Subquadratic time approximation algorithms for the girth*

Liam Roditty |

Abstract

We study the problem of determining the girth of an un-
weighted undirected graph. We obtain several new efficient
approximation algorithms for graphs with n nodes and m
edges and unknown girth g. We consider additive and mul-
tiplicative approximations.

Additive Approximations. We present:

e an O(n®/m)-time algorithm which returns a cycle of
length at most g 4+ 2 if g is even and g + 3 if g is odd.
This complements the seminal work of Itai and Rodeh
[SIAM J. Computing’78] who gave an algorithm that
in O(n?) time finds a cycle of length g if g is even, and
g+ 1if gis odd.

e an O(n®/m)-time algorithm which returns a cycle of
length at most g’ + 2, where ¢’ is the length of the
shortest even cycle in GG. This result complements the
work of Yuster and Zwick [SIAM J. Discrete Math’97]

who showed how to compute g’ in O(n?) time.
Multiplicative Approximations. We present:

e an O(n®/%)-time algorithm which returns a cycle of
length at most 3¢g/2 + z/2 when g is even and
39/2 + z/2 + 1 when ¢ is odd, where z = —g mod 4,
z € {0,1,2,3}. This gives an O(n®?)-time 2-
approximation for the girth, the first subquadratic 2-
approximation algorithm, resolving an open question
of Lingas and Lundell [IPL’09].

e an O(n'?%%)-time (8/5)-approximation algorithm for
the girth in graphs with girth at least 4 (i.e., triangle-
free graphs). This is the first subquadratic time (2 —¢)-
approximation algorithm for the girth for triangle-free
graphs, for any € > 0. We prove that a deterministic al-
gorithm of this kind is not possible for directed graphs,
thus showing a strong separation between undirected
and directed graphs for girth approximation.

1 Introduction

We consider the algorithmic problem of computing
the length g of the shortest cycle in an unweighted
undirected graph with n vertices and m edges. This
natural graph parameter, called the girth, has many
applications (e.g. in cycle packing [15] or computing

" *The first author was supported by ISF grant no. 822/10.
The second author was supported by NSF Grant #0963904 and
NSF Grant #0937060 to the CRA for the CIFellows Project. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the NSF or the CRA.

fDepartment of Computer Science, Bar Ilan University, Ramat
Gan 52900, Israel

fComputer Science Division, University of California, Berke-
ley, Berkeley, CA 94720, USA

Virginia Vassilevska Williams *

a minimum cycle basis, which in itself has a myriad of
applications [14]).

The problem of computing the girth has been stud-
ied since the 1970s. Itai and Rodeh [13] showed that the
shortest cycle can be found in O(nm) time by n appli-
cations of Breadth-First-Search (BFS), or in O(n¥) <
O(n?376)-time using fast matrix multiplication [8].

For more than 30 years these two algorithms have
remained essentially the fastest ways to compute the
girth. There has been an intuition that the problem is
inherently tied to the all pairs shortest paths (APSP)
and Boolean matrix multiplication (BMM) problems,
the best algorithms for which have the same runtimes
as those for the girth. Recently, Vassilevska W. and
Williams [22] made this intuition formal by showing
that any combinatorial algorithm computing the girth
in truly subcubic runtime (O(n®~¢)-time for constant
e > 0) implies a truly subcubic time combinatorial
algorithm for multiplying two Boolean matrices, and
hence also for APSP in unweighted graphs.

Although not formally defined, combinatorial al-
gorithms distinguish themselves from their algebraic
counterparts (such as the bilinear algorithms for ma-
trix multiplication) in that they are often less complex
and have smaller constants in the big-O of the run-
ning time. Thus, although theoretically one can solve
BMM, APSP and the girth problem using fast matrix
multiplication, one often considers combinatorial algo-
rithms instead, as they can be much more efficient in
practice. The fastest combinatorial algorithm for BMM
is a recent O(n®/log*?°n) time algorithm by Bansal
and Williams [5] who improved on the 40-year record
of O(n?/log®n) by the Four-Russians Algorithm [4].
Obtaining a truly subcubic combinatorial algorithm for
BMM is a longstanding open problem, and would be a
significant breakthrough, as many computational prob-
lems can be reduced to BMM (see e.g. [9, 11, 21]). Hence
the result of [22] implies a seeming cubic barrier for any
practical algorithm which computes the girth exactly.

To circumvent this barrier, it is interesting to
consider fast practical approzimation algorithms for the
girth. In the same paper [13] that contains their exact
algorithm, Itai and Rodeh showed that with a simple
BFS approach, in O(n?) time one can compute a cycle of
length at most g+1. This is as good of an approximation

as one could hope for, short of computing g exactly.
Furthermore, the quadratic runtime seems like it could
be optimal since any o(n?) time algorithm which works
for all graphs would run in sublinear time for dense
enough graphs. It is an intriguing question, how good
of an approximation to the girth can one achieve if one
cannot even read the entire input?

We study this question in the context of two types
of approximations: additive and multiplicative. For
constant ¢ > 0, an additive c-approximation for the
girth g returns a cycle of length between g and g + ¢;
as an example, Itai and Rodeh’s O(n?) time algorithm
returns an additive l-approximation. For constant ¢ >
1, a multiplicative c-approximation returns a cycle of
length between g and ¢ - g.

Additive approximations. Itai and Rodeh’s ad-
ditive l-approximation algorithm is the only additive
constant-approximation algorithm for the girth to our
knowledge. Even though it obtains the best possible
approximation quality, short of returning an exact an-
swer, it always runs in quadratic time, regardless of the
graph density. We complement Itai and Rodeh’s result
by presenting an O((n?/m)log? n)-time algorithm that,
with high probability, returns a cycle of length at most
g+ 2if gis even and g 4 3 if g is odd. We also show
how to obtain a similar additive approximation for the
shortest even cycle in the graph, complementing a result
by Yuster and Zwick [23] who showed that a shortest
even cycle can be found in O(n?) time. For any graph
with w(nlog®n) edges, we break the seeming quadratic
time barriers of Itai and Rodeh (for the girth) and of
Yuster and Zwick (for shortest even cycle), while keep-
ing the additive error a small constant. In Section 3, we
show how to make these algorithms deterministic, with
a slight time overhead.

THEOREM 1.1. Let G(V,E) be an unweighted undi-
rected graph. There is an O(n®/m) time algorithm that
finds, with high probability, a cycle in G whose length is
an additive 3-approximation for the girth of G. More-
over, there is an O(n®/m) time algorithm that finds,
with high probability, an even cycle in G whose length is
an additive 2-approximation for the length of the short-
est even cycle in G.

Multiplicative approximations. Any additive
approximation can be considered a multiplicative one
as well. Itai and Rodeh’s additive 1-approximation, for
instance, is at worst a multiplicative 4/3-approximation
for the girth. More than 30 years after Itai and Rodeh’s
paper, Lingas and Lundell [16] presented the first al-
gorithm that breaks the quadratic time bound, at the
price of a much weaker approximation: their algorithm
runs in O(n®/?) time and returns a multiplicative 8/3-

approximation. In fact, Lingas and Lundell’s algorithm
returns a cycle of length at most 2g + 2: this is almost
a 2-approximation, but not quite. At the end of their
paper, they asked whether there exists a subquadratic
time algorithm with a multiplicative approximation fac-
tor of 2 or less.

We are able to answer Lingas and Lundell’s open
question by giving the first subquadratic time, multi-
plicative 2-approximation for the girth in undirected un-
weighted graphs. Furthermore, unlike the previous sub-
quadratic time approximation algorithm for the girth
in [16], our algorithm is deterministic!

THEOREM 1.2. There is an O(n°/®logn)-time deter-
ministic multiplicative 2-approzimation algorithm for
the girth.

Theorem 1.2 stems from a more general approxima-
tion result:

THEOREM 1.3. Let G be a graph with unknown girth
g = 4c— z for some ¢ > 1 and z € {0,1,2,3}. Then,
there is an O(n°/®logn)-time deterministic algorithm
which returns a 6¢ — z-cycle if the girth is even, and a
6¢c — z + 1-cycle if the girth is odd.

Theorem 1.3 returns a cycle of length at most
39/2 + z/2 for even g and 3¢/2 + z/2 + 1 for odd
g. This is almost a 1.5-approximation, but not quite.
Theorem 1.3 implies an approximation algorithm for the
shortest even cycle as well, giving the first subquadratic
time (2 — g)-approximation for the problem.

COROLLARY 1.1. There is an O(n®/3logn)-time deter-
ministic algorithm that returns an even cycle whose
length is a multiplicative 5/3-approxzimation for the
shortest even cycle.

Multiplicative (2 — ¢)-approximations. A nat-
ural question is, can one obtain a subquadratic time
(2 — ¢)-approximation for the girth, or is there an (n?)
time barrier?

For graphs of girth at least 6, Theorem 1.3 al-
ready gives a (2 — ¢)-approximation for the girth in
subquadratic time. Through a combination of Theo-
rems 1.1 and 1.3, we obtain subquadratic time (2 — ¢)-
approximations for all graphs of girth at least 4 (also
called triangle-free). Theorem 1.4 below is a special
case of Theorems 5.1 and 5.2 in Section 5.

THEOREM 1.4. There is a deterministic O(n'99%)-time
multiplicative (8/5)-approxzimation algorithm for the
girth in triangle-free graphs.

Hence, the main difficulty in obtaining a sub-
quadratic time (2 — ¢)-approximation for all undirected

graphs is the case of finding cycles of length less than 6
in graphs of girth 3. We conjecture that this problem
requires essentially quadratic time. We are not able to
prove this conjecture at this time. However, in Sec-
tion 6 we explain why it is difficult to extend our par-
ticular approach to obtain a subquadratic-time (2 — ¢)-
approximation algorithm for graphs with girth 3: ex-
tending the approach would require a truly subcubic
time combinatorial algorithm for BMM.

Theorem 1.4 is interesting in itself, as it implies
a concrete separation between the girth approximation
problems in undirected and directed graphs.

THEOREM 1.5. Let ¢ > 0. There is no deterministic
o(n?)-time multiplicative (2 — €)-approzimation for the
girth in triangle-free directed graphs, or in directed
graphs with girth > C, for any constant C'.

There are well-known differences between directed
and undirected graphs, when it comes to cycles. Bondy
and Simonovits [7] showed that dense enough graphs
contain short cycles of even length. This led to the
O(n?)-time algorithms of Yuster and Zwick [23] that
can determine whether an undirected graph contains a
2k-cycle for any constant k. The best known running
time for finding fixed length cycles in directed graphs,
on the other hand, is O(n*), where w < 2.376 is the
matrix multiplication exponent [8].

Tt is also not hard to show (Lemma 5.2 in Section 5)
that any combinatorial O(n?~¢) time c-approximation
for the girth in directed graphs for any constant ¢ >
1 would imply a subcubic time combinatorial algo-
rithm for BMM. Hence, even Lingas and Lundell’s sub-
quadratic time (8/3)-approximation for the girth in
undirected graphs can be viewed as a separation be-
tween directed and undirected graphs.

However, both of these separations are conditional.
The second separation is conditioned on there being
no truly subcubic time combinatorial BMM algorithm.
The first separation is conditioned on w > 2. Many
researchers believe that w = 2, and hence even the
O(n?) time algorithm for finding given length even
cycles for undirected graphs may not present a concrete
separation between the two girth problems. With
Theorem 1.5 we show that a result such as Theorem 1.4
is unconditionally impossible for directed graphs, and
hence give the first concrete separation between the
girth problems in directed and undirected graphs.

Related work. Cycles of a given fized length.
Yuster and Zwick [23] showed that any even constant
length cycle can be found in O(n?) time. Alon, Yuster
and Zwick [3] showed that a k-cycle in a directed
or undirected graph with m edges can be found in
O(m?~%/k) time when k is even, and O(m?~2/(k+1))

time when k& is odd.

Girth of weighted graphs. Recently, we have showed
in [18] that computing a minimum weight cycle in
an undirected n-node graph with edge weights in
{1,...,M} or in a directed n-node graph with edge
weights in {—M,..., M} and no negative cycles can
be efficiently reduced to finding a minimum weight tri-
angle in an ©(n)—node undirected graph with weights
in {1,...,0(M)}. This resolved a longstanding open
problem posed by Itai and Rodeh [13]. A direct conse-
quence of our reductions are O(Mn®) < O(Mn?2376)-
time algorithms for computing the girth in both undi-
rected graphs with weights in {1,..., M} and directed
graphs with weights in {—M, ..., M}.

Lingas and Lundell [16] also presented an algo-
rithm for undirected graphs with integer edge weights
in the range {1,...,M}. Their algorithm com-
putes in O(n?(logn)lognM) time a multiplicative 2-
approximation. Recently, Roditty and Tov [17] im-
proved the approximation factor to 4/3 for the weighted
case while keeping the running time unchanged, and
also presented an O(£n?logn(loglogn)) time (4/3+¢)-
approximation algorithm for undirected graphs with
nonnegative real edge weights, for any ¢ > 0. This is
an essentially optimal combinatorial algorithm, as any
subcubic time combinatorial (4/3—¢)-approximation for
0 < & < 1/3 implies a subcubic time combinatorial al-
gorithm for BMM [22].

Shortest paths. The All Pairs Shortest Paths
(APSP) problem is closely related to the problem of
computing the girth both in weighted and unweighted
graphs. Baswana and Kavitha [6] presented a general
framework for approximating APSP in weighted undi-
rected graphs. In particular, they presented an algo-
rithm with a running time of O(m/n + n?) that com-
putes a multiplicative 2-approximation, and an O(nz)—
time algorithm that for every w,v € V returns a
path of length 2d(u,v) + w(w,u), where d(u,v) is the
uwv-distance and w(u,v) is the weight of the heavi-
est edge on the shortest uv-path. Dor, Halperin and
Zwick [10] showed that using any subcubic time (2 —¢)-
approximation algorithm for APSP in an undirected
graph it is possible to multiply two Boolean matrices
in subcubic time.

In a seminal paper, Thorup and Zwick [20] con-
structed, for every integer k > 1, an O(n'*t'/*)-space
data structure which, when queried about two ver-
tices at distance d, would report a distance of at most
(2k — 1) - d, in constant time. This is called a (2k — 1)-
approximate distance oracle. Thorup and Zwick showed
a Q(n?) space lower bound for 2-approximate distance
oracles. This implies that no o(n?) time algorithm can
construct a 2-approximate distance oracle. Our o(n?)

time 2-approximation for the girth shows that the girth
approximation problem is strictly easier than approxi-
mate distance oracle construction.

2 Preliminaries

Unless stated explicitly otherwise, all graphs in our
paper are connected unweighted undirected graphs that
contain at least one cycle. We denote with n the number
of vertices, and with m the number of edges. The c-
neighborhood N¢(v) of a node v is defined as all vertices
at distance ¢ from v. The extended c-neighborhood
N¢(v) of a node v is defined as all vertices at distance
at most ¢ from v. A Cj is a simple cycle on k edges.

We denote with P(u,v) the set of edges on a simple
path between u and v. We denote with Ps(u,v) the
set of edges on the path between u and v in the BFS
tree rooted at s. BFS-cycle(s) is the algorithm which
runs BFS from vertex s until, by following some edge
(u,v), a vertex v is visited a second time. In this
case BFS-cycle returns the simple cycle enclosed by
Py (z,u)UPs(z,v)U{(u,v)}, where x is the least common
ancestor of v and v in the BFS tree rooted at s.

Below we present several techniques that will be
used through the paper together with several new ideas
to obtain our new results.

LEMMA 2.1. ([13], [16]) For every vertexu € V, BFS-
cycle(u) runs in O(n) time. If a vertex v is at distance
{ from a verter u, and there is a simple cycle of length
k going through v then BFS-cycle(u) reports a simple
cycle of length at most to k+20 if k is even, and k+20+1
if k is odd.

The next theorem states a fundamental combinato-
rial property of even cycles in undirected graphs proven
by Bondy and Simonovits [7].

THEOREM 2.1. ([7]) Let £ > 2 be an integer and let
G(V,E) be an undirected graph with n vertices and m
edges, where m > 1000n* /4. For every k € [l nl/l],
there is a Cop in G.

Yuster and Zwick [23] presented an algorithm BFS-
even-cycle(v) for finding shortest even cycles. BFS-
even-cycle(v) is a clever modification of BFS that tra-
verses the BFS tree rooted at v until one of 3 conditions
is fulfilled by an edge which visits an already visited
vertex. Fach condition ensures that the edge which sat-
isfies the condition closes an even cycle. Yuster and
Zwick prove the following about their algorithm.

LEMMA 2.2. ([23]) There exists an O(n)-time algo-
rithm BFS-even-cycle(v), such that

e if a cycle C is found while scanning the neighbors
of a node at level £ of the BES tree rooted at v, then
|C| <2042, and

o ifv is a vertex on a minimum even cycle, then BFS-
even-cycle(v) finds a minimum even cycle.

We prove the following additional lemma about
BFS-even-cycle. For the details of Yuster and Zwick’s
algorithm, see [23], pages 10 and 11.

LEMMA 2.3. If a vertex u is at distance £ from a vertex
s, and there is a simple cycle of length 2k going through
u then BFS-even-cycle(s) reports in O(n) time a simple
even cycle of length at most to 2k + 2¢.

Proof. Let u be the node of C' at largest distance from
s. Clearly, d(s,u) < d(u,u) + £. Notice also that
d(u, @) < |C|/2. By the time all edges from level d(s,)
of the BFS tree from s are relaxed by BFS-even-cycle,
an even cycle will definitely be found as all edges from
nodes of C will have been relaxed. Now, there are three
cases:

1. Ifd(s,u) < d(u,u)+(¢—1), then by Lemma 2.2, the
length of the cycle found is at most 2 + 2d(s, @) <
2420 -2+ 2d(u,u) <20+ |C.

2. Ifd(s,u) = d(u,)+ and d(u,w) < |C|/2—1, then
by Lemma 2.2, the length of the cycle found is at
most 2 4 2d(s,u) < 20+ |C).

3. If d(s,u) = d(u,u) + £ and d(u,ua) = |C|/2, then
consider the two neighbors ui,us of @ in C. We
must have that d(u,uq) = |C|/2—1 and d(u, uz) =
|C]/2 — 1 and hence d(s,u;) < |C|/2+ ¢ —1 and
d(s,uz) < |C|/2+ ¢ — 1. Therefore, an even cycle
will in fact be found when scanning the neighbors
of u; and weo, i.e. before the first edge from
a node at level |C|/2 4+ ¢ is relaxed. Thus by
Lemma 2.2, the length of the cycle found is at most
24+2(|C|/24+¢—1) =20+ |C).

The following lemma is a standard greedy hitting
set argument appearing e.g. in [1]. We need the
more precise running time for our subquadratic time
algorithms.

LEMMA 2.4. Let Ty,...,T;y be t sets over n elements
U, so that for every i < t, |T;| = R. Then there is a
O(tRlogn + (n/R)logt) time deterministic algorithm
which produces a set S of size O((n/R)logn) such that
for every i <t, T; NS # 0.

Proof. Consider the following algorithm:

Let S = (. In O(tR) time compute for every u € U
the number t(u) = |{i | v € T3}|. Insert (u,t(u)) in a
heap H, sorted by t(u). Extract (u,t(u)) with maximum
t(u) and insert u € S. For every T; such that u € T,
and for every x € T;, decrease the key ¢(x) by 1. Remove
T;. Remove u from U.

Let t; be the number of sets left after j elements are
placed in S. At this point, the number of elements left in
U is n—j. Consider the maximum key element (u,t(w))
in H. Note that t(u) > Rt;/(n — j) as every remaining
set T; contains R elements. Hence, after removing the
sets that u covers, we have ¢;11 <t;(1 — R/(n — j)).

Since for j < j/, 1—R/(n—3)) > (1—R/(n—7")),
we have that t; <t-(1— R/n)?. Hence when (n/R)Int
elements are placed in S, the number of sets left is
< t(1 — R/n)" Bt < t(1/e)"t = 1, and hence all sets
must have been hit.

The running time is determined by the number
of extractions from H, which is O(n/Rlnt), and the
runtime due to the decreaseKey operations. Notice
that each decreaseKey operation is due to an element
occurrence in a set, and each such occurrence causes
at most one decreaseKey operation, since it is removed
after it has been processed. Hence the number of
decreaseKey operations is at most O(tR), as |T;| = R
for each i. Each decreaseKey operation costs O(logn)
time and hence the entire runtime is O(tRlogn).

Finally, the following is a simple lemma which says
that finding two distinct paths between a pair of vertices
is sufficient to find a cycle.

LEMMA 2.5. Let z,y € V. If P(x,y) and P'(x,y)
are two different simple paths between x and y then
P(z,y) U P'(z,y) contains a simple cycle of length at
most |P(z,y)| + [P'(z, y)|.

Proof. Let (a,b) € P(z,y) and (a,b') € P'(z,y)
be two distinct edges such that the subpaths P(z,a)
and P’(z,a) are identical. Such edges must exist as
P(x,y) # P'(z,y). Let ¢ be the first vertex which is
an endpoint of an edge both in P(b,y) and in P'(¥,y).
Such a vertex must exist since both paths end at y.
The subpaths P(a,c) and P’(a,c) are internally vertex
disjoint. Moreover, since b # b’ at least one of these
paths is of length at least 2. Hence the two paths en-
close a simple cycle of length at least 3 and at most
IP(z,9)] + P (z,y)].

3 Additive approximation

Reminder of Theorem 1.1. Let G(V,E) be an
unweighted undirected graph and let |V| = n and |E| =
m. There is an O(n®/m) time algorithm that finds,

with high probability', a cycle in G whose length is an
additive 3-approximation for the girth of G. Moreover,
there is an O(n®/m) time algorithm that finds, with
high probability, an even cycle in G whose length is an
additive 2-approximation of the length of the shortest
even cycle in G.

Proof. Suppose first that m < 101(1 + 1/e)n'*e
for ¢ > loglogn/logn. This implies that m <
O(nlog®n/loglogn). For the minimum length cycle we
use Itai and Rodeh’s [13] O(n?) time algorithm to find
an additive 1-approximation of the girth. For the short-
est even cycle we use Yuster and Zwick’s [23] O(n?) time
algorithm to find the exact shortest even cycle. Both al-
gorithms runs in O((n®/m)log® n/loglogn) time.

Suppose now that m > 101(1 + 1/e)n'*e for ¢ >
loglogn/logn. Let k' = [e~1]. Sincee™! € [K'—1,K'] it
follows that m > 101k'n'+/¥". Moreover, there exists a
k < O(logn/loglogn) such that 101(k+1)n!*+/(*+1) <
m < 101kn'*+1/%_ Tt follows from Theorem 2.1 that any
graph with at least 100(k + 1)n1+1/(k+1) edges contains
a Capyo. Hence, if we pick a random edge (u,v) € E
the probability that it is part of a Cario is at least
1/100. If we independently pick O(logn) random edges,
the probability that none of them is part of a Cox o is
1/ poly(n).

Now, for each picked edge (u,v), using Algorithm
BFS-cycle either from u or from v we can find a cycle of
length at most 2k +2, in O(n) time per edge, O(nlogn)
time overall. If this is not an additive 3-approximation
of the girth, then the girth is at most 2k — 2.

In the case of shortest even cycle we use Lemma 2.2
to find an even cycle of length at most 2k + 2 in O(n)
time per edge. If this is not an additive 2-approximation
for the shortest even cycle, then the shortest even cycle
has length of at most 2k — 2.

We now handle the case that the shortest (even)
cycle is of length at most 2k — 2. Let A be a degree
parameter. We refer to vertices of degree at most A as
low degree vertices and vertices of degree strictly more
than A as high degree vertices. For every low degree
vertex v we compute the first £ —1 levels of the BFS tree
rooted at v in the induced graph of low degree vertices.
This search runs in O(nA*~!) time and either finds a
(even) cycle of length at most 2k — 2, or determines
that the shortest (even) length cycle through low degree
vertices is of length at least 2k.

The only remaining case is when the shortest (even)
cycle is of length at most 2k — 2 and at least one of its
vertices is a high degree vertex. We sample a set S of
O(n/Alogn) vertices uniformly at random. Let v be a
high degree vertex on the minimum length cycle. With

THigh probability means probability at least 1 — 1/ poly(n).

high probability, S contains a neighbor of v. (The set S
can also be found deterministically in O(nAlogn) time
by Lemma 2.4 by letting the element set be V' and the
sets be A-size subsets of the neighborhoods of all high
degree vertices in the graph. However, since the first
part of the algorithm is randomized, the full algorithm
remains randomized.)

For the minimum length cycle we run BFS-cycle
from each vertex of S. If there is a minimum length
cycle of length at most 2k — 2 with at least one high
degree vertex, then Lemma 2.1 implies that the shortest
among all cycles that the algorithm finds is an additive
3-approximation for the shortest cycle. The running
time is O(n%logn/A).

For the shortest even length cycle we run BFS-even-
cycle from each vertex of S. If there is a shortest even
length cycle of length at most 2k — 2 with at least one
high degree vertex, then Lemma 2.3 implies that the
shortest among all cycles that the algorithm finds is an
additive 2-approximation for the shortest even length
cycle. The running time is O(n?logn/A).

In both cases, the runtime of the algorithm is
O(n?logn/A + nAF~1). To minimize the runtime, we
set A = (nlogn)'/* and obtain a running time of

O(n®(logn) =Yk /1%y < O(n®k(logn)' ~/* /m) <

O((n®/m)log®n/loglogn).

Notice that the only randomized part of the algo-
rithm is to find a 2(k + 1)-cycle in a graph with at least
Q(n'*t1/(++1) edges. Here we show that for graphs with
a superlinear number of edges, one can obtain a deter-
ministic additive approximation algorithm. We utilize
an algorithm by Alon, Yuster and Zwick [3] which can
find any fixed length 2k-cycle in O(m?~2/*) time in a
graph with m edges, if such a cycle exists.

THEOREM 3.1. There is an O(n?>~2/* %) time de-
terministic algorithm which computes an additive 3-
approximation for the girth in graphs with at least
100(k 4 1)n*t1/ B+ edges, for any integer k > 1.

We note that a slightly better running time de-
pendence can be obtained by using Alon, Yuster and
Zwick’s algorithms [3] for finding even cycles in sparse
undirected graphs which run in O(m?2+1/(2*)=1/(21))
time for (4t — 2)-cycles and in O(m2*TY/GtHD=1/t) time
for 4t-cycles. However, the runtime dependence is not
as clean. Furthermore, our main use of Theorem 3.1 is
in the proof of Theorem 5.2, the runtime of which would
not be affected if we use the even cycle algorithms of [3],
as it involves finding odd cycles as well.

Proof. We show how to find a 2(k 4 1) cycle in a graph
with at least 100(k + 1)n't/(++1) edges deterministi-
cally. Pick 100(k + 1)n'TY/(*+1) arbitrary edges. By
Theorem 2.1 the induced subgraph contains a 2(k + 1)-
cycle. Now, we use the deterministic algorithm of
Alon, Yuster and Zwick [3] to find a 2(k + 1) cycle
in O((n1+1/(k+1))272/(k+1)) _ O(nz((kﬂ)?q)/(kﬂ)?) _
O(n2=2/(:++1)%) time. The rest of the algorithm in Theo-
rem 1.1 runs in O(n3(logn)' =Yk /nl+1/k) = O(n2-1/*)
time. Since 2 —1/k <2 —2/(k+1)? for any value of k,
the running time is dominated by the time to find the
2(k + 1)-cycle, and is O(n2=2/(k+1D%),

4 Multiplicative approximation for
graphs

general

Reminder of Theorem 1.3. Let G be a graph with
unknown girth g = 4¢ — z for ¢ > 1 and z € {0,1,2,3}.
Then, there is an O(n®/3logn)-time deterministic algo-
rithm which returns a 6¢ — z-cycle if the girth is even,
and a 6¢ — z 4+ 1-cycle if the girth is odd.

Proof. Let C be the shortest cycle of G and recall that
g=1C|. Let g =4c—zfor ¢ > 1 and z € {0,1,2,3},
i.e. 2z = —gmod 4. In the proof below we will use c,
however, the algorithm itself does not need to know c.

Let R be a parameter to be fixed later. For every
node v € V, run the regular BFS algorithm from v until
the BFS tree T, has R vertices.

First, use Lemma 2.4 to deterministically, in
O(nRlogn) time, find a set S of O((n/R)logn) ver-
tices which hit every T, with |T,,| = R. For every s € S,
run BFS-cycle(s), and let Cs be the cycle reported from
s, if any. This takes O((n?/R)logn) time.

Suppose that there exists a node v on the shortest
cycle C, so that there are more than R vertices at
distance at most ¢ from v, that is, [N¢(v)| > R. Since,
|T,,| = R it follows that T, € N¢(v). Then S hits this
c-neighborhood in some node s, and, by Lemma 2.1,
|Cs| < |C| 4 2¢ when |C] is even, and |Cs| < |C|+2¢+1
if |C| is odd.

Now suppose that every vertex v on C has |N¢(v)| <
R. Then for every vertex v on C, N ¢(v) is completely
contained in T,. As a first stage, check for each v € V
whether any two neighbors of v in T, share an edge. If
this is the case, a triangle has been found, and it must be
the shortest cycle. If a triangle has not been found, then
in the remainder of the proof we assume that |C| > 4.
This step takes O(nR?) time.

We now show how to find C' when |C| > 4. For
each v € V, we compute the tree distances d,(z,y) in
T, between all pairs of nodes (z,y) of T, and determine
the pairs (z,y) for which v is the least common ancestor
in T,,. This entire step takes O(nR?) time since each T,

has at most R vertices. For every vertex z € T, \ {v},
let pr,(x) be the predecessor of x in T,.

Consider the pairs of vertices (x,y) for which z,y €
T, \ {v} for some v; there are at most O(nR?) such
pairs. For each such pair, create a list (),,. For
every v and z,y € T, \ {v} for which v is the least
common ancestor of x and y in T,, add a 4-tuple
(v,dv(x,y),prv(x),prv(y» to Qﬂﬁy

Sort each @, in nondecreasing order of d,(x,y).
Notice that since there are at most R vertices in each
tree, the size of Ui, y)cvxvQuy is O(nR?). Thus, the
total time required for building and sorting all @, is
O(nR?logn).

We now color each vertex in the graph indepen-
dently uniformly at random red or blue; this coloring
will later be derandomized without much runtime loss.

Split @5y, while keeping its relative order, into the
lists Q" and Q. "%, where Q7" (Q.; ") includes
all 4- tuples (a,dq(x,y), prq(x),pra()) of Qg for which
both pr,(z) and pra(y) are colored red (blue). (We
ignore all 4-tuples for which pr,(xz) and pr.(y) are
colored differently.)

Any two 4-tuples, (a,dq(z,y),pre(z),pra(y)) €

vy and (b, dy(z,y),pre(z), pri(y)) € Q" F, corre-
spond to two simple paths P, and P, between x and
y, going through a and b, respectively. Since pr,(x) #
pry(x), P, and P, must differ in at least one edge.
Lemma 2.5 implies that P, U P, contains a simple cy-
cle of length < d,(x,y) + dp(z,y) which can be found
greedily.

We now show that if C 1is the shortest cy-
cle and |C| > 4, then there are two nodes z,y
on C and two 4-tuples (a,d.(x,y),prq(z),prq(y))
and (b, dy(z,y), pro(z), pro(y)) I Qu, for which
IC| = da(z,y) + dy(z,y), and {pra(z),pra(y)} N
{pry(z),pre(y)} = 0, so that, with constant probabil-
ity, one tuple is in Q;", and the other in Q;"".

To prove this, consider a, b, z,y € C, which appear
in the order a,x,b,y,a on C, so that

e zisc—[z/3] > 1 cycle edges after q,

e bis ¢ > 1 cycle edges after z,

e yisc— |z/3] > 1 cycle edges after b, and
e aisc— |z/2] > 1 cycle edges after y.

Notice that since |C| > 4 these vertices exist and
are distinct. We denote the paths along C' between
these vertices with C(a, z), C(z,b), C(b,y) and C(y, a),
respectively. Figure 1 shows the choice of x,y, a,b both
in general and in the special cases of C7,Cy and C1y.

Consider the paths P,(a,x) and P,(a,y) in T,
between a and z and a and y. Suppose that C(a,z) #
P,(a,z). Then by Lemma 2.5, G has a simple cycle C’

Figure 1: Example of 4 nodes on a cycle.

of length at most |C(a,x)| + |Pa(a,x)|. Since P,(a,x)
is a shortest path, |P,(a,z)| < |C(a,z)] < ¢ and we
get that |C’'| < 2¢. Moreover, since C(a,x) # P,(a,z),
C(a,z) must be of length at least 2 and hence ¢ > 2.
Thus, |C| = 4¢c—2 > 2¢+ (2¢—3) > 2¢+1 >
|C’|. This is a contradiction to C being a shortest
cycle. Hence, C(a,z) = Py(a,z). An analogous
argument shows that P,(a,y) = C(y,a),Py(b,z) =
C(z,b), Py(b,y) = C(b,y). This implies that d(x,y) =
C(a,z)| + |C(y, a)| and dy(x,y) = |C(x,b)| + |C (b, y)|.
Moreover, since C(y,a) N C(a,z) = {a} and C(z,b) N
C(b,y) = {b}, a and b are the least common ancestors
of z and y in T, and T}, respectively. We conclude
that the two 4-tuples (a,d.(z,y),prq(x),prq(y)) and
<bv db(xﬂ y)7prb(x),prb(y)> are added to Qxy

We now show that {pro(z),pro(y)} N
{prp(z),pro(y)} = 0. We have that pry(z) €
Clar) \ {o}, and pn(e) € Clb) \ {z},
pro(y) € C(b,y) \ {y} and pra(y) € C(y, a) \ {y}.
Because of our choice of a,b,z,y, we have that
C(a,z) N C(z,b) = {z} and hence pry(x) # pry(z).
We also have that C(a,z) N C(b,y) = 0 since a,b,z,y
are distinct vertices. Thus, pry(z) # pry(y). Similarly,
C(y,a) N C(b,y) = {y} implies that pro(y) # pro(y),
and C(y,a) N C(x,b) = implies that prq(y) # pry(z).

Hence,there is a probability of 1/8 that one of these
tuples will be in Q" and the other will be Q,"".

The actual cycle will be found as follows. After
the coloring and the splitting, take the first element of

vy s (W, du (2, y), pro(z), pro(y)), and the first element
(w, dw(2,y), pruw (), pro(y)) of Q7 . Since any pair

of such tuples corresponds to a cycle whose length is
in the range [|C],dy(x,y) + dy(z,y)] when the tuples
from the shortest cycle (a,d,(z,y),pr.(z),pr.(y)) and
<b’ db(.’E,y),pT’b(fﬂ),p’f‘b(y» are in art{yED and BLUE? re-
spectively, they will be first in both lists as 0therw1se the
minimality of C' is contradicted. Hence, with constant

probability, we can find the shortest cycle after consid-
ering, in O(nR?) time, all pairs of minimum elements
of Q" and Q""" over all z,y, finding the pair which
minimizes d, (z,y)+dy(x,y) over all z, y and recovering
the cycle from it.

The color-coding portion of the algorithm can be
efficiently derandomized, using the ideas of Alon, Yuster
and Zwick [2]. Let F' = {fi,..., fir|} a k-perfect hash
family of hash functions from {1,...,n} to {1,...,k} so
that for every V/ C V with |V’| = k, there exists some i
so that f; maps the elements of V'’ to distinct colors. In
our case, it suffices to map pr,(z) and pry(z) to different
colors and pr,(y) and pry(y) to different colors, and so
k = 2. By enumerating through the functions of F,
and using each f; in place of the random coloring, our
algorithm runs in O(nR?(logn + |F|)) time, provided
each f; can be evaluated in constant time.

Schmidt and Siegel [19] (following Fredman, Komlos
and Szemeredi [12]) gave an explicit construction of a k-
perfect family in which each function is specified using
O(k) + 2loglogn bits. For our case of k = 2, the
size of the family is therefore O(log?n). The value of
each one of the hash functions on each specified element
of V can be evaluated in O(1) time. Alon, Yuster
and Zwick [2], reduced the size of the hash family to
O(logn). Using this family we can derandomize this
part of our algorithm so that it runs in deterministic
O(nR%logn) time.

The overall running time becomes O((nR? +
n?/R)logn) which is minimized for R = n'/? and is
O(n®/?logn).

Notice that for all cycle lengths 4c — z, the above
algorithm returns a cycle of length < 6c—z+1 < 8¢—2z
since 2¢ > z41 whenever ¢ > 2, and when ¢ = 1, z must
be <1, and so again 2c¢ > z 4+ 1. Thus we have:

Reminder of Theorem 1.2. There is an O(n®/3logn)
time deterministic multiplicative 2-approximation algo-
rithm for the girth.

This resolves the open problem raised by Lingas and
Lundell [16].

5 Multiplicative approximation algorithms for
triangle-free graphs
Theorem 1.3 already gives a better-than-2-
approximation for graphs whose girth is of even
length, or of odd length at least 7. Theorem 1.1, on
the other hand, gives a better-than-2-approximation
for all graphs with girth at least 4 (i.e. triangle-free
graphs). However, its running time is subquadratic
only for dense enough graphs. In this section we show
how to obtain the first subquadratic, better-than-
2-approximation algorithm for triangle-free graphs.

We show how to prove Theorem 5.1, by combining
Theorem 1.3 and Theorem 1.1, together with the
algorithm of Alon, Yuster and Zwick [3] for finding
given length cycles in sparse graphs.

THEOREM 5.1. For every integer ¢ € [3,7], there is an
O(n?4e=2)/(2e=23) 4 15/3) _time randomized algorithm
which returns, with high probability, a multiplicative
max{8/5, (6c — 2)/(4c — 3)}-approzimation of the girth
in triangle-free graphs.

Hence, the following randomized multiplicative ap-
prozimation algorithms exist for triangle-free graphs:

1 875)

e an O(n -time, 1.778-approximation,

e an O(n

1.929)_time, 1.693-approzimation,

1

(.

(.

o an O(n'%%)-time, 1.648-approzimation,
(.
(.

1 962)

e an O(n -time, 1.62-approximation,

1 969)

e an O(n -time, 1.6-approximation,

In order to prove Theorem 5.1 we first need several
facts about the approximation ratios that Theorem 1.3
gives us.

CrLAM 1. The approximation ratios of Theorem 1.3
decrease with increasing ¢ while keeping z fixed, or with
decreasing z while keeping ¢ > 2 fized.

Proof. If z is odd, the approximation ratio is (6¢ —
z+4+1)/(4c — z) = (6c — 1.5z + 0.5z + 1)/(4dc — z) =
(3/2)+(242)/(2(4c—2)). If z is even, the approximation
ratio is (6¢c— z)/(4dc— z) = (6c— 1.52+0.52) /(e — 2) =
(3/2) + z/(2(4c — z)). Hence, in both cases increasing ¢
while keeping z fixed decreases the ratio.

Consider decreasing z by 1 while keeping ¢ > 2
fixed. If z is originally odd, then the ratio is reduced
from (3/2)+(2+2)/(2(4c—%)) to (3/2)+(2—1)/(2(4c—
z+1)). If z is originally even, the ratio is changed from
(3/2)+2/(2(4c—2)) to (3/2) + (z+1)/(2(4c — 2+ 1)).
Since ¢ > 2 and z < 3, we have that z < (4¢ — 2),
z(4dc — z + 1) < (2 + 1)(4c — 2), and hence (3/2) +
2/(2e — 2)) < (3/2) + (= + 1)/ Qe — 2 +1).

CLAM 2. Theorem 1.3 returns an (6¢ — 2)/(4c — 3)-
approximation when the girth is 4c — 6.

Proof. When the girth is 4c—6, the approximation ratio
is (6¢ — 8)/(4c — 6). Consider any ¢ > 2. Then, 4 <
2¢, and so, 24¢?+24—(32+18)c < 24c2 +12—(36+8)c,
and so (6¢ — 8)(4¢c — 3) < (6¢ — 2)(4c — 6). Therefore,
(6c —8)/(4c — 6) < (6c —2)/(4c — 3).

CLAM 3. If the girth of the graph is at least 4c — 6
for some ¢ > 2, then Theorem 1.8 guarantees an
approximation ratio of at most (6¢ — 2)/(4c — 3).

Proof. By Claim 2, when the girth is 4c—6 = 4(c—1)—2,
the ratio is at most (6¢—2)/(4c—3). By Claim 1, when
we fix ¢ = (¢ — 1) and decrease z from 2 to 0, we get
that for any girth 4(¢ — 1) — z for z € {0, 1,2}, the ratio
is at most (6¢ — 2)/(4c — 3). Theorem 1.3 guarantees
an approximation ratio of at most (6¢ — 2)/(4c — 3) for
girth (4c — 3) as well. Now, fix any z € {0,1,2,3}.
By Claim 1, for any ¢’ > ¢, when the girth is 4¢/ — z,
the approximation ratio is still at most (6¢—2)/(4c—3).
This covers all values of the girth that are at least 4c—6.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We will show that for
every integer ¢ > 2, there is an O(n24(c_2)/(120_23) +
n5/3)-time multiplicative max{8/5, (6¢ — 2)/(4c — 3)}-
approximation for the girth in triangle-free graphs.
The running times in the theorem statement follow by
evaluating the approximation ratios and running times
for3<e<T.

Use the O(n5/3)-time algorithm from Theorem 1.3.
If the minimum cycle happens to have length at least
4c — 6, by Claim 3 we get that this step guarantees a
(6¢c — 2)/(4c — 3)-approximation.

Now suppose that the minimum cycle has length
< 4¢—7. We handle this case in two different ways. Pick
a parameter M to be set later. Let m denote the number
of edges in the graph. If m > M, then use the O(n3/m)-
time algorithm from Theorem 1.1 to find an additive
3-approximation if the girth is odd and an additive 2-
approximation if the girth is even. When the graph is
triangle-free, this is at worst an 8/5-approximation.

If m < M, then for each value k < 4¢c — 7, try
to find a Cj explicitly using the O(m2~2/(*+1)_time
algorithm from Alon, Yuster and Zwick [3]. This takes
O(m?~2/(4¢=6)) time. If a cycle is found explicitly, the
shortest cycle found has length exactly the girth. If a
cycle is not found, then the step which uses Theorem 1.3
is a (6¢ — 2)/(4c — 3)-approximation.

We conclude that the algorithm finds a cycle whose
length is a multiplicative max{8/5, (6¢c — 2)/(4c — 3)}-
approximation of the girth.

The runtime is O(n®/3 4+ n3/M 4 M?~1/(2c=3)),
To minimize it, we set n®/M = M?>~1/(2¢=3) and
hence M = n3(¢=3)/(6¢=10) " The runtime becomes
O(n3Ue=T)/(6c=10) 4 5/3),

The only part of the algorithm in Theorem 5.1
which is randomized is in the use of Theorem 1.1 when
the graph has > M edges. Here we give a deterministic
version, using Theorem 3.1 instead.

THEOREM 5.2. For every integer ¢ € [3,7], there is
an O~(712*2/(4C*6)2 +n®/3)-time deterministic algorithm
which returns a multiplicative max{8/5, (6¢ — 2)/(4c —
3)}-approzimation of the girth in triangle-free graphs.

Hence, the following deterministic multiplicative
approzimation algorithms exist for triangle-free graphs:

1.945)

e an O(n -time, 1.778-approximation,

1.98

e an O(n -time, 1.693-approximation,

199)

e an O(n

(
(n™%)

o an O(n'%%)-time, 1.648-approzimation,
(nt-994)_time, 1.62-approzimation,
(

e an O(n'99)

-time, 1.6-approximation.
Proof. We show that for any ¢ > 3, there is an
O(n?=2/(4c=6)* | n5/3) time deterministic algorithm
which achieves a multiplicative max{8/5, (6¢ —2)/(4c—
3) }-approximation for the girth in triangle-free graphs.
As in Theorem 5.1 first use the algorithm from
Theorem 1.3 and compute a cycle which is guaranteed
to be a (6¢ — 2)/(4c — 3)-approximation if the girth is
at least 4c — 6. Assume that the girth is at most 4¢—7,
and pick M = 100(k + 1)n**Y/*+1) for k = 4c — 7. If
the graph has at least M edges, then use Theorem 3.1
to find an additive 3-approximation for the girth which
for triangle-free graphs is at worst a multiplicative 8/5-
approximation, in O(n2~2/(*+D*) = O(p2-2/(4c=6)%)
time. If the graph has less than M edges, then use Alon,
Yuster and Zwick’s algorithm to attempt to find j-cycles
for each j € {5,...,4c — 7}. The running time of this
algorithm is O(M?2~2/(4e=6)) = O(ng_z/(4c_6)2). Then
the final runtime becomes O(n®/3 + n2=2/(4c=6)*) g
obtain the algorithms in the statement of the theorem,
we just evaluate the runtime and approximation ratios
forc=3,...,7.

Now we show that a result such as Theorem 5.2 is
not possible for directed graphs, thus showing that girth
approximation in directed graphs is truly more difficult
than in undirected graphs.

Reminder of Theorem 1.5. Let ¢ > 0. There
is mo deterministic o(n?)-time multiplicative (2 — €)-
approzimation for the girth in triangle-free directed
graphs, or in any directed graphs with girth > C, for
any constant C'.

The proof of Theorem 1.5 proceeds in two steps:
first show that any subquadratic time (2 — e)-
approximation implies a subquadratic time triangle al-
gorithm (Theorem 5.3), and then show that a determin-
istic subquadratic time algorithm for triangle finding
cannot exist (Lemma 5.1).

THEOREM 5.3. If for any constant g > 3, and any
e > 0, there is an o(n?)-time multiplicative (2 — ¢)-
approximation for the girth in directed graphs of girth
at least g, then there is an o(n?)-time algorithm which
finds a triangle in an n-node graph.

Proof of Theorem 5.3. Let G = (V, E) be a directed
graph on n vertices and m edges in which we want to
find a triangle. Let ¢ > 3 be any integer constant.
We actually prove that any T'(m,n) time algorithm for
(2—¢)-approximation of the girth implies that a triangle
in G can be found in T(O(m),O(n)) time.

Consider the following new graph G’. Create g
copies of V, Vi,...,V,. For every node v € V, let v;
be its copy in V;. If g > 4, add edges (v;,v;41) for every
veVandie€{2,...,9—2}. For every (u,v) € E, add
edges (u1,v2), (ug—1,v4) and (ug,vy).

Now, G’ has gn vertices and 3m + (g — 3)n edges.
Since G’ is directed and the only edges go between V;
and V;1 (where the indexing is modulo g), the girth of
G’ is always a multiple of g. Furthermore, G’ has girth
g if and only if G has a triangle. Suppose that there is
an algorithm A running in subquadratic time which can
find a cycle of length at most (2 — €)g’ where ¢’ is the
girth of G’. Run A on G’ as follows. Do not form G’
explicitly, but whenever A needs to access an edge in G/,
compute whether the edge is there, accessing G instead.
(In the adjacency list representation, if A wants the k-
th neighbor of v;, just return v,y if i € {2,...,9 — 2}
and k = 1, u;q1 if i € {1,9 — 1,9} and w is the k-th
neighbor of v in G, and no node otherwise.)

If G has a triangle, then ¢’ = ¢, and otherwise,
g’ > 2g, and hence A will be able to determine which is
the case.

The following lemma is a most likely folklore result.
We include it for completeness.

LEMMA 5.1. Any deterministic algorithm for triangle
finding must take at least Q(n?) time on at least one
n-node graph, for all sufficiently large n.

Proof. Suppose that A is a deterministic algorithm
which runs in o(n?) time and determines whether any
n node graph contains a triangle.

Let G be the complete bipartite graph with n nodes
in each partition (i.e. K, ,). A accesses at most o(n?)
edges or nonedges of G. Hence there exists a node x
such that at least one incident edge to z, (z,y’) is not
touched, and such that there is a nonedge (z,y) which
is not touched (y is in the same partition of G as x).

Since A is deterministic, A would run in the same
way on the graph G with edge set E(G) U {(z,y)} \
{(z,y")}, and hence would give the same answer. How-
ever G contains no triangles since it is bipartite, and G’
contains at least one triangle, and A must be wrong on
at least one of these graphs.

The lower bound holds for both the adjacency
matrix and adjacency list representations. In the first,
we assume that A has not accessed the (z,y) and (z,y’)
adjacency matrix entries, and in the second we assume

that z is a node for which o(n) neighbors were accessed
and so A has not determined which one of (z,y) and
(z,y') is an edge.

Finally, we show that any subquadratic time mul-
tiplicative constant approximation for the girth in di-
rected graphs implies a subcubic time algorithm for
BMM.

LEMMA 5.2. Suppose that for some constants ¢ > 1
and ¢ > 0, there is an O(n®~¢) time (combinatorial)
algorithm for c-approrimating the girth of an n-node
directed graph. Then there is an O(n3~¢) time (com-
binatorial) algorithm for finding a triangle in an n-node
graph, and hence an O(n3~%) time (combinatorial) al-
gorithm for BMM for some § > 0.

Proof. Let G be an n-node directed graph in which we
want to find a triangle. Without loss of generality, G
is tripartite with partitions I, J, K where the edges are
directed from I to J, from J to K and from K to I.
For every node ¢ € I, consider the subgraph G; of G
induced by {i} UJ U K. The girth of G; is 3 if there is
a triangle in G through ¢, and is co otherwise.

Suppose that there is an O(n?~¢) time algorithm
A which can c-approximate the girth of any graph.
Suppose that we can run A on G;, for each i € I.
Since A computes a c-approximation, it can distinguish
between girth 3 and oo in O(n?~¢) time in each G, and
hence A can compute whether G contains a triangle in
O(n®7¢) time.

We do not want to build each G; separately, how-
ever, since that may take cubic time in itself. We show
how to avoid this by reusing parts of G. Build the sub-
graph H of G induced by JUK in O(n?) time. To build
Gy, add a node i and edges to i from the inneighbors of
¢ in H, and with edges from 7 to all outneighbors of i
in H. After running A on Gj, if a triangle is not found,
remove ¢ and its incident edges from G; so that only H
remains and build G;41, etc. Constructing the graphs
G, only takes additional O(n?) time, O(n) per G;.

6 Discussion

An natural question is why our techniques in Theo-
rem 1.3 do not allow us to get a multiplicative (2 — ¢)-
approximation of the girth (for any £ > 0) in sub-
quadratic time in general graphs, and in particular in
graphs with girth 3.

Notice that a subquadratic time multiplicative (2 —
¢)-approximation algorithm for the girth would imply
that it is possible in subquadratic time to determine
whether a graph with no C4 or C5 contains a triangle.
We conjecture that this problem requires essentially
quadratic time, and is the main obstacle to obtaining
a subquadratic (2 — ¢)-approximation for the girth.

CONJECTURE 1. Determining whether a graph which
does not contain a Cy or Cs contains a triangle requires
Q(n%7¢) time for all € > 0.

In the absence of a proof of the conjecture, we con-
sider a natural extension of the approach of Theorem 1.3
and show that obtaining a subquadratic time (2 — ¢)-
approximation using this approach may be difficult.

Consider the girth approximation problem in a
graph G which may contain triangles. As in Theo-
rem 1.3 we can argue that if the graph contains at least
202n3/2 edges, Bondy and Simonovits [7] (Theorem 2.1
in Preliminaries) implies that a C4 exists, and we can
find it in expected O(n) time. Hence we can assume that
G has at most 202n%/2 edges. On the other hand, one
can also assume that every vertex has degree Q(n'/2¢)
for some € > 0, as if a vertex has degree O(n'/?79), its
neighborhood can be searched for a triangle in O(n!~2¢)
time, and so all low degree vertices can be processed and
removed in O(n?~2%) time.

Moreover, if a triangle of G contains a vertex with
degree Q(n'/2%¢), since G' has at most O(n*/?) edges,
there are at most O(n'~¢) such high degree vertices,
and in O(n?~¢) time by running BFS-cycle from each
of them we can find at worst a Cy4, thus obtaining a
4/3-approximation.

Hence, the hard instance is an m-edge graph with
Q(n3/27¢) < m < 202n%/2 for any € > 0 in which all
node degrees are between Q(n'/27¢) and O(n'/2%¢).

An important ingredient in our framework for ap-
proximating the girth in Theorem 1.3 (and through-
out the paper) has been to find a set S of nodes of
size O((n/A)logn) which hits the neighborhoods of all
nodes of degree at least A, either via random sampling,
or by Lemma 2.4. Then, our approach has been to run
a search for a cycle from each node of S. In the case of
our hard instance, we can find a set S of O(n'/?*<logn)
nodes which hits all node neighborhoods. Consider the
natural extension of our approach which attempts to
return a C3,Cy or C5 through some node of S. We
show that this problem would be difficult to solve in
subquadratic time.

Consider running BFS from s € S until either a
cycle is found, or all edges out of all neighbors of s are
scanned. That is, either a Cy or a C3 is found and the
algorithm can stop, or for all s € S, we have computed
N2(s) in overall time O(|S|n) = O(n3/?*logn). If a
C3 or a Cy is not found through S, then our approach
would dictate to attempt to return a C5 through a node
of S. This is the same as determining whether some
N2(s) contains an edge.

We have arrived at the following problem.

DEFINITION 1. Empty-N2%(s): Let G = (V,E) be a

graph with O(n3/2) edges, S C V with |S| = L/n for
some L > 1, L < O(n®) for all constant € > 0, and
such that there is no Cs or Cy through any node of S.
Determine whether Uses E(N?(s)) = 0.

Herein lies the main obstacle. We show that
solving Empty-N2(s) in truly subquadratic time using
a combinatorial algorithm implies a truly subcubic
combinatorial algorithm for BMM, a longstanding open
problem. This seems to suggest that it may be difficult
to (2 — e)-approximate the girth in general graphs in
subquadratic time by solving Empty-N?(s).

THEOREM 6.1. If Empty-N%(s) can be solved in
O(n?7%) time for some 6 > 0 by a combinatorial algo-
rithm, then for some & > 0 there is an O(n3=%)-time
combinatorial algorithm for n x n BMM.

Theorem 6.1 does not rule out solving Empty-N?(s)
by using fast matrix multiplication. However, the proof
of Theorem 6.1 shows that even such algebraic solutions
would be interesting. We show that subquadratic
time Empty-N2(s) is equivalent to solving the following
triangle detection problem in truly subquadratic time:
given a tripartite graph G’ with O(n') edges and
partitions Iy, Is, I3 such that |I;| = |I3] = n, and
|I3] = +/n, determine whether G’ contains a triangle.
We call this problem (y/n,n'-%)-Triangle.

It is not known whether (y/n,n!-?)-Triangle can be
solved in truly subquadratic time, even by using fast
matrix multiplication.

LEMMA 6.1. If (v/n,n'®)-Triangle can be solved in
O(n*7%) time for some § > 0, then Empty-N?(s) can
be solved in O(n?~%") time for some & > 0.

Furthermore, if one can solve Empty-N?(s) in
O(n*79%) time for some § > 0, then (v/n,n'®)-Triangle
can be solved in O(n?>~%) time as well.

Proof. Suppose first that (y/n,n':%)-Triangle can be
solved in O(n?7%) time. Let G = (V,E) be a graph
with O(n'®) edges and let S C V with |S| < Ly/n.
Let’s assume that L = 1. Otherwise, we can split the
problem int L instances of the case when |S| < y/n by
partitioning S into L parts S, ..., S on 4/n nodes and
looking at the graph induced by S; U (V'\ S). Then the
running time will just be multiplied by L, and since
L < O(n®) for all € > 0, we will still get a truly
subquadratic time algorithm.

Create a tripartite graph G’ with partitions I, I, I3
where I = S and I; and I3 are copies of V. For every
s and v € N?2(s), place an edge between s and each
copy of v in I; and I3. For every edge (u,v) € G add
an edge between the copy of v in I; and the copy of v

in I3 and an edge between the copy of w in I3 and the
copy of v in I;. Now, the only triangles that G’ has
are of the form w,v,s where u € I, s € Iy and v € I3.
Any such triangle implies that (u,v) is an edge within
N2(s). Moreover, if any N?(s) contains an edge (u,v),
then s, u,v is a triangle in G’. This concludes the proof
of the first part of the lemma.

Suppose now that one can determine whether
E(N?%(s)) # 0 for some s € S in O(n?7?) time for a
graph G with O(n!-%) edges and for |S| = O(y/n). Let
G be an instance of (y/n,n!®)-Triangle. Let I, I, I3
be the partitions of the nodes of G with |I2] = /n,
|I;| = |I3] = n. Create a new graph G’ as follows. In-
clude in G’ the subgraph of G induced by I} U I3. Add
a set S of \/n nodes, one for each node of I5. For every
node s € S add y/n nodes s1,.. -»8ym and add edges
between s and s; for each i € {1,...,/n}.

Now consider any node u € Iz. Let vi,...,Vgeg(u)
be the neighbors of v in G. These neighbors can be
partitioned into at most \/n disjoint groups V,; =
jmere | B € {1,...,y/n}} for j > 0 and j <
deg(u)/v/n < V/n.

Let s be the copy of w in S. Recall that s
currently has neighbors si,...,s 5 in G'. For every
j€40,...,y/n—1}, add an edge between s;;1 and the
copy in G’ of every node (if any) in V,,;. This completes
the construction of G’. Notice that G’ does not contain
any C3 or Cy through S. G’ has O(n!?) edges and O(n)
nodes. |S| = O(y/n), and there is an edge (u,v) € N2(s)
iff u, v, s is a triangle in G. Hence one can find a triangle
in G in O(n?7%) time.

Now we show that any subquadratic time combina-

torial algorithm solving Empty-N?(s) implies a subcu-
bic time combinatorial algorithm for BMM.
Proof of Theorem 6.1. Suppose that one can
solve Empty-N?2(s) in truly subquadratic time using a
combinatorial algorithm. Then by Lemma 6.1 one can
solve (y/n,n'?)-Triangle in truly subquadratic time us-
ing a combinatorial algorithm. Then take any tripar-
tite graph G’ with n nodes in each partition Iy, I3, I3.
Partition the edge set in I} x I3 into K = O(y/n)
pieces Fi,...,Ex on O(n'®) edges each. Partition
the nodes in Ir into K = O(y/n) parts Xi,..., Xk on
O(y/n) nodes each. Then for every pair (E;, X}), detect
whether the graph formed by X x I, Xj x I3 and the
edges in E; contains a triangle in O(n?~°) time. Since
the number of pairs (E;, Xy) is K2 = O(n), a triangle in
G’ can be found in O(n37%) time. By [22], this implies
that there is a combinatorial O(n3~%") time algorithm
for BMM for some constant ¢’ > 0.

References

(1]

(9]

(10]

(11]

(12]

[13]

(14]

(15]

(16]

(17]

18]

[19]

D. Aingworth, C. Chekuri, P. Indyk, and R. Mot-
wani. Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J. Comput.,
28(4):1167-1181, 1999.

N. Alon, R. Yuster, and U. Zwick. Color-coding. J.
ACM, 42(4):844-856, 1995.

N. Alon, R. Yuster, and U. Zwick. Finding and
counting given length cycles. Algorithmica, 17:209-
223, 1997.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and
I. A. Faradzev. On economical construction of the
transitive closure of an oriented graph. Soviet Math.
Dokl., 11:1209-1210, 1970.

N. Bansal and R. Williams. Regularity lemmas and
combinatorial algorithms. In Proc. FOCS, pages 745—
754, 2009.

S. Baswana and T. Kavitha. Faster algorithms for
approximate distance oracles and all-pairs small stretch
paths. In Proc. FOCS, pages 591-602, 2006.

A. Bondy and M. Simonovits. Cycles of even length in
graphs. Journal of Combinatorial Theory, 16:97-105,
1974.

D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. J. Symbolic Compu-
tation, 9(3):251-280, 1990.

A. Czumaj, M. Kowaluk, and A. Lingas. Faster
algorithms for finding lowest common ancestors in
directed acyclic graphs. Theor. Comput. Sci., 380(1—
2):37-46, 2007.

D. Dor, S. Halperin, and U. Zwick. All-pairs almost
shortest paths. SIAM J. Comput., 29(5):1740-1759,
2000.

M. J. Fischer and A. R. Meyer. Boolean matrix
multiplication and transitive closure. In Proc. FOCS,
pages 129-131, 1971.

M.L. Fredman, J. Komlds, and E. Szemerédi. Storing
a sparse table with O(1) worst case access time. J.
ACM, 31:538-544, 1984.

A. Ttai and M. Rodeh. Finding a minimum circuit in
a graph. SIAM J. Computing, 7(4):413-423, 1978.

T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail,
R. Rizzi, T. Ueckerdt, and K. A. Zweig. Cycle bases
in graphs characterization, algorithms, complexity, and
applications. Computer Science Review, 3(4):199-243,
2009.

M. Krivelevich, Z. Nutov, and R. Yuster. Approxima-
tion algorithms for cycle packing problems. In Proc.
SODA, pages 556-561, 2005.

A. Lingas and E-M. Lundell. Efficient approximation
algorithms for shortest cycles in undirected graphs.
Inf. Process. Lett., 109(10):493-498, 2009.

L. Roditty and R. Tov. Approximating the girth. In
Proc. SODA, pages 1446-1454, 2011.

L. Roditty and V. Vassilevska Williams. Minimum
weight cycles and triangles: Equivalences and algo-
rithms. In Proc. FOCS, 2011.

J.P. Schmidt and A. Siegel. The spatial complexity of
oblivious k-probe hash functions. SIAM J. Comput.,

20]

21]

(22]

(23]

19(5):775-786, 1990.

M. Thorup and U. Zwick. Approximate distance
oracles. In Proc. STOC, pages 183—-192, 2001.

L. G. Valiant. General context-free recognition in less
than cubic time. Journal of Computer and System
Sciences, 10:308-315, 1975.

V. Vassilevska Williams and R. Williams. Subcubic
equivalences between path, matrix and triangle prob-
lems. In Proc. FOCS, pages 645—654, 2010.

R. Yuster and U. Zwick. Finding even cycles even
faster. In Proc. ICALP, pages 532-543, 1994.

