
Very Sparse Additive Spanners and Emulators

Greg Bodwin
Department of Computer Science

Stanford University
Stanford, CA

gbodwin@cs.stanford.edu

Virginia Vassilevska Williams
Department of Computer Science

Stanford University
Stanford, CA

virgi@cs.stanford.edu

ABSTRACT
We obtain new upper bounds on the additive distortion for
graph emulators and spanners on relatively few edges. We
introduce a new subroutine called “strip creation,” and we
combine this subroutine with several other ideas to obtain
the following results:

1. Every graph has a spanner on O(n1+ε) edges with

Õ(n1/2−ε/2) additive distortion.

2. Every graph has an emulator on Õ(n1+ε) edges with

Õ(n1/3−2ε/3) additive distortion whenever ε ∈ [0, 1
5
].

3. Every graph has a spanner on Õ(n1+ε) edges with

Õ(n2/3−5ε/3) additive distortion whenever ε ∈ [0, 1
4
].

Our first spanner has the new best known asymptotic
edge-error tradeoff for additive spanners whenever ε ∈ [0, 1

7
].

Our second spanner has the new best tradeoff whenever
ε ∈ [1

7
, 3

17
]. Our emulator has the new best asymptotic edge-

error tradeoff whenever ε ∈ [0, 1
5
].

1. INTRODUCTION
A spanner of a graph G is a sparser subgraph of G over

the same vertex set that approximately preserves all pair-
wise distances between nodes. An emulator of a graph G
is a possibly weighted graph H on the same vertex set as
G such that the pairwise distances in H approximate the
pairwise distances in G. Researchers try to improve the
tradeoff between the sparsity of the spanner/emulator and
the accuracy with which it preserves the distances of the
original graph. Spanners were first introduced in the 1980s,
where they were used to speed up protocols run over unsyn-
chronized networks [3, 20]. Emulators were introduced by
Dor, Halperin and Zwick [13]. Spanners and emulators have
since found a wide variety of applications, including com-
pact routing schemes [10, 11, 21, 23, 24], almost-shortest
path algorithms [16, 14, 15, 13], distance oracles [25, 7, 4,
23], broadcasting [18], and many others.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITCS’15, January 11–13, 2015, Rehovot, Israel.
Copyright c© 2015 ACM 978-1-4503-3333-7/15/01 ...$15.00.
http://dx.doi.org/10.1145/2688073.2688103.

Much of the initial theoretical work on spanners studied
multiplicative stretch spanners, that is, all pairwise distances
are preserved up to a small multiplicative factor. Althofer
et al. [2] discovered that there exist spanners on O(n1+1/k)
edges with multiplicative stretch 2k−1 for all integers k ≥ 1.
This upper bound is tight for multiplicative spanners assum-
ing an unproven conjecture of Erdös [17]. Recent work has
focused more on mixed and additive spanners. An additive
spanner preserves the distances within a small additive er-
ror, and mixed spanners allow both a multiplicative and an
additive error.

There are three known constructions that produce span-
ners of constant additive error. Aingworth et al. [1] gave

a construction for spanners on O(n3/2) edges with additive
error of 2, Chechik [9] showed how to construct spanners on

Õ(n7/5)1 edges with additive distortion of 4, and Baswana

et al. [6, 5] gave a construction for spanners on Õ(n4/3)
edges with additive distortion of 6 (the runtime of this con-
struction was improved by Woodruff [27]). Knudsen [19]
later simplified the constructions of +2 and +6 spanners
while obtaining the same edge bounds. Dor, Halperin and
Zwick [13] obtain an additive emulator on Õ(n4/3) edges and
+4 distortion. It remains a major open problem whether or
not all graphs admit spanners or emulators of constant addi-
tive distortion with Õ(n4/3−ε) edges for any ε > 0. Notably,
Woodruff [26] has proven the existence of a graph family
for which any spanner of 2k − 1 additive distortion has at
least O(k−1n1+1/k) edges, so we cannot hope for Õ(n) edge
spanners with constant additive distortion.

In light of this, some attempts have been made to pro-
duce relatively efficient spanners below the n4/3 threshold.
Bollobás et al. [8] showed a construction for spanners on

O(21/εn1+ε) edges and n1−2ε additive distortion; the distor-
tion was later improved to O(n1−3ε) by Baswana et al [6].

Pettie [22] achieved n9/16−7ε/8 distortion, and Chechik [9]

achieved n1/2−3ε/2 distortion whenever ε ∈ [3
17
, 1

3
]. Jointly,

these last two spanners form the current state of the art.
The construction of Baswana et al [6] can be generalized in

a straightforward way to produce emulators with n1/2−3ε/2

additive distortion for any ε ∈ [0, 1
3
] (they do not discuss this

explicitly in their paper), but no other results for emulators
are known.

Our Work.
We introduce a new subroutine that is useful for span-

ner/emulator construction called “strip creation,” and we

1The notation Õ(f(n)) suppresses poly logn factors.

apply this subroutine to obtain some significantly improved
upper bounds on the accuracy/sparsity tradeoff available for

spanners and emulators below the n4/3 edge threshold. In
Section 3, we use this subroutine in a straightforward way to
produce a spanner on O(n1+ε) edges with Õ(n1/2−ε/2) ad-
ditive distortion. In Section 4, we merge this idea with some
others to achieve an emulator construction with Õ(n1/3−2ε/3)
additive distortion, so long as ε ∈ [0, 1

5
], and a spanner of

additive distortion Õ(n2/3−5ε/3), so long as ε ∈ [0, 1
4
].

Our emulator has the best tradeoff whenever ε ∈ [0, 1
5
)

(it ties the generalization of Baswana et al [6], or Chechik’s
spanner [9], at ε = 1

5
). The state-of-the-art asymptotics for

purely additive spanners are summarized in the following
table:2

Author Distortion Best
When

Before this paper

Pettie [22] Õ(n9/16−7ε/8) ε ∈ [0, 3
17

]

Chechik [9] Õ(n1/2−3ε/2) ε ∈ [3
17
, 1

3
]

After this paper

New; Section 3 Õ(n1/2−ε/2) ε ∈ [0, 1
7
]

New; Section 4 Õ(n2/3−5ε/3) ε ∈ [1
7
, 3

17
]

Chechik [9] Õ(n1/2−3ε/2) ε ∈ [3
17
, 1

3
]

Preliminaries.
All graphs in this paper are undirected and unweighted.

The number of nodes in all of our graphs is n, unless oth-
erwise stated. For a graph G = (V,E) and u, v ∈ V , we
denote by δG(u, v) the length of the shortest path in G from
u to v.

We will often refer to the shortest path between two nodes
in a graph, when in fact there may be many equally short
paths. Any shortest path may be chosen for each pair of
nodes, as long as (1) the choice is consistent, and (2) the
paths are as nested as possible - that is, any two shortest
paths intersect on at most one subpath. We will use this
second property in our constructions. We will use the nota-
tion ρG(u, v) to refer to the chosen shortest path between u
and v in G.

Given a graph G, spanners and emulators are sparser ver-
sions of G that approximately preserve shortest path dis-
tance between every pair of nodes. More formally:

Definition 1. A weighted, undirected graph H = (V,E′, w)
is an (α, β)-emulator of another graph G = (V,E) (on the
same vertex set) if, for all nodes u, v ∈ V , we have

δG(u, v) ≤ δH(u, v) ≤ αδG(u, v) + β.

Definition 2. An unweighted (α, β)-emulator of a graph
G is called an (α, β)-spanner of G if it is a subgraph of G.

When α = 1, we say that the spanner/emulator is addi-
tive with distortion β, and when β = 0, we say that the
spanner/emulator is multiplicative with stretch α. If neither
of these is the case, then the spanner/emulator is mixed.

2Some authors consider spanners whose error is a function
of d, the original distance between the nodes, rather than n;
these results are not included in our table.

2. STRIP CREATION
In this section, we will describe our main subroutine, called

“strip creation.”

Graph Clustering.
This is an important auxiliary subroutine. A very simi-

lar subroutine to this one has been used in many different
spanner and emulator constructions (see [13, 9] for exam-
ple). The input is a graph G = (V,E) and an integer e, and
the output is a partial partitioning of V into “clusters.” The
algorithm works as follows:

Algorithm 1: cluster(G, e)

Data: A graph G = (V,E) and an integer e

1 Initialize C = ∅;
2 Unmark all nodes;
3 while there is an unmarked node u with at least
e− 1 unmarked neighbors do

4 Initialize C to be the set u plus any e− 1 of its
unmarked neighbors;

5 Mark all nodes in C;
6 Add C to C
7 end
8 return C;

Intuitively, we think each C ∈ C as a “cluster” of nodes.
Each cluster contains a node at distance one from all other
nodes; this is called the “cluster center.” The subroutine of
generating these clusters will be called cluster(G, e). The
subroutine of picking out the center of a given cluster will be
called center(C). A node is clustered if it belongs to some
C ∈ C and unclustered otherwise.

Our version of graph clustering differs slightly from the
typical clustering algorithm used in other spanner construc-
tions. We produce clusters that necessarily have at least
e nodes each (this property will be important later). The
other important feature is that there are at most ne edges
in the graph between unclustered nodes:

Claim 1. Let C be the output of cluster(G, e). There are
at most ne edges in G with both endpoints unclustered in C.

Proof. First, note that at termination of the cluster
subroutine, no node can have at least e−1 unmarked neigh-
bors: if it did, then we could turn it into a new cluster and
add it to C. Therefore, we have at most e − 1 edges with
both endpoints unclustered incident on any given unclus-
tered node. We have at most n unclustered nodes in total,
and the claim follows.

Strip Creation.
This is our main subroutine. We will add a carefully-

chosen set of shortest paths to the spanner that collectively
have some convenient coverage properties. The subroutine
works as follows:

Algorithm 2: createStrips(G, C, d,m)

Data: A graph G = (V,E), a clustering C of G, and
integers d,m.

1 Initialize a set S = ∅;
2 while there exist u, v ∈ V such that the following

properties all hold:

1. δG(u, v) ≤ d

2. ρG(u, v) intersects at most m different paths
in S

3. ρG(u, v) intersects exactly m clusters that are
disjoint from all paths in S

3 do
4 Add ρG(u, v) to S;
5 end
6 return S;

The paths in S are the strips of the graph. This subroutine
will be called createStrips(G, C, d,m).

One property that makes this subroutine useful is that it
is very cheap to add the edges in S to our spanner. This is
our first lemma.

Lemma 1. The set S contains only O(n) edges that are
incident on a clustered node.

Proof. When we add a new path ρG(u, v) to S, we sort
its edges (a, b) into the following cases:

1. The nodes a and b are both unclustered: this edge is
not incident on a clustered node, so we can ignore it.

2. There is no edge already in S that touches a (or the
same condition holds for b): there are O(n) of this type
of edge in total.

3. There is an edge in S that touches a and another edge
in S that touches b, but no edge (a, b): this type of edge
must go between two strips that are already in S. Since
two shortest paths intersect on at most one subpath,
there can be at most two of these edges per path in
S that intersects ρG(u, v). Therefore, the number of
this type of edge in ρG(u, v) is at most 2m. There are
at most n

m
paths added to S in total (since each one

must be the first to touch m new clusters), so the total
number of this type of edge in the graph is O(n).

4. The edge (a, b) is already in S: this does not add a
new edge to S, so we can ignore it.

Adding the edges of a strip set to our graph gives it some
convenient connectivity properties. This is the subject of
our next two lemmas.

Definition 3. A cluster is clean if it does not share a
node with any strip S ∈ S.

Lemma 2. Let H be a subgraph of G over the same vertex
set, and suppose H contains exactly the edges of multspan(G)
and createStrips(G, C, d,m). Let u, v be nodes in G with
the property that ρG(u, v) intersects at most k strips and at

most k clean clusters. Then ρH(u, v) ≤ ρG(u, v) + Õ(k).

Proof. Construct a new path P as follows:

1. Start at u.

2. Repeat until you reach v:

(a) Walk down ρG(u, v) until you encounter a node x
that belongs to a non-clean cluster C. Let S be a
strip that intersects C. Let s ∈ S ∩ C.

(b) Travel the shortest path from x to s.

(c) Walk along S until the last cluster C′ intersected
by both S and ρG(u, v). Let s′ ∈ S ∩ C′. Let
x′ ∈ ρG(u, v) ∩ C′.

(d) Travel the shortest path from s′ to x′.

(e) Walk along ρG(u, v) until you exit C′.

First, we will argue that P is only O(k) longer than ρG(u, v).
Each time P departs from ρG(u, v), we travel distance at
most two (from x to s, which belong to the same cluster),
and when P rejoins ρG(u, v) we again travel distance at most
two (from s′ to x′, which again belong to the same cluster).
Let a ∈ ρG(u, v) be a node immediately before one of these
departures, and let b ∈ ρG(u, v) be a node immediately after
one of these departures. It follows from the triangle equality
that |P [a↔ b]| ≤ δG(a, b) + 8. Since we assume there are at
most k departures in total, this implies that |P | ≤ δG(a, b)+
8k.

Second, we will argue that only O(k) edges in P are miss-
ing from H. To see this, each edge (a, b) ∈ P falls into one
of the following cases:

1. The nodes a and b are both unclustered: this edge is
present in H.

2. At least one of the nodes belongs to a clean cluster:
this edge might not be present in H. We have assumed
that ρG(u, v) intersects at most k clean clusters, and
therefore P intersects at most k clean clusters as well.
We can verify that P intersects a clean cluster on at
most four edges. Therefore, there are at most 4k of
this type of edge in total in P .

3. At least one of the nodes belongs to a non-clean clus-
ter, but (a, b) is not contained in any strip: this must
be one of the edges immediately preceding or imme-
diately following a departure of P from ρG(u, v). As
discussed above, there are at most four of these edges
per departure. There are at most k departures, so
there are at most 4k of this type of edge in total in P .

4. The edge (a, b) is contained in a strip: this edge is
present in H.

Therefore, at most 8k edges in P are missing from H. For
each missing edge (a, b), we know from edges added in the

multspan subroutine that ρH(a, b) = Õ(1). From this, we
can conclude |P | ≤ ρG(u, v)+O(k), so ρH(u, v) ≤ ρG(u, v)+

Õ(k).

Lemma 3. Let H be a subgraph of G over the same vertex
set, and suppose H contains exactly the edges of multspan(G)
and createStrips(G, C, d,m). Let u, v be nodes in G with
the property that ρG(u, v) intersects exactly k clean clusters
and fewer than k

2
strips. Then δG(u, v) ≥ Ω(kd

m
).

Proof. Partition ρG(u, v) into k
m

sections, where each
section contains exactly m clean clusters (the last section
might contain fewer). For each of these sections, we evi-
dently chose not to add this subpath P of ρG(u, v) as a new
strip. That means that either (1) P intersects at least m
clusters, or (2) P has length at least d. The former can
only be the case at most half the time, otherwise ρG(u, v)
intersects at least k

2
strips. Therefore, at least half of these

sections have length at least d, so the total length of ρG(u, v)
is at least kd

2m
.

3. FIRST SPANNER CONSTRUCTION
Here we will prove the following theorem:

Theorem 1. For any parameter ε ∈ [0, 1], there exists a

spanner on O(n1+ε) edges with additive distortion Õ(n1/2−ε/2).

Before we begin our construction, we require one new sub-
routine.

Very Sparse Multiplicative Spanners.
In [2], the authors describe an efficient algorithm that

generates spanners on O(n1+1/k) edges with multiplicative
stretch 2k − 1. We will employ this algorithm as a subrou-
tine several times throughout this paper; for simplicity, we
will always set k = logn. This gives us a spanner on O(n)

edges with Õ(1) multiplicative stretch.
The subroutine of generating such a spanner will be called

multspan(G).

Main Construction.
Our first spanner construction is as follows:

Algorithm 3: Õ(n1/2−ε/2) additive distortion span-
ners on O(n1+ε) edges

Data: An unweighted, undirected graph G = (V,E)
and a number ε

1 Initialize H = multspan(G);
2 Initialize C = cluster(G,nε);

3 Initialize S ← createStrips(G, C,∞, n1/2−ε/2)

// (G, C, d,m)
4 Add all edges in S to H;
5 Add all edges to H whose endpoints are both

unclustered in C;
6 return H;

Our edge bound for this construction is very straight-
forward. The multspan subroutine adds O(n) edges, the
createStrips subroutine adds O(n) edges, and since every
unclustered node has at most nε unclustered neighbors (oth-
erwise we could have turned these into a new cluster), there
are at most n1+ε edges with both endpoints unclustered.

We will now prove our error bound.

Claim 2. Any shortest path ρG(u, v) intersects at most

n1/2−ε/2 clean clusters.

Proof. If ρG(u, v) intersected more than n1/2−ε/2 clean
clusters, then we would add one of its subpaths as a new
strip before terminating the createStrips subroutine.

Claim 3. The graph H returned by Algorithm 3 spans G
with additive distortion of Õ(n1/2−ε/2).

Proof. First, note that there are at most n1/2−ε/2 strips
in S, since each strip intersects n1/2−ε/2 previously clean
clusters, and there are at most n1−ε clusters in total. The
error bound is now immediate from Lemma 2.

4. SECOND SPANNER CONSTRUCTION
We will prove the following results:

Theorem 2. Every graph has a spanner on Õ(n1+ε) edges

with Õ(n2/3−5ε/3) additive distortion, whenever ε ∈ [0, 1
4
].

Theorem 3. Every graph has an emulator on Õ(n1+ε)

edges with Õ(n1/3−2ε/3) additive distortion, whenever ε ∈
[0, 1

5
].

Hitting Sets.
We will need one last subroutine before we proceed with

the construction. Let V = {1, . . . , n} be a set of nodes, and
letR be a set of subsets of V . We say that H ⊂ V is a hitting
set of R if for every R ∈ R, there is a node h ∈ H ∩R. The
following result is well known:

Lemma 4. Let m be the minimum size of any element
R ∈ R. Then R has a (polynomial-time constructible) hit-
ting set H with |H| = O(n

m
log(|R|).

It can be shown that the greedy algorithm, which repeatedly
selects the node h that hits the most un-hit sets in R, will
suffice to implement this lemma. It can also be shown that a
sufficiently large random sample of nodes will implement this
lemma with high probability. We will not prove this here;
instead, we will simply use the notation hittingSet(R) as a
subroutine that constructs a hitting set of R of the asymp-
totic size bound given in the above lemma.

Main Construction.
This time, we will have two parameters in our construc-

tion: ∆ and µ. For the emulator construction, we set µ =
1
6
− 5

6
ε and ∆ = 1

3
− 2

3
ε. For the spanner construction, we

set µ = 1
3
− 4

3
ε and ∆ = 2

3
− 5

3
ε. Note that we have the

constraint µ ≥ 0. This gives rise to the restrictions ε ∈ [0, 1
5
]

for the emulator and ε ∈ [0, 1
4
] for the spanner.

Algorithm 4: Algorithm that implements Theorems
3 and 2

Data: A graph G = (V,E) and a number ε

1 Initialize H ←multspan(G);
2 Initialize C ← cluster(G,nε);

3 Initialize S ← createStrips(G, C, n∆, nµ)
// (G, C, d,m)

4 Add all edges in S to H;
5 Add all edges between unclustered nodes to H;
6 Initialize Q ← ∅;
7 for every ordered pair of nodes u, v such that

ρG(u, v) intersects at least n∆

2
strips or at least n∆

clean clusters do
8 Let x be the first node on ρG(u, v) such that

ρG(u, x) intersects at least n∆

2
strips or at least

n∆ clean clusters;

9 if ρG(u, x) intersects at least n∆

2
strips then

10 Initialize Q to be the set of all nodes within
distance two of any of these strips;

11 Add Q to Q;

12 else
13 Initialize Q to be the set of nodes in ρG(u, x);
14 Add Q to Q;

15 end

16 end
17 Initialize T ← hittingSet(Q);

Algorithm 4: Spanner Continuation (Theorem 2)

18 Add to H all edges in subsetspan(G, T);
19 return H;

Algorithm 4: Emulator Continuation (Theorem 3)

18 for every pair t1, t2 ∈ T do
19 Add an edge to H between t1 and t2 of weight

δG(t1, t2) ;

20 end
21 return H;

The main for loop in this algorithm omits pairs u, v with

the property that ρG(u, v) intersects less than n∆

2
strips and

less than n∆ clean clusters. We can ignore these paths be-
cause we already have enough edges in place to span these
paths with Õ(n∆) (this is immediate from Lemma 2).

We will now prove our certificates for this construction.

Claim 4 (Edge Bound). In either case, the returned

graph H has Õ(n1+ε) edges.

Proof. Our first goal is to place a lower bound on the
minimum size of any element Q ∈ Q. We create these ele-
ments Q in lines 10 and13. In the first case, we are adding
the nodes within distance two of Ω(n∆) different strips.
Each of these strips was the first to intersect nµ distinct
clusters, each of which contains at least nε nodes. There-
fore, the size of each of these elements is Ω(n∆+µ+ε). In line

13, we add all of δG(u, x) to Q. We know that this path

intersects at least n∆ clean clusters and at most n∆

2
strips.

By Lemma 3, we conclude that this path has length at least
Ω(n2∆−µ).

By Lemma 4, the size of T is at most Õ(nmax(1−∆−µ−ε,1−2∆+µ)).

For the emulator parameter settings, this gives |T | = Õ(n1/2+ε/2),

so we add |T |2 = Õ(n1+ε) edges to H in the emulator con-
tinuation. For the spanner parameter settings, this gives
|T | = Õ(n2ε). Then subspan(G, T) has n|T |1/2 = Õ(n1+ε)
edges.

Claim 5 (Error Bound). The returned graph H

spans/emulates G with Õ(n∆) additive distortion.

Proof. Let u, v be arbitrary nodes in V . First, sup-

pose that ρG(u, v) intersects fewer than n∆

2
strips and fewer

than n∆ clean clusters. Then by Lemma 2, we already have
ρH(u, v) ≤ ρG(u, v) + Õ(n∆).

Otherwise, let xu be the first node on ρG(u, v) such that
ρG(u, xu) does not have this property, and let xv be the same

for ρG(v, u). First, suppose ρG(u, xu) intersects at least n∆

2
strips. Then there is some node tu ∈ T on one of these
strips (Line 10). Otherwise, there is some node tu ∈ T that
sits directly on the path ρG(u, xu) (Line 13). Let wu be the
closest node on ρG(u, xu) to tu. Define tv, wv similarly with
respect to v.

We now proceed by the triangle inequality. We have

δG(tu, tv) ≤ δG(tu, wu) + δG(wu, wv) + δG(wv, tv)

We know that δG(tu, wu) and δG(wv, tv) are both O(n∆),
since tu (tv) is within distance two of a strip that intersects
ρG(u, xu) (ρG(xv, v)). We can then write

δG(wu, tu) + δG(tu, tv) + δG(tv, wv) ≤ δG(wu, wv) +O(n∆)

Some algebra yields

δG(u,wu)+δG(wu, tu) + δG(tu, tv) + δG(tv, wv) + δG(wv, v)

≤ δG(u,wu) + δG(wu, wv) + δG(wv, v) + Õ(n∆)

Since wu, wv ∈ ρG(u, v), the right-hand side simplifies.

δG(u,wu)+δG(wu, tu) + δG(tu, tv) + δG(tv, wv) + δG(wv, v)

≤ δG(u, v) + Õ(n∆)

It follows from Lemma 2 that δH(u,wu) ≤ δG(u,wu) +

Õ(n∆) and δH(wv, v) ≤ δG(wv, v) + Õ(n∆). We also know
that δG(wu, tu) ≤ n∆ and δG(tv, wv) ≤ n∆. Additionally,
we know that δH(tu, tv) ≤ δG(tu, tv) + 2, because we have
added a subset spanner (or a direct emulator edge) that en-
forces this property on every pair of nodes in T . This gives
us

δH(u,wu)+δH(wu, tu) + δH(tu, tv) + δH(tv, wv) + δH(wv, v)

≤ δG(u, v) + Õ(n∆)

We finish by applying the triangle inequality to the left-hand
side.

δH(u, v) ≤ δG(u, v) + Õ(n∆)

It is worth noting that better spanners would follow quickly
from better subset spanners. It is not yet known how to gen-
eralize the subset spanner result in [12] to fewer edges and a

non-constant error bound; for our purposes, any error of up
to n∆ would be acceptable. This seems to be an attainable
and relevant problem, which we leave open.

5. CONCLUSION
We have improved the additive distortion bounds for span-

ners and emulators for many values of ε below the n4/3 edge
threshold. The main open question of spanner research still
remains: do there exist spanners or emulators on O(n4/3−δ)

edges with additive distortion no(1) for some constant δ > 0?
Our work also suggests that further improvements in span-

ner construction may follow from generalizations of the re-
cent work in subset spanners. More formally: can we con-
struct a subset spanner on an asymptotically smaller num-
ber of edges, given a subset size of |S| and a budget of n∆

additive distortion?

6. REFERENCES
[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.

Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J. Comput.,
28:1167–1181, 1999.

[2] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete & Computational Geometry, 9:81–100, 1993.

[3] B. Awerbuch. Complexity of network synchronization.
Journal of the ACM, pages 32, 804–823, 1985.

[4] S. Baswana and T. Kavitha. Faster algorithms for
approximate distance oracles and all-pairs small
stretch paths. Proc. 47th IEEE Symposium on
Foundations of Computer Science (FOCS), pages
591–602, 2006.

[5] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie.
Additive spanners and (α, β)-spanners. ACM Trans.
Algo., 7:A.5, 2005.

[6] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie.
New constructions of (α, β)-spanners and purely
additive spanners. Proc. 16th SODA, pages 672–681,
2005.

[7] S. Baswana and S. Sen. A simple and linear time
randomized algorithm for computing sparse spanners
in weighted graphs. Journal of Random Structures and
Algorithms 30, pages 4, 532–563, 2007.

[8] B. Bollobás, D. Coppersmith, and M. Elkin. Sparse
distance preservers and additive spanners. Proc. 14th
ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 414–423, 2003.

[9] Shiri Chechik. New additive spanners. SODA, pages
498–512, 2013.

[10] L. J. Cowen. Compact routing with minimum stretch.
Journal of Algorithms, pages 28, 170–183, 2001.

[11] L. J. Cowen and C. G. Wagner. Compact roundtrip
routing in directed networks. Journal of Algorithms,
pages 50, 1, 79–95, 2004.

[12] M. Cygan, F. Grandoni, and T. Kavitha. On pairwise
spanners. Symposium on Theoretical Aspects of
Computer Science (STACS), 2013.

[13] Dorit Dor, Shay Halperin, and Uri Zwick. All pairs
almost shortest paths. Proc. 37th Annual Symp. on
Foundations of Computer Science (FOCS), pages
452–461, 1996.

[14] M. Elkin. Computing almost shortest paths. ACM
Trans. Algorithms, pages 1(2):283–323, 2005.

[15] M. Elkin. A near-optimal distributed fully dynamic
algorithm for maintaining sparse spanners. Proc. 26th
ACM Symposium on Principles of Distributed
Computing (PODC), pages 185–194, 2007.

[16] M. Elkin and J. Zhang. Efficient algorithms for
constructing (1 + ε, β)-spanners in the distributed and
streaming models. Distributed Compting 18, pages 5,
375–385, 2006.

[17] P. Erdös. Extremal problems in graph theory. Theory
of graphs and its applications, pages 29–36, 1964.

[18] A. M. Farley, A. Proskurowski, D. Zappala, and
K. Windisch. Spanners and message distribution in
networks. Discrete Applied Mathematics, pages
137(2):159–171, 2004.

[19] Mathias Bæk Tejs Knudsen. Additive spanners: A
simple construction. Symposium and Workshop on
Algorithm Theory (SWAT), pages 277–281, 2014.

[20] D. Peleg and J. D. Ullman. An optimal synchronizer
for the hypercube. SIAM Journal of Computing, pages
18, 740–747, 1989.

[21] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. Journal of the ACM,
pages 36(3):510–530, 1989.

[22] Seth Pettie. Low distortion spanners. 34th
International Colloquium on Automata, Languages,
and Programming (ICALP), pages 78–89, 2007.

[23] L. Roditty, M. Thorup, and U. Zwick. Roundtrip
spanners and roundtrip routing in directed graphs.
ACM Trans. Algorithms, page 3(4): Article 29, 2008.

[24] M. Thorup and U. Zwick. Compact routing schemes.
Proc. 13th ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 1–10, 2001.

[25] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM 52, pages 1, 1–24, 2005.

[26] D. P. Woodruff. Lower bounds for additive spanners,
emulators, and more. Proc. 47th IEEE Symp. on
Foundations of Computer Science (FOCS), pages
389–398, 2006.

[27] D. P. Woodruff. Additive spanners in nearly quadratic
time. 37th International Colloquium on Automata,
Languages, and Programming (ICALP), pages
463–474, 2010.

