree-label of u in the corresponding double-

tree.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:14 L. RODITTY ET AL.

Suppose now that u wants to send a message to v . It simply finds the smallest j
for which cent j (v) ∈ RTj (u). The message can then be routed on the double-tree

centered at cent j (v). The label of u in that tree is extracted from RTj (u), and the

label of v in that tree is extracted from label j (v).

The initial routing decision takes O(log 1+ε(nW)) time. Each subsequent de-

cision takes only constant time, as the correct double-tree was already identified.

An implementation of linear space, constant query time, hash tables is described

in Fredman et al. [1984]. (For deterministic constructions of such hash tables, see

Alon and Naor [1996] and Hagerup et al. [2001].) We thus have:

THEOREM 4.3. The roundtrip routing scheme described above has stretch 4k +
ε. It uses local routing tables of size Õ(k

ε
n1/k log (nW)) and o(k

ε
log 2n log (nW))-

bit labels. The headers attached to the messages are o(log 2n)-bit long. The initial
routing decision takes O(k

ε
log (nW)) time. Each subsequent routing decision takes

only constant time.

PROOF. Let u, v ∈ V and suppose that δG(u →← v) = R/2, where (1+ε′) j−1 ≤
R ≤ (1 + ε′) j . Consider the ball B, centered at cent j (v) that contains v in its

extended core. By Lemma 4.2, this ball also contains u. The radius of this ball is at

most k(1 + ε′) j . The double-tree corresponding to this ball contains a closed tour

containing u and v of total length at most 2k(1+ε′) j . Messages from u to v , and back,

would be routed along this tour, giving a stretch of at most (1+ε′)4k = 4k +ε.

5. A Roundtrip Routing Scheme with Stretch 3

In this section, we describe an essentially optimal roundtrip routing scheme of

stretch 3. It uses local routing tables of size Õ(n1/2) and O(log n)-bit labels. Each

routing decision takes constant time. This routing scheme combines ideas from

Cowen [2001], Cowen and Wagner [1999, 2000], and Thorup and Zwick [2001].

We start with the following definitions:

Definition 5.1 (Roundtrip Ordering). Let G = (V, E) be a weighted directed

graph and let v ∈ V . We assume, without loss of generality, that V = {1, 2, . . . , n}.
We say that u1 ≺v u2 if and only if one of the following conditions holds:

(1) δ(u1
→← v) < δ(u2

→← v),

(2) δ(u1
→← v) = δ(u2

→← v) but δ(u1→ v) < δ(u2→ v),

(3) δ(u1
→← v) = δ(u2

→← v) and δ(u1→ v) = δ(u2→ v) but u1 < u2.

We say that u1 � u2 if and only if u1 ≺ u2 or u1 = u2. It is easy to verify that ≺v
and �v are transitive relations.

Definition 5.2 (Centers and Clusters). Let G = (V, E) be a weighted directed

graph. Let A ⊆ V be a set of centers. For every v ∈ V , we let centA(v) be the element

of A that satisfies centA(v) �v w , for every w ∈ A. The cluster CA(u) of a vertex

u ∈ V is defined as follows:

CA(u) = {v ∈ V | u ≺v centA(v)}
Finally, we let δ(A →← v) = δ(centA(v) →← v).

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:15

With these careful definitions, we now have:

LEMMA 5.3. If v ∈ CA(u) and w is on a shortest path from u to v, then
v ∈ CA(w).

PROOF. If w = u, then the claim is obvious. Otherwise, as w is on a shortest path

from u to v , we have δ(w →← v) ≤ δ(u →← v) and δ(w → v) < δ(u → v). (Note

that we assume that all edge weights are positive.) Thus, w ≺v u. As v ∈ CA(u),

we get that u ≺v centA(v). By the transitivity of ≺v , it follows that w ≺v centA(v),

and thus v ∈ CA(w), as required.

Using a simple adaptation of an iterative sampling technique of Thorup and

Zwick [2001] to the directed case, we obtain:

THEOREM 5.4. Let G = (V, E) be a weighted directed graph with |v| = n and
|E | = m. It is possible, in O(mn) time, to find a set A ⊆ V of centers such that
|A| = O((n log n)1/2) and |CA(w)| = O((n log n)1/2), for every w ∈ V .

The stretch 3 roundtrip routing schemes starts by choosing a set of centers A
that satisfies the conditions of Theorem 5.4. Each vertex v ∈ V is then assigned the

following label:

label (v) = (v, centA(v), port(centA(v), v)),

where for every u, v ∈ V , we let port(u, v) be the port number corresponding to the

first edge on the shortest path from u to v in G.

The routing table RT (u) at a vertex u ∈ V is a (2-level) hash table that holds for

each v ∈ A∪CA(u) the pair (v, port(u, v)). The size of this table, which is linear in

|A ∪ CA(u)|, is O((n log n)1/2) and for each v ∈ A ∪ CA(u), the pair (v, port(u, v))

can be located in worst-case constant time. As before, we use the data structure of

Fredman et al. [1984]. (See also Alon and Naor [1996] and Pagh [2000].)

When a message destined for v reaches u, it is routed as follows:

(0) If u = v , the message reached its destination.

(1) Otherwise, if v ∈ A∪CA(u), route the message using the edge with port number

port(u, v). (This port number is found, in constant time, by accessing RT (u).)

(2) Otherwise, if u = centA(v), route along the edge with port number

port(centA(v), v). (The center centA(v) and the port number port(centA(v), v)

are taken from label (v).)

(3) Otherwise, route along the edge with port number port(u, centA(v)). (As

centA(v) ∈ A, this port number can be obtained, in constant time, by accessing

RT (u).)

We now claim:

THEOREM 5.5. The routing algorithm described above routes a package from u
to v along a path whose length is most δ(u → v) + δ(u →← v). The stretch of the
roundtrip route from u to v and back is, therefore, at most 3.

The proof is very similar to proofs given in Cowen [2001] and Thorup and Zwick

[2001] and it is brought here for the sake of completeness.

PROOF. We start by showing that the routing algorithm routes a package from u
to v along a path whose length is most δ(u →← v) + δ(u → v). We consider three

cases that correspond to the steps (1)–(3) of the routing algorithm.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

29:16 L. RODITTY ET AL.

Case 1. v ∈ A ∪ CA(u). In step (2), the routing algorithm routes the package on

the first edge u → u′ of a shortest path from u to v . Also, we have v ∈ A ∪ CA(u′).
If v ∈ A, the claim is obvious. If v ∈ CA(u), the claim follows from Lemma 5.3. By

induction, we get therefore, that the message is routed, in this case, along a shortest

path from u to v whose length is δ(u → v).

Case 2. u = centA(v). The algorithm routes the package out from u along the edge

with the port number port(centA(v), v), i.e., on the first edge u → u′ of a shortest

path from u = centA(v) to v . By Definition 5.1 we then have u′ ≺v centA(v) and

hence, by the Definition 5.1, we have v ∈ CA(u′). By Case 1, the packet is then

routed from u′ to v along a shortest path. Thus, the packet is again routed from u
to v along a shortest path whose length is δ(u → v).

Case 3. v /∈ A ∪ CA(u) and u �= centA(v). The algorithm routes the pack-

age on the first edge of a shortest path from u to centA(v). We consider two

subcases.

Subcase 1. The packet eventually arrives to centA(v). The path followed by the

packet from u to centA(v) is then a shortest path, as every vertex in the graph holds

routing information to centA(v). When the packet arrives to centA(v) we are in

Case 2 and the packet will be routed from centA(v) to v along a shortest path.

Thus, the total length of the route followed by the packet from u to v in this case is

δ(u → centA(v)) + δ(centA(v) → v).

Subcase 2. The packet arrives to a vertex w on the shortest path between u to

centA(v) for which v ∈ CA(w). By Case 1, the packet is then routed from w to v along

a shortest path. The total length of the path is again bounded by δ(u → centA(v)) +
δ(centA(v) → v).

Now,

δ(u→centA(v))+δ(centA(v)→v) ≤ δ(u→v)+δ(v→centA(v))+δ(centA(v)→v)

= δ(u→v)+δ(centA(v) →← v)

≤ δ(u→v)+δ(u →← v),

where the first inequality follows from the triangle inequality, and the last inequality

follows as v /∈ CA(u) and thus centA(v) �v u.

Similarly, the routing algorithm routes a packet from v to u along a path of length

at most δ(v → u) + δ(v →← u). The total length of the roundtrip path followed by

the packet from u to v and back is therefore at most

δ(u → v) + δ(u →← v) + δ(v → u) + δ(v →← u) ≤ 3δ(u →← v),

as required.

6. Concluding Remarks

We have made explicit the notion of roundtrip-spanners and obtained substan-

tially improved algorithms for constructing them. In particular, we showed that

for any fixed integer k ≥ 1 and any fixed ε > 0, any directed graph on n ver-

tices with edge weights in the range [1, W] has a (2k + ε)-roundtrip-spanner with

O((k2/ε)n1+1/k log (nW)) edges, and that such a spanner can be constructed in

Õ(mn) time. We also showed that each such graph has a (2k +ε)-roundtrip-spanner

with O((k/ε)2 n1+1/k (log n)2−1/k) edges. An interesting open problem is whether

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

Roundtrip Spanners and Roundtrip Routing in Directed Graphs 29:17

it is possible to reduce the stretch in this construction to 2k − 1, which is believed

to be optimal even for undirected graphs.

We have also obtained substantially improved roundtrip routing schemes. To

obtain logarithmic size labels, we had to double the stretch of the schemes from

2k + ε to 4k + ε. Another interesting open problem is whether there is a way of

avoiding this doubling, possibly using handshaking.

Finally, Cohen and Zwick [2001] describe an Õ(n2) time algorithm for computing

stretch 3 distances between all pairs of vertices of an n-vertex undirected graph. Is

it possible to obtain an analog result for roundtrip distances in directed graphs?

REFERENCES

ALON, N., AND NAOR, M. 1996. Derandomization, witnesses for Boolean matrix multiplication and

construction of perfect hash functions. Algorithmica 16, 434–449.

ALTHÖFER, I., DAS, G., DOBKIN, D., JOSEPH, D., AND SOARES, J. 1993. On sparse spanners of weighted

graphs. Disc. Comput. Geom. 9, 81–100.

AWERBUCH, B., BERGER, B., COWEN, L., AND PELEG, D. 1999. Near-linear time construction of sparse

neighborhood covers. SIAM J. Comput. 28, 263–277. (A preliminary version appears at the Proceedings
of FOCS’93.)

COHEN, E. 1999. Fast algorithms for constructing t-spanners and paths with stretch t . SIAM J. Comput. 28,

210–236.

COHEN, E., AND ZWICK, U. 2001. All-pairs small-stretch paths. J. Algor. 38, 335–353.

COWEN, L. 2001. Compact routing with minimum stretch. J. Algor. 38, 170–183.

COWEN, L., AND WAGNER, C. 1999. Compact roundtrip routing in digraphs. In Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD). ACM, New York, 885–886.

COWEN, L., AND WAGNER, C. 2000. Compact roundtrip routing in directed graphs. In Proceedings of
the 19th Annual ACM Symposium on Principles of Distributed Computing (Portland, OR). ACM, New

York, 51–59.

FRAIGNIAUD, P., AND GAVOILLE, C. 2001. Routing in trees. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming (Crete, Greece), 757–772.

FREDMAN, M., KOMLÓS, J., AND SZEMERÉDI, E. 1984. Storing a sparse table with O(1) worst case access

time. J. ACM 31, 538–544.

HAGERUP, T., MILTERSEN, P., AND PAGH, R. 2001. Deterministic dictionaries. J. Algo. 41, 69–85.

PAGH, R. 2000. Faster deterministic dictionaries. In Proceedings of the 11th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (San Francisco, CA). ACM, New York, 487–493.

PELEG, D. 2000. Distributed Computing — A Locality-Sensitive Approach. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA.

THORUP, M., AND ZWICK, U. 2001. Compact routing schemes. In Porceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (Crete, Greece). ACM, New York, 1–10.

THORUP, M., AND ZWICK, U. 2005. Approximate distance oracles. J. ACM 52, 1, 1–24.

RECEIVED SEPTEMBER 2006; ACCEPTED MARCH 2007

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 29, Publication date: June 2008.

