1 The Distance Product

Last time we defined the distance product of \(n \times n \) matrices:

\[
(A \star B)[i, j] = \min_k A(i, k) + B(k, j)
\]

Theorem 1.1. Given two \(n \times n \) matrices \(A, B \) over \(\{-M, M\} \), \(A \star B \) can be computed in \(\tilde{O}(Mn^\omega) \) time.

2 Oracle for All-Pairs Shortest Paths

Theorem 2.1 (Yuster, Zwick ’05). Let \(G \) be a directed graph with edge weights in \(\{-M, M\} \) and no negative cycles. Then in \(\tilde{O}(Mn^\omega) \) time, we can compute an \(n \times n \) matrix \(D \) such that for every \(u, v \in V \), w.h.p.:

\[
(D \star D)[u, v] = d(u, v)
\]

Note that this does not immediately imply a fast APSP algorithm, because \(D \) may have large entries, making computing \(D \star D \) expensive.

Corollary 2.1. Let \(G = (V, E) \) be a directed graph with edge weights in \(\{-M, M\} \) and no negative cycles. Let \(s \in V \). Then single-source shortest path from \(s \) can be computed in \(O(Mn^\omega) \) time.

Proof. By Theorem 2.1, we can compute an \(n \times n \) matrix \(D \) such that \(D \star D \) is the correct all-pairs shortest-paths matrix, in \(O(Mn^\omega) \) time.

Then for all \(v \in V \), we know that:

\[
d(s, v) = \min_k D[s, k] + D[k, v]
\]

Computing this for all \(v \in V \) only takes \(O(n^2) \) time. Since \(\omega \geq 2 \), this entire computation is in \(O(Mn^\omega) \) time. \(\square \)

Similarly, we can show that detecting negative cycles is fast since any negative cycle contains a simple cycle of negative weight, and thus corresponds to a path from \(i \) to \(i \) for some \(i \) of length \(\leq n \).

Corollary 2.2. Let \(G \) be a directed graph with edge weights in \(\{-M, M\} \). Then negative cycle detection can be computed in \(O(Mn^\omega) \) time.

We now prove our main theorem:

Proof of Theorem 2.1. Let \(\ell(u, v) \) be the number of nodes on a shortest \(u \) to \(v \) path. Additionally, for notational convenience, suppose that \(A \) is an \(n \times n \) matrix and that \(S, T \subseteq \{1, \ldots, n\} \). Then \(A[S,T] \) is the submatrix of \(A \) consisting of rows indexed by \(S \) and columns indexed by \(T \).

We claim that Algorithm 1 is our desired algorithm.

Running Time: In iteration \(j \), we multiply an \(n \times \tilde{O}\left(\frac{n}{(3/2)^j}\right) \) matrix by a \(\tilde{O}\left(\frac{n}{(3/2)^{j-1}}\right) \times \tilde{O}\left(\frac{n}{(3/2)^j}\right) \) matrix, where all entries are at most \((3/2)^j M \) (we will show iteration \(j \) only needs to consider paths with at most \((3/2)^j \) nodes).
Algorithm 1: YZ(A)

A is a weighted adjacency matrix;
Set D ← A;
Set B₀ ← V;
for j = 1, . . . , log₃/2 n do
 Let D' be D but with all entries larger than \(M(3/2)^j\) replaced by \(\infty\);
 Choose \(B_j\) to be a random subset of \(B_{j-1}\) of size \(S_j = \frac{c}{(3/2)^j} \log n\);
 Compute \(D_j[D_{j-1}, B_{j-1}] = D'[B_{j-1}, B_j]\);
 Compute \(D_j[D_{j-1}, V] = D'[B_{j-1}, V]\);
 foreach \(u \in V, b \in B_j\) do
 Set \(D[u, b] = \min(D[u, b], D_j[u, b])\);
 Set \(D[b, u] = \min(D[b, u], D_j[b, u])\);
return D;

Hence the runtime for iteration \(j\) is \(\tilde{O}(\frac{M}{(3/2)^j} \log n)\). Over all iterations, the running time is, asymptotically, ignoring polylog factors,

\[Mn^\omega \sum_j ((3/2)^{\omega-2})^j \leq \tilde{O}(Mn^\omega). \]

If \(\omega > 2\), one of the log factors in the \(\tilde{O}\) can be omitted.

Correctness: We will prove the correctness by proving two claims.

Claim 1: For all \(j = 0, . . . , \log_{3/2} n\), \(v \in V, b \in B_j\), if \(\ell(v, b) < (3/2)^j\) then w.h.p. after iteration \(j\), \(D[v, b] = d(v, b)\)

Proof of Claim 1: We will prove it via induction. The base case \((j = 0)\) is trivial, since the distance is for one-hop paths is exactly the adjacency matrix. Now, assume the inductive hypothesis is true for \(j - 1\).

Consider some \(v \in V\) and \(b \in B_j\). We consider two possible cases:

Case I: \(\ell(v, b) < (3/2)^j - 1\)
But then \(b \in B_j \subset B_{j-1}\). By our inductive hypothesis, \(D[v, b] = d(v, b)\) w.h.p.!

Case II: \(\ell(v, b) \in [(3/2)^{j-1}, (3/2)^j)\)
We will need to use our “middle third” technique.

We can choose \(c, d \in V\) such that:

\[\ell(v, c) = \frac{1}{3} \left(\frac{3}{2}\right)^j\]
\[\ell(d, b) = \frac{1}{3} \left(\frac{3}{2}\right)^j\]
\[\ell(c, d) = \frac{1}{3} \left(\frac{3}{2}\right)^j < \left(\frac{3}{2}\right)^{j-1} \]

By a hitting set argument, if \(c\) is a large enough constant, \(B_{j-1} \cap \text{“middle third”} \neq \emptyset\) (w.h.p. depending on \(c\)) since \(|B_{j-1}| = \frac{c}{(3/2)^j} \log n\).
Let x in $B_{j-1} \cap \text{“middle third”}$. Then $\ell(v, x) \leq \ell(v, c) + \ell(c, d) \leq \frac{1}{2}(\frac{3}{2})^j = (\frac{3}{2})^j - 1$. Since $x \in B_{j-1}$, by induction $D[v, x] = d(v, x)$ w.h.p. at iteration j. By a similar argument we get that w.h.p. $D[x, b] = d(x, b)$ at iteration j.

Hence after this iteration, $D[v, b] \leq D[v, x] + D[x, b] = d(v, b)$.

As a small technical note, we will need to actually remove entries larger than $(3/2)^j M$ from D before multiplying, but they are not needed.

Claim 2: For all $u, v \in V$, w.h.p. $(D \star D)[u, v] = d(u, v)$.

Proof of Claim 2: Fix $u, v \in V$, and let j be such that $\ell(u, v) \in [(3/2)^{j-1}, (3/2)^j]$. Look at a shortest path between u and v. Its middle third hence has a length of $(1/3)(3/2)^j$.

But then w.h.p. B_j hits this path at some $x \in V$ such that $\ell(u, x), \ell(x, v) \leq (3/2)^{j-1}$. By Claim 1, $D(u, x) = d(u, x)$ and $D(x, b) = d(x, b)$.

Hence:

$$d(u, v) \leq (D \star D)[u, v] \leq \min_{x \in B_{j-1}} D(u, x) + D(x, v) \leq d(u, v)$$

This completes the proof. □

3 Node-Weighted All-Pairs Shortest Paths

Here we prove a theorem by Chan [Cha10].

Theorem 3.1. APSP with node weights can be computed in $O(n^{\frac{\omega+\omega}{3}})$ or $O(n^{2.84})$ time.

The idea is to compute long paths ($> s$ hops) via a hitting set argument and running multiple calls to Dijkstra’s algorithm, in a running time of $O(n^{\omega})$. Then, handle short paths ($\leq s$ hops) in $O(sn^{\frac{3\omega}{2}})$ time via a specialized matrix multiplication.

Let G be a directed graph with node weights $w : V \rightarrow Z$. Suppose we just wanted to compute distances over paths of length two.

Let A be the unweighted adjacency matrix. Notice that $d_2(u, v) = w(u) + w(v) + \min\{w(j) : A[u, j] = 1\}$.

Suppose we made two copies of A, and sorted one’s columns by $w(j)$ in nondecreasing order, and the others rows by $w(j)$ in nondecreasing order.

Then it would suffice to compute $\min\{j : A[i, j] = 1\}$, or the “minimum witnesses” matrix product. We use an algorithm provided by Kowaluk and Lingas [KL05]:

Lemma 3.1 (Kowaluk, Lingas ’05). Minimum witnesses of A, B ($n \times n$ matrices) is in $O(n^{2.616})$ or $O(n^{2+\frac{\omega-\omega}{3}})$ time.

Note that this algorithm has been improved on by Czumaj, Kowaluk, and Lingas [CKL07].

Proof. Let p be some parameter that we will choose later. Bucket A by columns into buckets of size p. Bucket B by rows into buckets of size p.

For every bucket $b \in \{1, \ldots, \frac{n}{p}\}$, compute $A_b \cdot B_b$ (boolean matrix product). This takes $O((\frac{n}{p})^2 p^2)$ time each, or $O(n^2 p^2)$ time each. But there are $\frac{n}{p}$ of these, so this takes $O(n^{3+\frac{\omega}{2}})$ time total.

Then for all $i, j \in \{1, \ldots, \frac{n}{p}\}$, do the following. Let b_{ij} be the smallest b such that $(A_b, B_b)[i, j] = 1$. Hence we can just try all the choices of k in bucket b_{ij}, and return the smallest k such that $A_b[i, k] B_b[k, j] = 1$. This is just n^2 exhaustive searches, so this step runs in $O(n^2 p)$ time.

Setting these equal and balancing, we get that we should set $p = n^{\frac{1}{3+\omega}}$ to make the overall time $O(n^{2+\frac{\omega-\omega}{3}})$. □
How can we compute distances for paths that are longer than two hops? For each $\ell \leq s$, we want to compute D_ℓ such that:

$$D_\ell[u,v] = d(u,v) - w(u) - w(v) \text{ if } \ell(u,v) = \ell$$

$$D_\ell[u,v] = \min_{j \in N(u)} \{ w(j) + D_{\ell-1}[j,v] \}$$

This gives rise to a new matrix product! Suppose we are given $D_{\ell-1}$. Let $D_{\ell-1}[u,v] = w(u) + D_{\ell-1}[u,v]$. Then we are interested in $(A \odot D_{\ell-1})[u,v] = \min\{D_{\ell-1}[j,v] \mid A[u,j] = 1\}$.

We can compute this product as follows. Again, let p be a parameter that we will choose later. Sort the columns of $D_{\ell-1}$, using $O(n^2 \log n)$ time. Then partition each column into blocks of length p.

Let $D_b[u,v] = 1$ if $D_{\ell-1}[u,v]$ is between the $\left(\frac{bH}{p}\right)^{th}$ and the $\left(\frac{(b+1)H}{p}\right)^{th}$ element of column v.

Compute the boolean matrix product of A and D_b for all b. Notice that $(A \cdot D_b)[u,v] = 1$ iff there exists an x such that $A[u,x] = 1$ and $D_{\ell-1}[x,v]$ is among the b^{th} block of p elements in the sorted order of the v^{th} column. We can finish via an exhaustive search, trying all j such that $D_{\ell-1}[j,v]$ is in the b^{th} block of column v.

This takes $O(n^2 \omega)$ time for multiplications, and $O(n^2 p)$ time for the exhaustive search. This yields $O(n^2 \omega \omega)$ time after balancing. However, we need to do this s times.

The overall runtime is hence $O(n^3 + \omega^2 s + n^3/s)$, which becomes $O(n^3 + \omega^2)$ time after balancing.

References

