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Abstract

The radius and diameter are fundamental graph param-
eters, with several natural definitions for directed graphs.
Each definition is well-motivated in a variety of applications.
All versions of diameter and radius can be solved via solv-
ing all-pairs shortest paths (APSP), followed by a fast post-
processing step. However, solving APSP on n-node graphs
requires {2(n?) time even in sparse graphs.

We study the question: when can diameter and radius in
sparse graphs be solved in truly subquadratic time, and when
is such an algorithm unlikely? Motivated by our conditional
lower bounds on computing these measures exactly in truly
subquadratic time, we search for approximation and fixed
parameter subquadratic algorithms, and alternatively, for
reasons why they do not exist.

We find that:

e Most versions of Diameter and Radius can be solved
in truly subquadratic time with optimal approximation
guarantees, under plausible assumptions. For example,
there is a 2-approximation algorithm for directed Ra-
dius with one-way distances that runs in O (m+/n) time,
while a (2 — 4)-approximation algorithm in O(n?~¢)
time is considered unlikely.

On graphs with treewidth &, we can solve all versions in
20(klogk)p1+o(1) time, We show that these algorithms
are near optimal since even a (3/2 — ¢)-approximation
algorithm that runs in time 2°(*)n2=¢ would refute
plausible assumptions.

Two conceptual contributions of this work that we hope
will incite future work are: the introduction of a Fixed
Parameter Tractability in P framework, and the statement
of a differently-quantified variant of the Orthogonal Vectors
Conjecture, which we call the Hitting Set Conjecture.
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1 Introduction

1.1 Overview. A successful and exciting line of research
in recent years attempts to understand the computational
complexity of fundamental problems by relating them to
each others via reductions. Certain plausible conjectured
lower bounds for fundamental key problems are shown to
imply that the current algorithms for many other important
problems are essentially optimal. One example of a pop-
ular conjecture is the Strong Exponential Time Hypothe-
sis (SETH) asserting that for CNF-SAT on constant width
clauses, there is essentially no faster algorithm than the one
that brute-forces over all possible variable assignments. Ex-
citing consequences of SETH include a tight n2—°(!) lower
bound for computing the diameter of a sparse n-node graph
[47], the Edit Distance of two n-length sequences [8], and
a tight m'~°() bound per update for maintaining single
source reachability in dynamic graphs m-edge graphs [4].
This research is motivated both by the desire for a better
understanding of (polynomial time) computation and by the
search for practical algorithms. While classically, any poly-
nomial time problem was considered tractable, this is no
longer the case with today’s enormous inputs where even
quadratic time might be considered intractable.

In this work, we study three general directions for this
line of work. We demonstrate their effectiveness on the
fundamental problems of computing the radius and diameter
of a graph, and more generally, all eccentricities.

e The first framework we introduce is Fixed Parameter
Tractability in P. One of the most active areas of research
in theoretical computer science in the past decade is
parameterized or multivariate complexity [34, 37, 44].
The central idea is to study the complexity of an NP-hard
problem not only in terms of the input size n but also in
terms of an additional natural parameter k. This led to the
development of fixed parameter algorithms, with running
times of the form f(k) - n®®), for many fundamental
problems. Such problems are then called fixed parameter
tractable (FPT).

When considering problems that already have polyno-


http://arxiv.org/abs/1506.01799
http://arxiv.org/abs/1506.01799

mial time algorithms, the usual FPT definition is not
very interesting since all problems in P are fixed param-
eter tractable with respect to any parameter. We pro-
pose a more fine-grained approach: Since quadratic time
is a bottleneck in many applications, we propose to treat
it as intractable, just as super-polynomial time is tradi-
tionally treated. We seek interesting Fixed Parameter
Subquadratic algorithms, with running time of the form
O(f(k) - n®~¢) for some ¢ > 0. For example, we will
consider natural parameterizations of Radius and Diam-
eter such as the treewidth tw of the input graph, and ask
whether there is an O( f(tw)-n2~¢) time algorithm for the
problems, and if so, for what functions f. The more gen-
eral approach is, given a problem that is in O(n¢) time for
some c but is believed to also require n°~°(1) time, study
for which parameters k and functions f, the problem has
an O(f(k)n°¢) time algorithm for some £ > 0, and if
possible, also prove matching (conditional) lower bounds

on f.

The second direction we follow is that of faster approx-
imability in P, which had already been studied in previ-
ous works [47, 25, 20]. We consider problems that can
be solved exactly in polynomial time, say O(n?) time, for
which a conditional n2~°() lower bound is known, and
we ask: can we solve the problem approximately in truly
subqudratic time? If so, what is the best approximation
ratio we can obtain in O(n?~¢) time for constant £ > 0
(“truly subquadratic”) time? More generally, these ques-
tions can be asked for problems regardless of whether they
are in P or not: suppose that a problem A can be solved
exactly in a(n) time; for what values of «, is there an
a-approximation algorithm that runs in a(n)*~¢ time for
e>0?

The third approach we propose is to look at different
quantifications of conjectured-to-be-hard problems. For
example, a problem that requires n2~°(") under SETH
is the orthogonal vectors (OV) problem: given two lists
A and B, each containing n d-dimensional vectors each
(for d = w(logn)), does there exist a pair of vectors
a € A,b € Bsuch that a - b = 0? This OV problem is the
basis for almost all hardness reductions for problems in
P. The quantifiers in the OV problem are 3 3 (i.e. Ja3b).
A different quantification of the problem is V 3, giving the
Hitting Set Existence problem: is it true that for all vectors
a in A, there exists a vector in B that is orthogonal to a?

These new quantified versions could be: (1) intuitively
as hard as the original problem, and (2) much more
appropriate for proving hardness for other problems for
which it seems very hard or even provably unlikely to
prove hardness by reduction from the original problem
(because of type mismatch).

This approach allows us to prove tight conditional lower
bounds for approximating the Radius of a sparse graph,
a task that has been elusive despite many efforts, even
though such a lower bound for the very similar Diameter
problem was proven a few years back [47]. To achieve
this, we introduce a new natural and plausible variant of
the OV conjecture that OV requires n2~°(1) time. This
new Hitting Set Conjecture asserts that the Hitting Set
problem also requires 72~°(1) time.

1.2 Case study: Diameter and Radius. We study two of
the most basic graph parameters: radius and diameter. The
diameter of an undirected graph is the longest distance, and
the radius is the shortest distance from a node to the furthest
node from it. Intuitively, the node that achieves the radius,
the so-called center of the graph, is “close” to all other nodes.
In directed graphs, depending on the application, there may
be multiple definitions for “closeness”: a node can be close
in the sense that it has short paths fo other nodes (“source”),
from other nodes (“target”), or even to and then back from
other nodes (“roundtrip”). That is, there are several natural
definitions of both radius and diameter for directed graphs;
all of them are well-studied [28, 40, 27, 36, 6, 30, 26, 35, 11,
12,57, 58,23, 38, 54,47, 25, 2, 17] (and many others). Even
estimating the diameter and radius of a network efficiently
is useful in practical applications (e.g. the analysis of social
networks) and serves as a basic primitive.

Although the problems are very well-studied, theoret-
ically the fastest known exact algorithms for both Diame-
ter and Radius compute all pairs shortest paths (APSP) and
then run a fast postprocessing procedure. Unfortunately,
any algorithm for APSP necessarily takes (n?) time in n-
node graphs regardless of the sparsity, since the output is
quadratic. However the output for both Radius and Diameter
is a single integer, and it is far from obvious why (n?) time
in sparse graphs (say with, O(n) edges) would be necessary.
In this paper we address the question below, providing both
algorithms and lower bounds.

When can Diameter and Radius in sparse graphs be solved
in O(n*7¢) time for e > 0?

The study of the above question has a clear practical mo-
tivation: quadratic time on real-world graphs is infeasible, so
that the boundary between the tractable and intractable is re-
ally in the low-polynomial regime.

In the rest of this paper, we say that a bound is sub-
quadratic if it can be bounded by O(n?~¢) for some £ > 0,
while upper bounds of the form n2=°(") are only mildly sub-
quadratic.

Barriers. Recent work has revealed convincing evi-
dence that solving Diameter in subquadratic time might not
be possible, even in undirected graphs. Roditty and Vas-
silevska W. [47] showed that an algorithm that can distin-



guish between diameter 2 and 3 in an undirected sparse graph
in subquadratic time refutes the following widely believed
conjecture.

The Orthogonal Vectors Conjecture: There is no e >
0 such that for all ¢ > 1, there is an algorithm that given two
lists of n boolean vectors A, B C {0,1}% where d = clogn
can determine if there is an orthogonal paira € A,b € B, in
O(n?~¢) time.

The problem in the above conjecture is called the Or-
thogonal Vectors (OV) problem. The best known algo-
rithm for it runs in mildly subquadratic n?~1/©(log (¢/logn))
time [3]. Williams [55] showed that the OV conjecture is im-
plied by the well-known Strong Exponential Time Hypothe-
sis (SETH) of Impagliazzo, Paturi and Zane [42, 41]. Nowa-
days many papers base the hardness of problems on SETH
and the OV conjecture. This holds both for NP-hard prob-
lems (e.g. [33]), as well as problems in P [46, 4, 5, 18, 8, 1,
19].

For the Radius problem, the only known barriers to
solving the problem exactly are based on other conjectures.
Recent work [2] shows that if the radius of a possibly dense
graph can be computed in truly subcubic time, O(n3~¢) for
€ > 0, then APSP also admits a truly subcubic algorithm.
Such an algorithm for APSP has long eluded researchers,
and it is often conjectured that it does not exist (e.g. [56,
4, 49, 51]). For dense graphs the latter result essentially
settles the question of computing Radius exactly. For sparse
graphs, however, only a much weaker result is known: any
T'(m) time algorithm for the radius of an m-edge graph can
be used to find a triangle in an m-edge graph in O(T'(m))
time [2]. The limit of current techniques for triangle finding
is O(m*/3) [7] (if the matrix multiplication exponent is
2), and hence this result gives some reason to believe that
obtaining a very fast algorithm for Radius in sparse graphs
would be hard. Nevertheless, this result says nothing about
the existence of an O(n?~¢) time algorithm.

A natural approach to prove Radius limitations in sparse
graphs is to base them on the OV conjecture. However, such
a lower bound has remained elusive [2, 16]. This is due to
the following type mismatch. The OV problem asks for the
existence of a pair of vectors with a certain property, just as
Diameter asks for the existence of a pair of nodes that are far,
i.e. both are of type 3xdy. Meanwhile, Radius asks for the
existence of a node such that all nodes are close, i.e. IxVy.
This quantifier disagreement is the difficulty of proving a
lower bound based on OV, and suggests the following natural
and plausible variant of the OV conjecture.

The Hitting Set Conjecture: There is no ¢ > 0 such
that for all ¢ > 1, there is an algorithm that given two lists
A, B of n subsets of a universe U of size clogn, can decide
in O(n?~¢°) time if there is a set in the first list that intersects
every set in the second list, i.e. a “hitting set”.

We call the problem in this conjecture the Hitting Set
Existence (HSE) problem. An equivalent version of the HSE
problem is as follows: given two lists A, B C {0,1}¢,
determine whether there is a vector ¢ € A that is not
orthogonal to any vector b € B. The HSE problem can
also be solved in mildly subquadratic n2~1/©(log(d/logn))
time [3], where d = |U|. The HS conjecture is an offline
version of folklore conjectured lower bounds on the hardness
of classic online problems such as set intersection and partial
match studied for instance by Patrascu [45].

We discuss these conjectures in full version and also
show that the OV conjecture is implied by the HS conjecture.

With the following theorem, we complete the picture (at
least conditionally) for the exact computation of Radius and
Diameter in undirected sparse graphs.

THEOREM 1.1. Iffor some € > 0, there is an algorithm that
can determine if a given undirected, unweighted graph with
n nodes and O(n) edges has radius 2 or 3 in O(n>~¢) time,
then the HS Conjecture is false.

Subsequent work of Carmoniso et al [22] gave evidence
that basing the HS conjecture on SETH is unlikely. Using
their framework one can show that SETH-hardness for Ra-
dius is similarly unlikely. This can be viewed as justification
for the introduction of a new conjecture into the web of re-
ductions in P.

Overcoming the barriers. The rest of the paper tries to
obtain meaningful positive results that overcome the barriers
above. We consider two of the most successful approaches
for coping with NP-hard problems: approximation and pa-
rameterization. In the first approach, we will address ques-
tions of the form: what is the smallest constant ¢ such that we
can get a c-approximation algorithm for Diameter and Ra-
dius in directed and undirected graphs in O(n?~¢) time? In
the second approach, we will consider natural parameteriza-
tions of Radius and Diameter such as the treewidth of the in-
put graph, and ask whether there is an O(f(tw) - n?~¢) time,
or fixed parameter subquadratic, algorithm for the problems,
and if so, for what functions f.

The positive results we obtain in the two parts of our
work (corresponding to the two approaches) will use a
disjoint set of tools. However, in both approaches, the upper
bounds will be matched (or nearly matched) by lower bounds
that are obtained from similar constructions.

1.3 Approximation algorithms In undirected graphs,
both Diameter and Radius can be 2-approximated by a sim-
ple linear time algorithm: pick any node and report the
largest distance from it. Aingworth et al. [6] obtained an
O(n? + ma/n) time almost-3/2-approximation algorithm
for Diameter and Radius in undirected graphs. Roditty
and Vassilevska W. [47] obtained a randomized almost-
3/2-approximation algorithm with runtime O(m+/n), and



Chechik et al. [25] derandomized the algorithm and obtained
a genuine 3/2-approximation algorithm running in time
O(mn?/3). As previously mentioned, [47] also showed that
any O(n?~¢) time algorithm that (3/2— J)-approximates the
diameter (for £, > 0) breaks the OV conjecture (as it would
distinguish between graphs of diameter 2 and 3). We show
that the known approximation algorithms for Radius are also
likely tight. An immediate corollary of Theorem 1.1 is:

COROLLARY 1.1. A subquadratic (3/2 — §)-approximation
algorithm for UNDIRECTEDRADIUS, for some § > 0,
refutes the Hitting Set conjecture.

The eccentricity of a node is the largest distance out
of it. Diameter is the maximum eccentricity, and radius
is the minimum. Even though both undirected Diameter
and Radius can be 3/2-approximated in subquadratic time,
the best known subquadratic algorithm for estimating all
the eccentricities, by Chechik et al. [25], only gives a 5/3
approximation. We show that this result is tight conditioned
on the OV conjecture’.

THEOREM 1.2. A (5/3—6) approximation algorithm for the
eccentricities of all nodes in undirected sparse graphs that
runs in subquadratic time refutes the Orthogonal Vectors
Conjecture.

This completes the picture for undirected graphs and we
now turn our attention to directed graphs, where much less
was known before our work. To better highlight the novelty
of this work, we will only present our results for Radius on
directed graphs (see Table 1). Our results for Diameter can
be found in Table 2.

One-way distances. The first definition of Radius on
directed graphs, Source Radius, is the natural extension of
the undirected Radius definition: min, max, d(x,v). While
in undirected graphs a 2-approximation is trivial, this is no
longer the case for directed graphs. In undirected graphs,
we can claim for any center v*, arbitrary u, and for all z,
by the triangle inequality, d(u, z) < d(u,v*) + d(v*,z) =
d(v*,u) + d(v*,z) < 2R. Since in directed graphs d(u, v*)
is unrelated to d(v*,u), no approximation is guaranteed.
Even the known 3/2-approximation algorithms [47, 25]
do not work since for directed graphs all that they can
guarantee is that they compute the eccentricity of some
node u with either d(u,v*) < R/2 or d(v*,u) < R/2,
and in the latter case no approximation can be guaranteed.
Our first algorithmic contribution is a new subquadratic 2-
approximation algorithm for Source Radius overcoming the
above issues with a two level sampling approach.

IIndependently, Cairo, Grossi, and Rizzi proved a similar lower bound

under SETH (private communication).

THEOREM 1.3. Given a directed unweighted graph on n

nodes and m edges, there is an algorithm that outputs R*
such that R < R* < 2R, and runs in time O(m+/nlog” n).

Our algorithm is lightweight and easy to implement.
Theorem 1.1 implies that a subquadratic algorithm for
Source Radius is not likely to have an approximation guar-
antee better than 3/2 and makes one wonder whether a 3/2
guarantee is possible in subquadratic time, as is the case in
undirected graphs. However, using the directed edges we
manage to increase the gap in the lower bound construction
and prove that the approximation factor of our algorithm is
optimal for a subquadratic algorithm under the HS conjec-
ture.

THEOREM 1.4. A (2 — §)-approximation algorithm for
Source Radius in sparse graphs that runs in subquadratic
time refutes the Hitting Set Conjecture.

Roundtrip and longest distances. The roundtrip dis-
tance between u and v is the distance from u to v plus the
distance from v to u, i.e. the sum of both one-way distances.
The Roundtrip Radius of the graph is min, max, d(x,v) +
d(v, ). The Max-distance between u and v is the largest of
the two one-way distances. The Max Radius of the graph is
min, max, max{d(z,v),d(v,z)}.

These definitions are natural ways to turn the distances
in directed graphs into a metric. This means that by picking
any node as the center we obtain a 2-approximation near-
linear time algorithm for Roundtrip Radius and Max Radius.
Moreover, Cowen and Wagner [31, 32] observed that many
of the techniques for approximating distances in undirected
graphs can be adapted to handle roundtrip distances, which
also led to the roundtrip-spanners of Roditty, Thorup, and
Zwick [48]. This seems to suggest that these versions of
Radius should be more like the undirected version where
a 3/2-approximation is possible in subquadratic time, and
not like Source Radius where the 2 factor is tight. Quite
surprisingly, via a delicate reduction, we were able to obtain
a gap of 2 in the lower bound constructions, and show that
anything better than the trivial 2-approximation is unlikely
to run in subquadratic time.

THEOREM 1.5. A (2 — §)-approximation algorithm for
Roundtrip Radius or Max Radius that runs in O(m?~¢) time
on sparse graphs, for some €,0 > 0, refutes the Hitting Set
Conjecture.

Min Radius. Finally, we consider a less standard but
quite intriguing variant of Radius where distance is the
shorter of the two directions. Formally, we define the
Min-eccentricity of a node u to be the maximum over
nodes v of min{d(u, v),d(v,u)}. The node with minimum
Min-eccentricity is the Min-Center of the graph and its



Min-eccentricity is the Min-radius. This directed definition
naturally models certain applications. For example, in a
network representing geographic locations, the Min-center
would be the optimal location to place a hospital since it will
allow for the fastest possible medical treatment (either by
driving to the hospital or by having an ambulance drive from
the hospital to the patient) for any location in the graph. This
is the only directed Radius version without a trivial linear
time algorithm on a DAG?”.

Although the problem becomes easy once we compute
APSP, it is quite challenging to approximate to within any
constant factor without knowing all the distances. Intuitively,
a node with Min-eccentricity R could be very hard to distin-
guish from nodes that have infinite min-distance to a single
node in the graph. We give a linear time algorithm for this
simpler task.

PROPOSITION 1.1. There is an O(m) time algorithm that
can check if there is a node in a directed graph with m
edges that can reach or be reached from any other node.
Consequently, there is a factor n approximation for Min-
Radius in linear time.

Finally, we consider approximation algorithms for Min-
Radius on a DAG - which, in our opinion, is the most natural
version of the question “what is the center of a DAG”? We
devise a recursive 3-approximation subquadratic algorithm
for the problem and show that a better than 2 factor is
unlikely.

THEOREM 1.6. There is a 3-approximation algorithm for
Min-Radius on n node, m edge DAGs that runs in
O(m~/nlogn) time, and a subquadratic (2 — §) approxi-
mation algorithm that runs in subquadratic time on sparse
DAGs refutes the Hitting Set Conjecture.

1.4 Fixed Parameter Subquadratic Algorithms

Treewidth. We will illustrate our approach using the
Diameter problem on n-node undirected graphs of treewidth
k. This is one of the most popular parameterizations of graph
problems in the literature on parameterized complexity, and
is usually considered when the problem becomes easy on
trees [13]. Note that a folklore algorithm solves Diameter
in O(n) on trees: do Dijkstra’s from an arbitrary node «, and
then Dijkstra’s from the furthest node v from wu, report the
largest distance found. Since in arbitrary graphs (where the
treewidth is < n) one can solve Diameter in O(n?) time, a
natural conjecture is that the right runtime bound in terms
of treewidth is O(kn). Unfortunately, we observe that the
lower bound construction for Diameter rules out any such

algorithm. In fact, it shows that in any fixed parameter
2The Max and Roundtrip Radius are infinite on a DAG, and the Source

Radius is the eccentricity of the first node in the topological order.

subquadratic running time for Diameter, the dependence on
k, the treewidth, must be exponential!

THEOREM 1.7. Iffor some € > O, there is an algorithm that
can distinguish between diameter 2 and 3 in an undirected
unweighted graph of treewidth k in 2°%) .n2=¢ time, then the
Orthogonal Vectors Conjecture is false. If such an algorithm
exists for Radius, then the Hitting Set Conjecture would be
false.

This lower bound is quite surprising when contrasted
with the near-linear time (1 + ¢)-approximation algorithm
for Diameter in planar graphs of Weimann and Yuster [54],
since it shows that such a result is unlikely on non-planar
graphs of treewidth ©(log n). Furthermore, our lower bound
also applies to graphs of pathwidth k. On the positive side,
this bound led us to look for a 2°(¥)n2—¢ time algorithm for
Diameter.

Although computing the treewidth is an NP-hard prob-
lem, Bodlaender et al. [15] obtained a 2°(*)p, time algorithm
(fixed parameter linear time) that returns a tree decompo-
sition of bag size O(k). This gives hope that the known
techniques from FPT algorithms will give interesting sub-
quadratic algorithms. For example, we could apply Cour-
celle’s theorem to solve Diameter in f(k) - n time, for some
huge but computable f(k). Instead, we use a technique that,
to our knowledge, was never used for obtaining FPT algo-
rithms for NP-hard problems and obtain a fixed parameter
subquadratic algorithm for Diameter and Radius parameter-
ized by treewidth that almost matches our lower bound.

THEOREM 1.8. There is an algorithm that solves Diameter

and Radius exactly in undirected graphs of treewidth k in
QO(klog k) . n1+o(1) time.

Closing the gap in the dependence on k between the
20(klogk) . p1+e(1) ypper bound and the 2°%) . n2~< con-
ditional lower bound is a very interesting open question. In
Section 2 we also obtain exact algorithms with similar up-
per bounds for all versions of directed Radius and Diameter
that we consider in this work. We can also compute all the
eccentricities of the graph in the same time.

Besides utilizing the tree decomposition to find sepa-
rators, the main tool in our algorithms is a reduction to
an orthogonal range query problem and then using known
data structures to answer queries efficiently. This technique
was used by Cabello and Knauer [21] to obtain near-linear
time algorithms for computing the Wiener index of a fixed
treewidth graph®.

The exact running time of our algorithm for Diameter
is O(k*>nlog" 'n) and we believe it can be a practical

°The Wiener index of a graph is the sum of distances. It can be computed
in O(mmn) time in general graphs using APSP.



alternative to known Diameter algorithms when a good
bound on the treewidth of the graph is known. It is known
that many real-life networks are tree-like (see [14] and the
surveys therein.)

Other parameters. Perhaps more basic parameteriza-
tions for Diameter would be: D - the diameter of the graph,
and A - the maximum degree of a node in the graph. Un-
fortunately, the lower bound constructions show that these
cases are not fixed parameter subquadratic. It hard to solve
Diameter in subquadratic time even when the diameter is 3,
and there is a simple reduction from Diameter on a sparse
graph on n nodes of arbitrary max degree to Diameter on a
constant degree graph on O(n) nodes. The same holds for
Radius under the HS conjecture. Thus, Radius and Diame-
ter are not fixed parameter subquadratic when parameterized
by the degree or the diameter of the input graph, unless our
conjectures fail.

Related work. Most related to our parameterized com-
plexity results are known algorithms for Diameter and Ra-
dius on special classes of graphs, e.g. [40, 27, 36, 30, 26,
35, 11, 12, 57, 54]. Our two dimensional complexity re-
sults, however, show how the complexity changes as the in-
put graph becomes “more complicated”. Independently of
our work, Giannopoulou, Mertzios, and Niedermeier [39]
also propose the study of parameterized complexity for prob-
lems in P. The authors suggest searching for f(k) - n¢ al-
gorithms for problems for which the best known algorithm
takes O(n?) time, where d is much larger than c. Their case
study is the problem of finding the longest path in an interval
graph, and they improve the known O(n?) time algorithm
to f(k) - n for a certain natural parameter k. We are not
aware of previous negative parameterized complexity results
for problems in P.

1.5 Extensions In the full version of the paper we show
that there is a subquadratic equivalence between the OV
problem and the problem of distinguishing between diameter
2 and 3 in sparse graphs, in the sense that a subquadratic
algorithm for one implies a subquadratic algorithm for the
other. Similarly, there is a subquadratic equivalnce between
the HS problem and distinguishing between radius 2 and 3
in sparse graphs. To prove the equivalence we devise new
reductions from the graph problems to OV and HS, via a low-
degree high-degree analysis and a hashing trick. From the
mildly subquadratic algorithms for OV and HS [3], we obtain
new mildly subquadratic algorithms for radius and diameter.

THEOREM 1.9. There is an algorithm that can decide

whether the diameter (or radius) of a given sparse graph is
2 or 3, inn? /29198 71) time,

This result shows that on sparse 3-layered graphs, there
is a superpolylogarithmic gap between the complexities of

diameter and APSP, since there is an unconditional (n?)
lower bound for APSP. Such gaps were only known for
special classes of graphs (like bounded treewidth graphs),
while it is known that the 3-layered case is typically the
hardest for APSP.

Finally, we demonstrate the potential of the HS conjec-
ture for explaining the hardness of other problems by prov-
ing a new conditional lower bound for computing the median
of the graph. In undirected graphs, the median is the node
v that minimizes the sum of distance to all the other nodes
>, d(v,u). Finding the median is equivalent to finding the
node with largest closeness centrality in the graph [9, 10, 50]
- a very important task in network analysis [40, 52]. Like
Radius, it was known that computing the median of dense
weighted graphs in subcubic time refutes the APSP conjec-
ture [2] while no consequences of a subquadratic algorithm
in sparse graphs were known. In stark contrast to Radius,
however, Median is known to have a near-linear time (1 4+ ¢)
approximation [43, 53, 29]. It turns out that the HS conjec-
ture implies that this subquadratic running is impossible if
we want to know the median exactly.

THEOREM 1.10. A subquadratic algorithm for finding the
median of a sparse unweighted undirected graph refutes the
Hitting Set Conjecture.

2 Subquadratic Approximation Algorithms

In this section, we cover our approximation algorithms
for SOURCERADIUS, MINDIAMETER, and MINRADIUS.

Source Radius Although it was trivial to find
a  2-approximation in the UNDIRECTEDRADIUS,
ROUNDTRIPRADIUS, and MAXRADIUS problems, the
nonsymmetric nature of SOURCERADIUS makes it non-
trivial to achieve a 2-approximation. Choosing an arbitrary
vertex as before may yield an infinitely bad approximation
factor, if it cannot reach the rest of the graph.

Arbitrary vertices worked before since we could reach a
center v* within R and then any other node within another
R. Hence a natural attempt is to try to find a vertex that can
reach the center within R. Let Pre(v, £) be the set of nodes
that can reach v within £. If Pre(v*, R) was large, we could
use a standard hitting set argument to find a member. This
observation reduces the problem to one where Pre(v*, R) is
small.

‘We next make the observation that the center must show
up in every Pre(v, R). Hence, if we could find any small
Pre(v, R), we could run forward Dijkstra’s from its nodes.
One way of figuring out which Pre(v, R) are small is to use
the fact that searching for the closest k£ nodes from a starting
node can be done with a modified Dijkstra in O(k?logn)
time, given that edge costs at each node are already sorted
(for each of at most k£ searched nodes, we only need to



enqueue the cheapest edge which does not go to a searched
node, which can be done in k2 updates).

However, these short Dijkstra’s from every node will
incur a O(n?) cost (all of our thresholds are roughly /7).
Instead, we can be more clever with how we use our hitting
set. With high probability, the hitting set hits every large
Pre(v, R). Hence any Pre(v, R) not hit must be small.
At least one of them must not be hit, since we assumed
Pre(v*, R) was not.

If we knew the radius, these ideas would give us a
running time of O(m+y/nlogn). However, doing a binary
search for the radius incurs an additional (log Mn) factor. To
avoid this, we use an idea from the Aingworth et al. seminal
algorithm for a %-approximation of undirected diameter;
choosing the furthest node from the hitting set simulates
locating a small Pre(v*, R) for every R simultaneously.

THEOREM 2.1. There is a O(m+/nlog®n)-time Monte
Carlo algorithm that approximates SOURCERADIUS on a
graph G within a factor of 2.

Proof. We claim that algorithm | has the desired properties:

Algorithm 1: ApproximateSourceRadius(G, R)

Sample a hitting set S; of O(y/nlog n) nodes;

Run forward Dijkstra’s from all s € S1;

Let w € V maximize minges, d(s, w). Run a reverse
Dijkstra from w;

Let S5 be the \/n closest nodes to w. Run forward
Dijkstra’s from all s € Ss;

return the best source-eccentricity of all nodes in

Sl USQ;

This algorithm relies on the fact that with high probabil-
ity, for any set X of the closest v/n nodes to a given node in
the graph, our randomly-chosen hitting set S will intersect
X (note that there are only O(n) possible such X given our
graph). This follows from a standard argument.

Now we can prove the claimed approximation guarantee
of our algorithm. If some s € S; can reach the center within
R, we are done. Otherwise, v* is more than R away from S,
and hence w is as well. Since Sy has y/n nodes, it intersects
S1 w.h.p. since .S is a hitting set (we want it to hit, for each
node, the closest y/n nodes going backwards). Suppose v is
in this intersection, then d(v, w) > R. But then Sy is defined
by how close nodes are to w, it must contain all nodes that
can reach w in less than R. This includes v*, so we are done.

Now we compute the running time of this algo-
rithm. Running Dijkstras from every node in S; takes
O(m+/nlog?n) time. Running Dijkstra from w takes
O(mlogn) time. Finally, running Dijkstras from So which
has y/n nodes takes O(m+/n log n) time. This completes the
proof.

MINDIAMETER We next present an algorithm for MINDI-
AMETER on general graphs.

LEMMA 2.1. Given ¢ > 0, there is a O(mn'~¢)-time
algorithm that approximates MINDIAMETER on directed
graphs within a factor of n°.

Proof. Suppose that the diameter is realized by the pair of
points (u*,v*) where d(u*,v*) = D and d(v*,u*) > D. If
D is at most n°, then any edge is a sufficient approximation.

Consider the case where D is larger than n°. We choose
a hitting set S of O(n'~¢) nodes that, with high probability,
hits the middle third of any shortest path longer than n¢. In
particular it hits the middle third of the shortest path from u*
to v* at vertex w, so that d(u*,w) > £ and d(w,v*) > 2.
Notice that one of d(v*, w) or d(w, u*) must also be at least
L long, otherwise d(v*,u*) < D.

Hence if we Dijkstra from all nodes in S and re-
turn max,eg ey min{d(s,v),d(v,s)}, this yields a n°-
approximation. But this takes only O(mn'~¢) time, which
completes the proof.

We get a much better algorithm for MINDIAMETER on
DAGs, since we can use the topological order of the graph to
run a divide-and-conquer.

THEOREM 2.2. There is a O(mlogn)-time algorithm that
approximates MINDIAMETER on a DAG G within a factor

of 2.

Proof. Since G is a DAG, we can run a topological sort
in O(m) time and use this order to relabel the vertices as
{0,1,2,...,n — 1} so that edges run from lower- numbered
nodes to higher-numbered nodes. Suppose that the diameter
is realized by the pair of points (u*,v*), u* < v*. There are
three possible cases:

Lou*v" < 53
n * * .,
2. 7 Sutvt

3wt < g <ot

In case (3), consider node g, which we denote as w.

d(u*,v*) < d(u*, w)+d(w, v*) and so either d(u*, w) > 2
or d(w,u*) > %. Moreover, since u* < w < v*, returning
max{max, <, d(v,w), max,<, d(w,v)} definitely yields a
2-approximation for the diameter. Note that d(v,w) and
d(w, v) can be computed for all v with a DP in O(m) time.

Otherwise, if case (3) does not hold, run the algorithm
recursively on the subgraphs of GG induced by the first and
last 5 nodes in topological order. Building these induced
graphs takes O(m) time. There are log n levels of recursion,
and each level takes O(m) time: 2° DPs on 2+ nodes each
where the total number of edges is at most m. The total time
is hence O(mlogn).



MINRADIUS MINRADIUS is a difficult problem on general
graphs, but it turns out that we can quickly determine which
vertices have a finite min-eccentricity:

LEMMA 2.2. There is a O(m + n)-time algorithm that
determines which vertices in a directed graph G have a finite
min-eccentricity.

Proof. In linear time, we can compute the strongly con-
nected components of G. Notice that a vertex has a fi-
nite min-eccentricity iff its corresponding vertex in the SCC
graph has a finite min-eccentricity. Hence it suffices to con-
sider the problem on DAGs.

We next compute a topological order of the vertices,
which can be done in linear time. It suffices to determine
which nodes can be reached by all nodes before them in the
topological order, since then we could also determine which
nodes can reach all nodes after them in the topological order
by symmetry.

In order to do this, we precompute for each node, the
first node in the topological order it has an edge to. This can
be done in linear time by taking a minimum over all edges
coming out of a node, and noting each edge is used only
once.

Fix some node v. Suppose that every node before v has
an edge to a node which is before v or is v. Then every
node before v can reach it, since we can keep taking edges
that do not take us past v, and each edge moves us forward
in the DAG. On the other hand, if some node before v only
has edges to nodes after v, then not every node before v can
reach it, since we have a counterexample.

We will check this property by counting, for each node
v, the number of nodes before v that have an edge to a
node before v or to v. However, this is easy to do with our
precomputation. The count is zero for the first node, and the
count for the i*" node is the count for the previous node, plus
the number of nodes whose earliest neighbor is the current
node. We can use our precomputation to generate the latter
values in linear time, and then compute the counts for each
node in order in linear time again.

All of our computations took O(m+n) time, as desired.
This completes the proof.

Like MINDIAMETER, MINRADIUS turns out to be eas-
ier on DAGs since we can run a divide-and-conquer:

THEOREM 2.3. There is a O(m+/n(log Mn))-time algo-
rithm that approximates MINRADIUS on a DAG G within
a factor of 3.

Proof. First we show that there is an algorithm that, given
the radius R, finds a vertex with eccentricity at most 3R
or guarantees all vertices have eccentricity strictly greater
than R. This algorithm will run in O(m+/n) time. From

this claim, we can binary search for R in the range [0, Mn],
yielding the desired result.

Since G is a DAG, we can run a topological sort and use
this order to relabel the vertices as {0,1,2,...,n—1} so that
edges run from lower- numbered nodes to higher-numbered
nodes. Notice that since G is a DAG, if we choose u,v € V'
with u < v, d(v,u) = oo so we are only concerned with
d(u,v). Furthermore, suppose that d(u,v) > 2R. We claim
that the center cannot be in the interval [u, v], since then there
is a path from u to v through the center with length at most
2R.

Algorithm 2 uses this observation to return a vertex
with eccentricity at most 3R or guarantees all vertices have
eccentricity strictly more than R.

Algorithm 2: ApproximateCenter(G, R)

Initialize a vector A with y/n evenly-spaced vertices,

ie. Ali] = z'\%_jl;

fori=0,1,...,v/n—1do
Use a DP to compute d(v, Ali]) and d(A[i],v)
forallv e V;
if Yo € V, min(d(v, Afi]), d(A[i],v)) < 2R
then
| return Ai;

Let S be a stack of vertex intervals, intially empty;
fori=0,1,...,v/n—1do

Let ¢ be the topologically-first vertex v such that
d(v, A[i]) > 2R, or A[i] if no vertex satisfies this
condition;

Let r be the topologically-last vertex v such that
d(Ali],v) > 2R, or A[i] if no vertex satisfies this
condition;

Suppose the top interval of S is [a, b]. If

¢ < b+ 1, then pop [a, b] and push [a, 7].
Otherwise, just push [£, 7].

for adjacent vertex intervals [a, b] and [c,d] in S do
forue b+ 1,c—1] do
Use a DP to compute d(v, u) and d(u,v) for
allv € [a,d];
if Yu € [a,d], min(d(v,u),d(u,v)) < R
then
L return u;

return all vertices have eccentricity strictly greater
than R;

First, we will show that Algorithm 2 is correct. If it
returns some node A[i], then every node was within 2R
of that node and hence it does have eccentricity at most
3R. Otherwise, each node A[i] has some node u; that is
strictly more than 2R away (in the appropriate, non-infinite
direction). If u; < A[i], then [u;, A[i]] cannot contain a



vertex of eccentricity at most R. Similarly, if A[i] < wu;,
then [A[i], u;] cannot contain a vertex of eccentricity at most
R. Hence every interval of S cannot contain a vertex of
eccentricity at most R.

The next phase of the algorithm searches the regions
between adjacent intervals of S (note that since the first node
is in an interval of S, as well as the last node, all remaining
nodes fall between two intervals of S). Suppose that some
u € [b+1,c — 1] can reach all v € [a,d] in at most R
distance, either forward or backwards. Then consider the
node of A immediately to its left, A[{]. u can reach A[i]
(backward) in at most R distance. By construction a is either
the topologically-first vertex v that cannot be reached by A[i]
(backwards) in 2R distance, or lies before that (due to a
union with an even earlier region). Hence u can reach all
nodes (backwards) to the left of a with at most 3R distance
by going through A[i]. Hence u can reach all nodes before it
(backwards) using only 3R distance. Similarly, it can reach
all nodes after it (forwards) using only 3R distance. Hence
u has eccentricity at most 3R, and is valid to return.

Otherwise, all vertices outside of intervals of S have
eccentricity strictly more than R. But then every vertex has
eccentricity more than RR. Hence the final return statement is
also correct.

Next, we analyze the running time of Algorithm 2. The
first phase of our algorithm computes y/n DPs, which take
O(m) time each. Computing S takes O(n+/n) time.

Next, we compute distances for every node not in one
of S’s intervals. In order to bound the running time of
this phase, we note two things. Firstly, no region between
intervals can contain more than O(y/n) points since our
inital points are all in intervals of S and we chose them to
be not too far apart. Secondly, any edge only needs to be
considered for at most two regions between intervals (and
only then if it lies in some interval of .S). Since the running
time of our DPs is linear in the number of edges the DP
must consider, our running total running time is bounded by
O(m+/n).

The total running time is hence O(m+/n), as claimed.

This completes the proof.

3 Fixed Parameter Subquadratic Algorithms

In this section, we present algorithms for diameter and
radius on graphs of small treewidth. We begin with the undi-
rected case, which illustrates the technique, and then ex-
tend the results to the directed case. Throughout this sec-
tion, although treewidth is typically defined for undirected
graphs, we will use treewidth of a directed graph to mean the
trewewidth of the underlying undirected graph.

Undirected Graphs with Small Treewidth We begin by
giving some intuition concerning our algorithmic strategy.

Our algorithm will actually compute the eccentricity of
every node in the graph. Since diameter is the maximum
eccentricity and radius the minimum eccentricity, we can
compute these with only linear postprocessing.

Like many other algorithms, we make use of portals: the
portals of a vertex subset A are those nodes of A that have
edges going to outside A. Intuitively, finding a vertex subset
A which has few portals allows us to divide the graph into
relatively independent pieces. Specifically, if we compute
single source shortest paths from all portals of A, we can
augment the graph with weighted edges between portals to
account for shortest paths that exit and re-enter A (or V'\ A).
Recursing on augmented graphs yields, for each node in A,
the furthest node from it which is also in A (similarly for
V'\ A). If we could compute, for each node in A, the furthest
node from itin V' \ A (and vice versa), we would be done.

But all of these paths pass through some portal. We
know the distances from each node in A to each portal, and
from each portal to each node in V' \ A. We can think of the
non-portals of A, the portals of A, and the nodes in V' \ A
as forming a three-layered graph. We want to compute, for
every node in the first layer, the furthest node in the third
layer (using only two-hop paths). Note that the second layer
only has as many nodes as there were portals.

As it turns out, this three-layered problem can be written
as several max orthogonal range searching queries. To see
this, consider a particular portal b in the middle layer. When
is it the best portal to use to get to a node in the third layer?
If a is a node in the first layer and ¢ a node in the third,
this happens when d(a,b) + d(b, ¢) < d(a,b") + d(¥’, ¢) for
every other portal »'. Using a standard inequality trick, we
rearrange to get that d(a,b) — d(a,b’) < d(¥,c) — d(b,c).
If we think of each &’ as a coordinate, we can use the right-
hand side to transform each vertex c into a high-dimensional
point. The set of ¢ for which b is the best portal, given an
a, are exactly those that fall into some orthogonal range.
Furthermore, weighting each vertex by its distance from b
allows us to recover the furthest one when we do a max
query. Since these queries can be solved efficiently using
a data structure of Chazelle [24], we can solve the three-
layered problem efficiently:

THEOREM 3.1. ([24]) Consider the range searching for
maximum problem: we are given a set V' of n points in d
dimensions and a value function v : V. — R. We want
to answer queries of the form: given a range of the form
q = [a1,b1] X [ag, b2] X ... X [ag, ba, what is maxpecq v(p)?

On a word RAM, there is a data structure that
solves this problem with O(n logUF1 n) preprocessing time,
O(nlog' %) n) space usage, and O(log® ' n) query
time.

Since the algorithm’s running time is highly dependent
on the number of portals, we use a result of Cabello and



Knauer [21] which finds a vertex subset with only & portals,
but is unbalanced (one side may have k times as many nodes
as the other):

LEMMA 3.1. ([21]) Let k > 1 be a constant. Given
a graph G = (V,E) with n > k + 1 vertices and a
tree decomposition of width at most k, we can find in
O(poly(k)n) time a subset of vertices S C 'V such that S

has between 1 and k”fl nodes and at most k portals.

More formally, we call a directed graph G = (V, E) a
three-layered graph if there is a partition of V into A, B, C
such that E C A x BU B x C, i.e. all edges go from
Ato B or from B to C. If G is a three-layered graph,
we can also write G as (A, B,C, E). Using the orthogonal
range searching data structure in Theorem 3.1, we are able to
compute important distances in a three-layered graph. This
serves as the key subroutine for solving diameter and radius
on graphs of small treewidth:

THEOREM 3.2. Suppose we have a weighted three-layered
graph G = (A, B, C, E). Furthermore, suppose that A and
C' have O(n) nodes while B has only k nodes. Then we can
compute

maX.cc mingep d(a,b) + d(b,c¢) for all a
O(knlog"2n) time.

e A in

Proof. The key idea is as follows. Focus on some b € B.
We will preprocess all of the distances between B and C so
that when given some a € A, we can use its distances to
the nodes of B to compute the subset of C' whose shortest
two-hop paths to a go through b. However, we don’t
actually compute this set; we instead use our orthogonal
range searching data structure to return the furthest point in
the set. This allows us to compute the furthest distance any
node is from a, among nodes that use b as part of the shortest
path. Looping over all b € B will then allow us to compute
the desired quantity.

Fix b € B. Foreachc € C and & € B,V # b, we
compute d(b',c) — d(b,c). If we impose an ordering on
B, this associates a (k — 1)-dimensional vector with every
¢ € C. Suppose we have some a € A and ¢ € C where b
is the middle vertex in the shortest two-hop path from a to
c. This means that d(a, b) + d(b,¢) < d(a,bt’) 4+ d(¥', ¢) for
all other b’ € B. We can rewrite this as d(a, b) — d(a,b’) <
d(b', ¢) — d(b, c) for all other b’ € B. In other words, given
a € A, the set of ¢ € C for which b is the middle vertex with
the shortest two-hop path from a to c are those ¢ with vectors
that fall in the axis-aligned box given by d(a,b) — d(a,V’).

However, by Theorem 3.1, there is a data structure that
does this with only O(n logk_2) preprocessing time and
O(logk_2 n) time per query. Note that the value function we
use maps the point corresponding to ¢ to d(b, ¢). Hence the
largest weight corresponds to the furthest point, and we can

compute the distance from a to the furthest point by adding
d(a,b) to the weight returned.

We keep one data structure per b € B, and now simply
iterate over a € A and b € B. For each a € A, we select the
furthest ¢ over the two-hop distances computed. This takes
O(knlog" 2 n) time.

‘We can now present the main algorithm:

THEOREM 3.3. There is an algorithm that, given a tree
decomposition of width at most k of an undirected weighted

graph G, computes the eccentricity of every vertex in time
O(k?*nlog® ' n).

Proof. By Lemma 3.1, we can find S C V such that S has
between kL_H and k”—_fl vertices, at most k portals, and adding
edges between portals of S does not change the treewidth of
G. Finding S takes O(poly(k)n) time.

We run Dijkstra from every portal of S. Since there are
at most k portals, this takes O(k?n + knlogn) time. This
yields the eccentricity of every portal. It remains to compute
the eccentricity of non-portals of S and vertices in V' \ S.

The eccentricity of a non-portal of S is either realized
by a node in S orin V' \ S. For the first case, we recurse
on S augmented with weighted edges between portals cor-
responding to the distances between them that we computed
via Dijkstra’s. Any shortest path between nodes of .S can be
realized by taking a path in this graph; if it goes through at
least two portals then our added portal-portal edge gives the
correct distance. We note that Lemma 3.1 actually picks S
such that its portals are a subset of a bag, and hence adding
edges between portals does not alter the tree decomposition.
Furthermore, we note that the algorithm can use the same
tree decomposition when running on a subgraph with these
additional portal-portal edges, since removing nodes only
decreases the bag size (there will need to be additional pre-
processing, but this is included in the O (poly(k)n)).

To cover the second case, we construct a three-layered
graph where A consists of non-portal nodes of S, B consists
of portals, and C'is V'\ S. We add edges from A to B and B
to C' weighted by the Dijkstra distances we computed for the
portals. Any shortest path between a node in A and a node
in C matches the cost of a two-hop path. Hence we can use
Theorem 3.2 to compute, for each a € A, the furthest c € C.

Now, given a € A, we have the furthest distance to any
other node in S and the furthest distance to any node in V'\ S.
Hence we can compute the eccentricity of a (the max of these
two).

Computing the eccentricities for every node of V' \ S is
identical. We recurse on V' \ A augmented with the portals
and weighted edges between portals. We also construct a
three-layered graph where A is V' \ .S, B consists of portals,
and C consists of non-portal nodes of S. We again invoke
Theorem 3.2 on it, and take the max of the two computed
furthest distances (for each node).



We now analyze the running time. Invoking Theo-
rem 3.2 twice takes O(knlog® % n) time. Combining re-
sults and constructing graphs can be done in O(k? + kn)
time, which is dominated by O(kn log" =2 n).

We will stop recursing when we have k® nodes or
fewer, which can be solved in O(k®) time by computing
all-pairs shortest-paths. We guess that the algorithm runs
in time 7"(n) = 4k(k 4+ 1)nlog® ' n, and we check this
inductively. Notice that our case case is covered since O(k”)
is dominated by &% log® ! k3.

Recall that #1 <9l < k"—fl, and that because of our
base case, % > k. The recurrence is

T(n) < knlog® 2n+T(|S|) +T(n — |S| + k).

T(n) < knlog"%n + T(S])+T(n—1|S|+ k)
< knlog® % n + 4k(k + 1)|S|log" 1 ||
+ 4k(k +1)(n — |S| + k) log" ' (n — |S| + k)

nk +k>

E+1
n(k + 0.5))

< knlog" % n + 4k(k + 1)nlog ! <
k24 1) logh ! (2 g
E+1
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< T'(n) — knlog" 2 n + 4k%(k + 1)log" ' n

+ T'(n) — 4k(k + 1)nlog" 2 n

The negative term has at least as much magnitude as the pos-
itive term if % > 4k(k + 1), which is true because n is at
least k3. Hence our running time is indeed O(k?n log®~* n).
This completes the proof.

‘We can now use our eccentricities to compute the diam-
eter and radius of a graph:

COROLLARY 3.1. There are algorithms that, given a tree
decomposition of width at most k of an undirected weighted

graph G, compute UNDIRECTEDDIAMETER and UNDI-
RECTEDRADIUS in time O(k*nlog" ! n).

Proof. We invoke Theorem 3.3, observing radius is the min-
imum eccentricity in the graph and diameter is the maximum
eccentricity in the graph. We can recover both quantities in
only O(n) additional time.

By noticing that g(k,n) = k2nloghtn <
22kloglogny can be upper-bounded by 20(klogk)pl+o(l) ye
prove Theorem 1.8 from the Introduction. This is because
when k < elogn/loglogn we can upper bound g(n, k) =
O(n'*¢) and otherwise k > clogn/loglogn and there-
fore k2 > logn and logk > loglogn/2 and we can up-
per bound g(n, k) = 20 1°ek) . 5, Furthermore, if we use
the Bodlaender et. al. 5-approximation tree decomposition
algorithm, which runs in time QO(k)n, the running time is
O(k2n1og™ > n), where k is now the treewidth of the input
graph.

Directed Graphs With Small Treewidth We now explain
simple modifications to Theorem 3.3 to compute the various
directed eccentricities. As before, this means that we can
compute diameter and radius, since they are simply the
maximum and minimum eccentricies. A simple modification
gives us max-eccentricities:

THEOREM 3.4. There is an algorithm that, given a tree
decomposition of width at most k of an directed weighted

graph G, computes the max-eccentricity of every vertex in
time O(k2nlog" ' n).

Proof. We make a few modifications to the proof of The-
orem 3.3. We must run forward and backward Dijkstra’s
from the portals of S (but this only doubles the running
time). When recursing, we add directed edges between por-
tals, weighted by the distance from the appropriate Dijk-
stra. We construct twice as many three-layered graphs; one
weighted by forward distances from A to B and B to C' and
the other will have backward distances from A to B and B to
C'. The max-eccentricity of a node is just the maximum over
its recursive value, the distance in the forward three-layered
graph, and the distance in the backwards three-layered graph.
The running time analysis is identical.

COROLLARY 3.2. There are algorithms that, given a tree
decomposition of width at most k of an directed weighted
graph G, compute MAXDIAMETER and MAXRADIUS in
time O(k*nlog" 1 n).

Source-eccentricities are also easy:

THEOREM 3.5. There is an algorithm that, given a tree
decomposition of width at most k of an directed weighted
graph G, computes the source-eccentricity of every vertex in
time O(k*nlog" ' n).



Proof. Again, we make modifications to the proof of The-

orem 3.3. We run forward and backward Dijkstra’s, and re-

curse with directed edges. We construct three-layered graphs

weighted by forward distances bewteen A to B and B to C.
The running time analysis is identical.

COROLLARY 3.3. There is an algorithm that, given a
tree decomposition of width at most k of an directed
weighted graph G, computes SOURCERADIUS in time
O(k?*nlog" ' n).

It may be surprising that we can even solve MINDIAME-
TER and MINRADIUS efficiently, since they proved difficult
in general graphs:

THEOREM 3.6. There is an algorithm that, given a tree
decomposition of width at most k of an directed weighted

graph G, computes the min-eccentricity of every vertex in
time O(k2nlog? =1 n).

Proof. Again, we modify the proof of Theorem 3.3. We run
forward and backward Dijkstra’s, and recurse with directed
edges. We construct three-layered graphs with twice as
many nodes in the middle layer. One copy will have edges
weighted by forward distances from A to B and B to
C, while the other will have edges weighted by backward
distances from A to B and B to C. Since distance meausres
shortest paths, the furthest distance from any a € A will
be the minimum of forward and backward distances to some
node.

The running time analysis is almost identical, except
invoking Theorem 3.2 now costs O(knlog?* 2 n) time.
Hence we pay an additional O(logk n) everywhere, to get
a running time of O(k2n log>* ' n).

COROLLARY 3.4. There are algorithms that, given a tree
decomposition of width at most k of an directed weighted
graph G, compute MINDIAMETER and MINRADIUS in time
O(k*nlog? 1 n).

We need to do a little more work to get roundtrip-
eccentricities. Since the paths of interest go through two
portals, we end up with larger middle layers in our three-
layered graph construction.

THEOREM 3.7. There is an algorithm that, given a tree
decomposition of width at most k of an directed weighted
graph G, computes the roundtrip-eccentricity of every vertex
in time O(k*n logk'z_1 n).

Proof. We again modify the proof of Theorem 3.3. Run
forward and backward Dijkstra’s, and recurse with directed
edges. We construct three-layered graphs with k2 nodes in
the middle layer, one per pair of portals. The weights from
A to B will correspond to the sum of distance to the first

portal and distance from the second portal, and weights from
B to C will correspond to the sum of distance from the first
portal and distance from the second portal.

Notice that two-hop paths in the three-layered graph
now actually correspond to roundtrip distances between
nodes in A and nodes in C, since these roundtrips must go
through a portal each way.

The running time analysis is almost identical, except

2

invoking Theorem 3.2 now costs O(knlogkL n) time.

Hence we pay an additional O(logktk n) everywhere, to
get a running time of O(k2nlog® ~' n).

COROLLARY 3.5. There are algorithms that, given a
tree decomposition of width at most k of an directed
weighted graph G, compute ROUNDTRIPDIAMETER and

2
ROUNDTRIPRADIUS in time O(k?*nlog" ~! n).

4 Conditional lower bounds

In this section we present our lower bound for Roundtrip
Radius under the HS conjecture which is a good illustration
of the constructions used in all our other reductions. All
other lower bounds appear in the full version.

The HSE-Graph. All our reductions from HSE will
start with the following simple representation of the HSE
problem as a “radius-like” graph problem.

Given an instance A, B, U of HSE we create the
following tripartite graph that we call an “HSE-graph” that
we will utilize in our reductions. The vertex setis AU BUU
(we overload the notation slightly so that = denotes both a
vertex and the corresponding subset in the original instance).
The edge set E is as follows: for each u € U there is an edge
tox € AU B if u € x. The question becomes, is there a
node a € A such that for all b € B thereis a u € U such that
(a,u), (u,b) € E? Preprocess the HSE graph as follows.
Suppose that there are some a,a’ € A such that N(a) C
N(a’) then we can remove a since if « is a hitting set, then
so is a’. Now we can assume that for all a,a’ € A, there are
u,u’ € U suchthatu € N(a) \ N(a’),uw € N(a') \ N(a).
We will refer to this as the HSE-graph-problem.

LEMMA 4.1. If for some € > 0, there is an algorithm that
can determine if a given directed, unweighted graph with n
nodes and m = O(n) edges has roundtrip radius 4 or 8 in
O(n?*7¢) time, then the Hitting Set Conjecture is false.

Proof. We will start from the HSE-graph G with partitions
A’, B, U and edge set E. We first build a gadget graph H
from G as follows. H has vertex set AU B U C U D where
Ais acopy of A, Bisacopy of B’ and C and D are copies
of U. For a € A, letits copy in A also be a, and for b € B’
let its copy in B also be b. For u € U let its copies in C' and
D be uc and up, respectively.



If a € A,u € U, we create a directed 4-cycle
connecting a € A and u¢ and a directed 4-cycle connecting
a € Aand up as follows. If (a,u) € FE, then there is an
edge from a to uc and a path of length 3 directed from uc
to a where the internal nodes of the path are of degree 2 in
H; additionally, there is an edge from up to a and a path
of length 3 from a to up. If (a,u) ¢ E, then the roles of
the edges and 3-paths are reversed. That is, there is a 3-path
from a to uc and an edge from uc to a and an edge from
a to up and a 3-path from up to a. Call the set of internal
nodes of all the 3-paths, X. Each edge (u,b) with u € U,
b € B isrepresented by two directed edges, (uc, b), (b, up).
Note that any cycle in H has length at least 4 so that any
roundtrip distance within H is also at least 4. Now, given H
as a gadget, create two copies of H, H; on vertex partitions
(A, B1,Cq, Dy, Xl) and Hs on (A, By, C5, Do, XQ) so that
H; and H, are glued at A. Call this graph F’ and see Figure 1
for an illustration.

First suppose that the HSE-instance G was a “yes”
instance, and there is some a € A such that for all b € B,
there is some v € U with (a,u), (b,u) € E. Then we
will show that a has roundtrip distance at most 4 to all
nodes in F' and hence the roundtrip radius is at most 4.
To see this, first note that by construction, a is on a cycle
of length 4 to every node of Dy U Cy; U Dy U Cs. For
any other node a’ € A, let u,u’ € U be nodes such that
(a,u),(d,u') € E,(a,u),(a',u) ¢ E (recall such u,u’
exist). Then a — uc, — o' — up, — a is a directed 4-
cycle in F. Finally, for any b; € B, fori = 1,2, ifu € U
is such that (a,u), (u,b) € G, the following is a directed
4-cyclein F: a = uc, — b; = up, — a.

Now suppose that the roundtrip radius of F'is < 8 and
we will show that the original graph G must be a “yes”
instance. We first claim that no node of F' \ A can be a
center.

Case 1. Suppose that some node uc, is a center (the
cases uc,,Up,,Up, are symmetric). Then consider the
roundtrip shortest path to uc,. Either the portion of the path
from uc, to uc,, or the one from uc, to uc,, must have
length at most 3. Assume, w.l.o.g. that d(uc, — uc,) < 3,
and note that the path must go through A. None of the 3-
paths can be used, since the length would become > 3, which
implies that it must be of the form uc, — a — uc, for some
a — A. However, by construction, if (a, uc,) € E(F) then
(a,u) € E(GQ) and (uc,,a) ¢ E(F). Hence uc, cannot be
a center.

Case 2. Suppose that some node x in X is the center and
let u be the closest node in C; UC3U D1 U D5 to z. Note that
any roundtrip path from x must go through u, which implies
that u can only be a better center than x. But by case 1, u
cannot be the center and therefore neither can x.

Case 3. Now consider any two nodes b; € By, by € Bos.
By construction, d(b1,b2),d(b2,b1) > 4 and hence the

Figure 1: The reduction from HSE to Roundtrip Radius.

roundtrip distance is at least 8. Hence no node of B; U B>
can be a center.

Hence the center of F' is some node a € A. Consider
the roundtrip distance from a to any b; € Bj. It is supposed
to be at most 7. Any path from a to b; that does not go
directly from a to some node of C'; to by must have length
at least 4. Similarly, any path from b; to @ that does not go
directly from a to some node of D; to a must have length
at least 4. Thus, if the roundtrip radius is < 8, one of the
pieces of the roundtrip path (from a to b; and from b; to a)
must be of length 2, as otherwise the roundtrip path would
be of length at least 8. Hence there is some u € U for
which (a,u), (u,b) € F and the original graph G is a “yes”
instance of HSE.

To complete the proof, note that our new graph F' has
O(n|U|) nodes and O(n|U|) edges. This implies that a
subquadratic algorithm for sparse graphs that distinguished
between roundtrip radius 4 and 8 will solve the HSE problem
in O(n?=¢ - |U|?~¢) time, for some ¢ > 0, which refutes the
HS conjecture.

Finally, we observe that the treewidth (in fact, path-
width) of the graph in our construction is O(|U|) since by
removing all nodes in the C' U D parts of the graph we are
left with a disconnected set of paths. Thus, an algorithm that
can compute Radius on treewidth (or pathwidth) & graphs
in 2°(%) . n2~¢ can be used to solve the HSE problem where
|U| = w(logn) in O(n?~¢) time, refuting the HS conjecture.
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