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Abstract

A random graph model based on Kronecker products of probability matrices has been re-
cently proposed as a generative model for large-scale real-world networks such as the web. This
model simultaneously captures several well-known properties of real-world networks; in par-
ticular, it gives rise to a heavy-tailed degree distribution, has a low diameter, and obeys the
densification power law. Most properties of Kronecker products of graphs (such as connectivity
and diameter) are only rigorously analyzed in the deterministic case. In this paper, we study
the basic properties of stochastic Kronecker products based on an initiator matrix of size two
(which is the case that is shown to provide the best fit to many real-world networks). We will
show a phase transition for the emergence of the giant component and another phase transition
for connectivity, and prove that such graphs have constant diameters beyond the connectivity
threshold, but are not searchable using a decentralized algorithm.

1 Introduction

A generative model based on Kronecker matrix multiplication was recently proposed by Leskovec
et al. [10] as a model that captures many properties of real-world networks. In particular, they
observe that this model exhibits a heavy-tailed degree distribution, and has an average degree that
grows as a power law with the size of the graph, leading to a diameter that stays bounded by a
constant (the so-called densification power law [12]). Furthermore, Leskovec and Faloutsos [11] fit
the stochastic model to some real world graphs, such as Internet Autonomous Systems graph and
Epinion trust graphs, and find that Kronecker graphs with appropriate 2 x 2 initiator matrices
mimic very well many properties of the target graphs.

Most properties of the Kronecker model (such as connectivity and diameter) are only rigorously
analyzed in the deterministic case (i.e., when the initiator matrix is a binary matrix, generating
a single graph, as opposed to a distribution over graphs), and empirically shown in the general
stochastic case [10]. In this paper we analyze some basic graph properties of stochastic Kronecker
graphs with an initiator matrix of size 2. This is the case that is shown by Leskovec and Falout-
sos [11] to provide the best fit to many real-world networks. We give necessary and sufficient
conditions for Kronecker graphs to be connected or to have giant components of size ©(n) with
high probability!. Our analysis of the connectivity of Kronecker graphs is based on a general lemma
(Theorem 1) that might be of independent interest. We prove that under the parameters that the
graph is connected with high probability, it also has a constant diameter with high probability. This
unusual property is consistent with the observation of Leskovec et al. [12] that in many real-world
graphs the effective diameters do not increase, or even shrink, as the sizes of the graphs increase,
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which is violated by many other random graph models with increasing diameters. Finally we show
that Kronecker graphs do not admit short (poly-logarithmic) routing paths by decentralized routing
algorithms based on only local information.

1.1 The Model and Overview of Results

In this paper we analyze stochastic Kronecker graphs with an initiator matrix of size 2, as defined
below:

Definition 1. A (stochastic) Kronecker graph is defined by

(i) an integer k, and

(ii) a symmetric 2 X 2 matriz 0: 6[1,1] = «,0[1,0] = 0[0,1] = 3,0[0,0] = 7, where 0 <y < [ <
a <1. We call 8 the base matriz or the initiator matriz.

The graph has n = 2F vertices, each vertex labeled by a unique bit vector of length k; given two
vertices u with label uyug ... up and v with label vivy ... vy, the probability of edge (u,v) existing,
denoted by Plu,v], is [ ], 0[u;, vi], independent on the presence of other edges.

In particular, when o = 3 = =y, the Kronecker graph becomes the well studied random graph
G(n,p) with p = o*. Leskovec and Faloutsos [11] showed that the Kronecker graph model with
2 x 2 initiator matrices satisfying the above conditions is already very powerful in simulating real
world graphs. In fact, their experiment shows that the matrix [.98,.58;.58,.06] is a good fit for
the Internet AS graph. When the base matrix does not satisfy the condition stated in the above
definition (i.e., when o > v > B or # > a > 7), Kronecker graphs appear to have different structural
properties, and require different analytic techniques. We can prove some of our results in these
regimes as well; however, due to lack of space and since this setting of parameters is less appealing
as a generative model for the web, these results are deferred to Appendix A.

We analyze basic graph properties of the stochastic Kronecker graph model. In particular, we
prove that the necessary and sufficient condition for Kronecker graphs to be connected with high
probability is 5+~ > 1 or « = = 1,7 = 0 (Section 2.2); the necessary and sufficient condition for
Kronecker graphs to have a giant component of size ©(n) with high probability is (a+3)(8+7) > 1,
or (a+pB)(B+v)=1and a+ [ > [+ v (Section 2.3); if 5+~ > 1, the diameters of Kronecker
graphs are constant with high probability (Section 3); and that no decentralized search algorithm
can find a path of length o(n(l_a) log2 €) hetween a given pair of vertices in Kronecker graphs, unless
the graph is deterministic (Section 4).

Besides Kronecker graphs, we also define a general family of random graphs G(n, P), which
generalizes all random graph models where edges are independent, including Kronecker graphs and

G(n,p).

Definition 2. A random graph G(n,P), where n is an integer and P is an n X n matriz with
elements in [0, 1], has n vertices and includes each edge (i, j) independently with probability Pli, j].

Throughout this paper we consider undirected G(n, P): P is symmetric and edges are undi-
rected. We prove two useful theorems about connectivity and searchability in this model, which
may be of independent interest; namely, we show that if the min-cut size of the weighted graph
defined by P is at least clnn (c is a sufficiently large constant), then with high probability G(n, P)
is connected (Section 2.1); we also prove a monotonicity property for searchability in this model
(Section 4).



2 Connectivity and Giant Components

We first state a sufficient condition for connectivity of general random graphs G(n, P) (Section 2.1),
then use this condition to analyze connectivity and giant components of Kronecker graphs (Section
2.2, 2.3).

2.1 Connectivity of G(n, P)

We give a sufficient condition of the matrix P for G(n, P) graphs to be connected. Let V' be the
set of all vertices. For any S,S" C V, define P(i,S) = 3,5 Pli, jl; P(S,S") = > e jes Pli, -

Theorem 1. If the min-cut size of the weighted graph defined by P is clnn (c is a sufficiently large
constant), i.e. ¥S C V, P(S,V \ S) > clnn, then with high probability G(n, P) is connected.

Proof. A k-minimal cutis a cut whose size is at most k times the min-cut size. We use the following
result about the number of k-minimal cuts due to Karger and Stein [5]: In any weighted graph, the
number of k-minimal cuts is at most O((2n)?%).

Consider the weighted graph defined by P. Denote its min-cut size by t. We say a cut is a k-cut
if its size is between kt and (k 4 1)t. By the above result there are at most O((2n)*+2) k-cuts.
Now consider a fixed k-cut in a random realization of G(n, P): the expected size of the cut is at
least kt, so by Chernoff bound the probability that the cut has size 0 in the realization is at most
e kt/2, Taking the union bound over all k-cuts, for all k = 1,2,...,n?, the probability that at least
one cut has size 0 is bounded by

Z efkt/QO((2n)2k+2)

k=1,...,n?

For t = clnn where ¢ is a sufficiently large constant, this probability is o(1). Therefore with high
probability G(n, P) is connected. O

Note that G(n,p) is known to be disconnected with high probability when p < (1 —€)Inn/n,
i.e., when the min-cut size is (1 — €) Inn. Therefore the condition in the above theorem is tight up
to a constant factor. Also, extrapolating from G(n,p), one might hope to prove a result similar
to the above for the emergence of the giant component; namely, if the size of the min-cut in the
weighted graph defined by P is at least a constant, G(n, P) has a giant component. However, this
result is false, as can be seen from this example: n vertices are arranged on a cycle, and P assigns a
probability of 0.5 to all pairs that are within distance ¢ (a constant) on the cycle, and 0 to all other
pairs. It is not hard to prove that with high probability G(n, P) does not contain any connected
component of size larger than O(logn).

2.2 Connectivity of Kronecker Graphs

We define the weight of a vertex to be the number of 1’s in its label; denote the vertex with weight
0 by 0, and the vertex with weight k by 1. We say a vertex u is dominated by vertex v/, denoted
by u <4/, if for any bit 4, u; < u}. Recall that Plu,v] is as defined in Definition 1.

The following lemmas state some simple facts about Kronecker graphs. Lemma 2 is trivially
true given the condition v > 8 > . The proof of Lemma 3 is presented in Appendix B.

Lemma 2. For any verter u, Vv, Plu,v] > P[ﬁ, v|; VS, P(u, S) > P(0,5). Generally, for any
vertices u < u’, Yv, Plu,v] < Plu/,v];VS, P(u, S) < P(u,S).



Lemma 3. The expected degree of a vertex u with weight | is (o + B3)(8 + ).

Theorem 4. The necessary and sufficient condition for Kronecker graphs to be connected with high
probability (for large k) is B+~v>1ora=pF=1,v=0.

Proof. We first show that this is a necessary condition for connectivity.

Case 1. If f 4+~ < 1, the expected degree of vertex 0 is (8 + v)* = o(1), with high probability
vertex 0 is isolated and the graph is thus disconnected.

Case 2. If B+~ =1 but 8 < 1, we again prove that with constant probability vertex 0 is isolated:

k k
Pr[0 has no edge] = H(l — P[0,v]) = H (1-— ﬁ“”yk_w)(Z) > H e=2(u)Bt
v w=0 w=0
— e 2Xuso ()BT — 20k 2
Now we prove it is also a sufficient condition. When o = § = 1,7 = 0, the graph embeds a
deterministic star centered at vertex f, and is hence connected. To prove 8 + v > 1 implies
connectivity, we only need to show the min-cut has size at least clnn and apply Theorem 1. The
expected degree of vertex 0 excluding self-loop is (B+ )k — 4% > 2ck = 2cInn given that 3 and
~ are constants independent on k satisfying 3 +~ > 1, therefore the cut ({0}, V \ {0}) has size at
least 2¢cInn. Remove 0 and consider any cut (S,V'\ 5) of the remaining graph, at least one side
of the cut gets at least half of the expected degree of vertex 0; without loss of generality assume
it is S i.e. P(0,S) > clnn. Take any node u in V \ S, by Lemma 2, P(u,S) > P(0,S) > clnn.
Therefore the cut size P(S,V \ S) > P(u,S) > clan. O

2.3 Giant Components

Lemma 5. Let H denote the set of vertices with weight at least k/2, then for any verter u,
P(u,H) > P(u,V)/4.

Proof. Given wu, let | be the weight of u. For a vertex v let i(v) be the number of bits where
up = vp = 1, and let j(v) be the number of bits where u, = 0,v, = 1. we partition the vertices
in V' \ H into 3 subsets: S1 = {v :i(v) > 1/2,5(v) < (k—1)/2},S2 = {v :i(v) < 1/2,5(v) >
(k—=1)/2}, 53 ={v:i(v) <1/2,j(v) < (k—1)/2}.

First consider Sy. For a vertex v € S7, we flip the bits of v where the corresponding bits of u is 0
to get v'. Then i(v') = i(v) and j(v') > (k—1)/2 > j(v). It is easy to check that Plu,v'| > Plu,v],
v € H, and different v € S; maps to different v’. Therefore P(u, H) > P(u,S1).

Similarly we can prove P(u, H) > P(u,S2) by flipping the bits corresponding to 1s in u, and
P(u,H) > P(u,S3) by flipping all the bits. Adding up the three subsets, we get P(u,V \ H) <
3P(u,H). Thus, P(u,H) > P(u,V)/4. O

Theorem 6. The necessary and sufficient condition for Kronecker graphs to have a giant compo-
nent of size ©(n) with high probability is (a+5)(B+7v) > 1, or (a+0)(B+7) =1 and a+5 > S+7.

Proof. When (a + )(8 4+ 7v) < 1, we prove that the expected number of non-isolated nodes are
o(n). Let (a+ B)(8+7) = 1 — e. Consider vertices with weight at least k/2 + k2/3, by Chernoff
bound the fraction of such vertices is at most exp(—ck*3/k) = exp(—ck!/3) = o(1), therefore the
number of non-isolated vertices in this category is o(n); on the other hand, for a vertex with weight
less than k/2 + k2/3, by Lemma 3 its expected degree is at most

atph
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Therefore overall there are o(n) non-isolated vertices.

When a+ 3=+~ =1,ie. a = =rv=1/2, the Kronecker graph is equivalent to G(n, 1/n),
which has no giant component of size ©(n) [4].

When (a4 3)(8 + ) > 1, we prove that the subgraph induced by H = {v : weight(v) > k/2}
is connected with high probability, hence forms a giant connected component of size at least n/2.
Again we prove that the min-cut size of H is clnn and apply Theorem 1. For any vertex u in H, its
expected degree is at least ((a+03)(8+7))*/? = w(Inn); by Lemma 5 P(u, H) > P(u,V)/4 > 2cInn.
Now given any cut (S, H\ S) of H, we prove P(S, H\S) > clnn. Without loss of generality assume
vertex 1 is in S. For any vertex u € H, either P(u, S) or P(u, H\S) is at least ¢Inn. If Ju such that
P(u, H\S) > clnn, then since u < 1, by Lemma 2 P(S, H\S) > P(1,H\S) > P(u, H\S) > clnn;
otherwise Yu € H, P(u, S) > clnn, since at least one of the vertex is in H\ S, P(S,H\ S) > clnn.

Finally, when (a + 8)(8+7) = 1 and o+ 8 > B+, let Hy = {v : weight(v) > k/2 + k'/6},
and we will prove that the subgraph induced by H; is connected with high probability by proving
its min-cut size is at least clnn (Claim 4), and that |H;| = ©(n) (Claim 5), therefore with high
probability H; forms a giant connected component of size ©(n). The proofs of these claims are
presented in Appendix B. O

3 Diameter

We analyze the diameter of a Kronecker graph under the condition that the graph is connected
with high probability. When @ = 3 = 1,y = 0, every vertex links to 1 so the graph has diameter
2; below we analyze the case where 3+~ > 1. We will use the following result about the diameter
of G(n,p), which has been extensively studied in for example [6, 2, 3].

Theorem 7. [6, 2] If (pn)*'/n — 0 and (pn)¢/n — oo for a fized integer d, then G(n,p) has
diameter d with probability approaching 1 as n goes to infinity.

Theorem 8. If 3+ v > 1, the diameters of Kronecker graphs are constant with high probability.

Proof. Let S be the subset of vertices with weight at least %k We will prove that the subgraph
induced by S has a constant diameter, and any other vertex directly connects to S with high
probability.

Claim 1. With high probability, any vertex u has a neighbor in S.
Proof of Claim 1. We compute the expected degree of u to S:

R RS

. B i~ _B
]ZB-Mk ]Zﬁ-mk

The summation is exactly the probability of getting at least ﬂ‘%k HEADs in £ coin flips where the

probability of getting HEAD in one trial is %,

P(u,S) > (8 +7)*/2 > clnn for any u; by Chernoff bound any w has a neighbor in S with high
probability. O

so this probability is at least a constant. Therefore

Claim 2. |S| - miny yes Plu,v] > (8 + 7)*.



Proof of Claim 2. We have

J<]
min Plu,v] > ﬁmkﬁ’ﬁ%k
u,VES
and k\k
S| > ( gk > _ () Bk
= ~ B, T
5+’Yk ((g_‘iﬁ,)e)lﬂmY ((ﬁllf/)e)ﬁ-m B[Hm/ 'VB-H
Therefore | S| - min, ,es Plu,v] > (8 + ). -

Given Claim 2, it follows easily that the diameter of the subgraph induced by S is constant:
let S+ = 1+ ¢ where € is a constant, the diameter of G(|S|, (8 + 7)*/|S|) is at most d = 1/¢
by Theorem 7; since by increasing the edge probabilities of G(n, P) the diameter cannot increase,
the diameter of the subgraph of the Kronecker graph induced by S is no larger than that of
G(|S|, (B+7)*/|S|). Therefore, by Claim 1, for every two vertices u and v in the Kronecker graph,
there is a path of length at most 2 + 1/€ between them. O

4 Searchability

In Section 3 we showed that the diameter of a Kronecker graph is constant with high probability,
given that the graph is connected. However it is yet a question whether a short path can be found
by a decentralized algorithm where each individual only has access to local information. We use a
similar definition as used by Kleinberg [7, 8, 9].

Definition 3. In a decentralized routing algorithm for G(n, P), the message is passed sequentially
from a current message holder to one of its neighbors until reach the destination t, using only local
information. In particular, the message holder u at a given step has knowledge of:

(i) the probability matriz P;

(ii) the label of destination t;

(iii) edges incident to all visited vertices.

A G(n, P) graph is d-searchable if there exists a decentralized routing algorithm such that for
any destination t, source s, with high probability the algorithm can find an s-t path no longer than
d.

We first give a monotonicity result on general random graphs G(n, P), then use it to prove
Kronecker graphs with @ < 1 is not poly-logarithmic searchable. It is possible to directly prove
our result on Kronecker graphs, but we believe the monotonicity theorem might be of independent
interests. More results on searchability in G(n, P) using deterministic memoryless algorithms can
be found in [1]. The proof of Theorem 9 is left to Appendix B.

Theorem 9. If G(n,P) is d-searchable, and P < P' (Vi,j, P[i,j] < P'[i,j]), then G(n,P’) is
d-searchable.

1—a)logy e

Theorem 10. Kronecker graphs are not n' -searchable.

Proof. Let P be the probability matrix of the Kronecker graph, and P’ be the matrix where
each element is p = n~(1710g2¢  We have P < P’ because max; ; Pli, j] < af < e=(l-a)k —
n-(-e)logze — ) If the Kronecker graph is n(!=®1°82¢_searchable, then by Theorem 9 G(n,p)
where p = n~ (=@ 182 ¢ ig a]s0 p1 - 1082 ¢_gearchable. However, G(n,p) is not %—searchable. This is
because given any decentralized algorithm, whenever we first visit a vertex u, independent on the



routing history, the probability that w has a direct link to ¢ is no more than p, hence the routing
path is longer than the geometry distribution with parameter p, i.e. with constant probability the
algorithm cannot reach ¢ in 1/p steps. ]
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A Other settings of parameters

We study connectivity of Kronecker graphs with 2 x 2 initiator matrices without the constraint
a > (3 > ~. We prove that if § + maz(a,y) > 1, then Kronecker graphs are connected with high
probability, for arbitrary «, 3,y € [0, 1].

Theorem 11. If § + max(a,y) > 1, then Kronecker graphs are connected with high probability.

Proof. We first prove for the case where @ > v > 3. We may assume o = 7. Let d(u,v) be the
Hamming-distance between the labels of u and v. Then Plu,v] = 'yk(g)d(“”’).

Claim 3. In Ak-th power of hypercube (i.e. a vertex u is connected to all vertices v with d(u,v) <
Ak), the min-cut size is at least (Akk—l) /2.

Proof of Claim 3. Given a cut (5,5), take any vertex v € S. For any vertex u/ with d(u,u’) = 1,
the number of common neighbors of u and v’ is at least ( /\kk_l), because all vertices within distance
Mk — 1 to u are within distance Ak to u’ and are thus their common neighbors. If the cut size is
less than (/\,f_l) /2, then at least half of those common neighbors must be in S, and « must also
be in S. Apply the same argument iteratively and all vertices will end up being in S. O



Now given a cut (S,S5) in the Kronecker graph, for any edge of this cut in Ak-th power of
hypercube, the Hamming-distance of the two endpoints is at most Ak, and the corresponding edge
presents in the Kronecker graph with probability at least vk(g))‘k , therefore

P55 2 5 (0 M 2 LGP O
Let A = %, P(S,5) > 3-(B+7)F = w(lnn). According to Theorem 1, the graph is connected
with high probability.

For the case where 3 > max(«a, ), the proof is similar as above. Instead of A\k-th power of
hypercube, we can prove that in the graph where a vertex u is connected to all vertices v with
d(u,v) > Ak, the min-cut size is at least (/\kk_l)/2, and use it to bound the cut size in Kronecker
graphs. O

When § + max(a,y) < 1 or 8+ max(a,y) = 1 but all of them are strictly less than 1, then
the graph is not connected with at least constant probability because vertex 0 is isolated with
probability at least e~2 as the proof in Theorem 4.

B Proofs

Proof of Lemma 3. For any vertex v, let ¢ be the number of bits where up, = vy, = 1, and let j be
the number of bits where u, = 1,v, = 0, then Plu,v] = o3/ =14*~1=J Summing P[u,v] over all
v, the expected degree of u is

~N - (1) (k1 l—i, k—1 ~ (1 ! SWE k—1 ! k-1
tjHl—i k—l—j5 __ i ol—i W B

i=0 J i=0 j=0

Claim 4. For any cut (S,Hy \ S) of Hi, P(S,H;\ S) > clnn.

Proof of Claim 4. First, for any u € Hy,
P(w,V) = (a+ B2 (34 )2 7H" = (a4 8)/(B+2)"" = wtan).

By Lemma 5, P(u,H) = w(Inn). We will prove P(u, Hy) > P(u,H \ H;)/2, and it follows that
P(u, Hy) = w(Inn). Then we can apply the same argument as in case («+ 3)(8++) > 1 and prove
that for any cut (S, Hy \ S) of Hy, P(S,H; \ S) > c¢lnn: assume vertex 1 is in S; for any vertex
u € Hy, either P(u,S) or P(u, H; \ 9) is at least cIlnn; if Ju such that P(u, H; \ S) > clnn, then
P(S,H,\ S) > P(1,H,\ S) > P(u,H; \ S) > clnn; otherwise Vu € Hy, P(u,S) > clnn, since at
least one vertex is in H; \ S, we have P(S,H; \ S) > clnn.

It remains to prove P(u,H;) > P(u,H \ Hy)/2. We will map each vertex v € H \ H; to a
vertex f(v) = v € H; such that v < v/ (and hence Plu,v] < Plu,?']), and each vertex in H; is
mapped to at most twice. Once we have such a mapping, then P(u, H\ H1) = ZDEH\H1 Plu,v] <
> veri Pl f(0)] < Xyep, 2P[u,v'] = 2P(u, Hy). The mapping is as follows: for each i in
[k/2,k/2+ k'/6), construct a bipartite graph G; where the left nodes L; are vertices with weight i,
and make two copies of all vertices with weight i+ k'/® to form the right nodes R;, and add an edge
if a right node dominates a left node. It is easy to see that the union of L;s forms exactly H \ Hj,



while all right nodes are in H; and each node appears at most twice. The bipartite graph G; has
a maximum matching of size |L;|, because all left (right) nodes have the same degree by symmetry
and |L;| < |R;| (proved below). We take any such maximum matching to define the mapping and
it satisfies that v < f(v), f(v) € Hy and each v' € Hy is mapped to at most twice. Finally we prove
|Li| < |R;| for k/2 <i < k/2 + k'/6:

|R;| _ 2(1‘—&-1]:1/6) S 2(k/2+’€2k1/6) _ 2% . (g —92k1/6 1)
| L] . (k%) &+ 2k/6) (E+1)
k o1/

> (LT YO s gemek POk _gomoll) —9(1 —g(1)) > 1

2

Claim 5. |H;| = O(n).

Proof of Claim 5. We count the number of vertices with weight k/2 + i:

k kY V2rk(k/e)k o 2F
<k/2+z'> : <k/2) a @((,/zwk/g(me)kﬂ)?) B @(x/E)

Therefore the size of H \ Hj is at most Zf:(f (k/§+i) < kY6 % 2k /\/l = o(n). Tt is easy to see

|H| > n/2, thus |H1| > n/2 — o(n). O

Proof of Theorem 9. Given G(n,P’) we simulate G(n, P) by ignoring some edges. Given a re-
alization G of G(n,P’), we keep an edge (i,7) in G with probability P[i,j]/P’'[i,j], and delete
the edge otherwise; do so for each edge independently. We claim that random graphs gener-
ated by the above process is equivalent to G(n, P): the probability that edge (i,j) presents is
P'[i, j] * (Pli, j]/P'[i, j]) = Pli, j], independent on other edges. Now we have a G(n, P) graph, we
use its decentralized routing algorithm, which will find a path with length at most d with high
probability for any s and t.

Note that we cannot process all edges in the beginning, because there is no global data structure
to remember which edges are deleted. Instead we will decide whether to delete an edge the first time
we visit one of its endpoints and this information will be available to all vertices visited later. [



