
Random Sampling Based Algorithms for Efficient Semi-Key Discovery

Ying Xu ∗ Rajeev Motwani †

Abstract

We design efficient random sampling based algorithms
for discovering keys and semi-keys in large tables. Given
that these problems are provably hard, we adopt the
approach of finding approximate solutions to save on
time and space requirements. We first propose two nat-
ural measures for quantifying the approximation of a
semi-key. For the problem of finding minimum keys, we
develop efficient algorithms that find small semi-keys
with provable size and key-approximation guarantees,
and have space and time requirements sublinear in the
number of tuples. We also design fast algorithms for
finding all minimal exact and approximate keys. Finally,
we provide an extensive set of experimental results on
real world data sets which confirm the efficiency and
accuracy of our algorithms.

1 Introduction

Keys and semi-keys play an important role in many as-
pects of database management, such as query optimiza-
tion, indexing and data integration. Automatic discov-
ery of keys and semi-keys is not only helpful to database
management, but also interesting for knowledge discov-
ery. In general, finding all or even just the minimum
keys are provably hard problems with severe time and
space requirements. In this paper, we focus on design-
ing efficient approximation algorithms for key/semi-key
discovery in large tables.

Before presenting the algorithms, we need to first
define measures for quantifying the approximation of
semi-keys. Keys are a special case of functional depen-
dencies, and measures have been proposed previously
for quantifying the approximation of functional depen-
dency [5, 12]. We propose two natural measures for key-
approximation – α-separation and α-distinct, adapted
from the approximate functional dependency measures
proposed earlier by Kivinen and Mannila [5].

We first consider the problem of finding the mini-
mum key. Previous work shows that it is NP-hard to

∗Stanford University. E-mail: xuying@cs.stanford.edu. Sup-
ported in part by Stanford Graduate Fellowship and NSF Grant
ITR-0331640.

†Stanford University. E-mail: rajeev@cs.stanford.edu. Sup-
ported in part by NSF Grant ITR-0331640, and a grant from
Media-X.

find the minimum exact key even for the special case
where each attribute is boolean [1]. The best known
approximation algorithm can only find a key whose size
is within ln n of the minimum key size, where n is the
number of tuples; even this algorithm requires multiple
scans of the table, which is expensive for large databases
that cannot reside in main memory and prohibitive for
streaming databases. To enable more efficient algo-
rithms, we sacrifice accuracy by allowing approximate
answers (semi-keys). We develop efficient algorithms
that find small semi-keys with provable size and key-
approximation guarantees. Both space and time re-
quirements of our algorithms are sublinear in the num-
ber of tuples, which is a desirable property for large
tables.

In the second part of the paper, we design algorithms
for identifying all minimal keys and semi-keys. This
problem inherently requires worst case running time ex-
ponential in the number of attributes because of the
output size. Our algorithms use small sample tables to
efficiently prune the key space, and are shown by ex-
periments to perform well on real data sets with a rea-
sonable number of attributes. In our experiments the
pruning is able to improve the running time by orders
of magnitude.

1.1 Definitions and Overview of Results

A key is a subset of attributes that uniquely identifies
each tuple in a table. A semi-key is a subset of attributes
that can almost distinguish all tuples. We consider two
measures of key-approximation:

(1) An α-distinct key is a subset of columns
such that it is possible to remove 1 − α frac-
tion of tuples after which the subset of columns
becomes a key in the remaining table. This
definition conforms with the measure of ap-
proximate functional dependency in earlier
work [5, 3].

(2) We say that a subset of attributes separates
a pair of tuples x and y if x and y have differ-
ent values on at least one attribute in the sub-
set. An α-separation key is a subset of columns
which separates at least a fraction α of all dis-
tinct pairs of tuples. This definition is adapted

1

Exact α-Distinct α-Separation

Greedy

time m2n mn + m2
√

2αn
1−α ln 2m

δ mn + m2 log 1
α

2m

δ

= mn + O(m2
√

nm) = mn + O(m3)

space mn m
√

2αn
1−α ln 2m

δ = O(m
√

nm) m log 1
α

2m

δ = O(m2)

key size (1 + 2 ln n)k∗ (1 + ln(2αn
1−α ln 2m

δ))k∗ (1 + ln log 1
α

2m

δ)k∗

= (ln m + ln n + O(1))k∗ = (ln m + O(1))k∗

Random Deletion
time m2n mn + m2

√
2αn
1−α ln m

δ mn + 2m log 1
α

m
δ

= mn + O(m2
√

n ln m) = mn + O(m ln m)

space mn m
√

2αn
1−α ln m

δ = O(m
√

n ln m) m log 1
α

m
δ = O(m ln m)

Table 1: Performance of algorithms for finding minimum semi-keys. The “α-distinct”(“α-separation”)
column gives the complexities if we want the algorithms to output an α-distinct (separation) key with probability
1− δ, contrasted with applying the algorithms to find the minimum exact key (the “exact” column). In O-notation,
α and δ are considered as constants. In the “key size” row, k∗ is the size of the minimum exact key. Random Deletion
provides no guarantee of key sizes.

from the self-join size measure for approximate
functional dependency [5].

age sex state
1 20 Female CA
2 30 Female CA
3 40 Female TX
4 20 Male NY
5 40 Male CA

Table 2: An example table. The first column labels
the tuples for future references and is not part of the
table.

We illustrate the notions with an example (Table 2).
The example table has 3 attributes. The attribute age
is a 0.6-distinct key because it has 3 distinct values in
a total of 5 tuples; it is a 0.8-separation key because
there are 10 distinct pairs of tuples and 8 pairs can be
separated by age. Readers can verify that the attribute
set {sex, state} is 0.8-distinct and 0.9-separation.

The problem of finding minimum keys is closely re-
lated to the classical minimum set cover problem. (We
will show the connection between the two problems in
Section 2.) We also define an approximate measure for
partial set covers.

Minimum Set Cover Problem: Given a finite
set S (called the ground set) and a collection C

of subsets of S, a set cover I is a subcollection
of C such that every element in S belongs to
at least one member of I. The Minimum Set
Cover problem asks for a set cover with the
smallest cardinality.

An α-set cover is a subcollection of C that cov-
ers at least a fraction α of elements in S.

We summarize below the contributions of this paper.
(In the minimum key problem, let n be the number of
tuples and m be the number of columns; in set cover, let
n be the size of the ground set S, and m be the number
of subsets in C.)

1. We propose two algorithms, Greedy and Random
Deletion, that find small semi-keys with provable
size and key-approximation guarantees, with space
and time requirements sublinear in n. The algo-
rithms are particularly useful when n À m, which
is typical of database applications where a large ta-
ble may consist of millions of tuples, but only a
relatively small number of attributes. The results
are summarized in Table 1. (Section 3)

2. Our results on semi-keys are based on a novel tech-
nique for solving an approximation version of the
minimum set cover problem. We design a random-
ized algorithm for the minimum set cover problem
that uses O(m2) space and produces an α-set cover
within ln m + O(1) of the minimum set cover size
with constant probability. Minimum set cover is
a classical problem in theoretical computer science
and has important applications in various fields of
computer science, so this result may be of indepen-
dent interest. (Section 3.1)

3. We extend the algorithms to find the approximate
minimum β-set covers and separation keys. (Sec-
tion 3.4)

2

4. We design fast algorithms for finding all minimal
exact, distinct, and separation keys of a given table.
(Section 4)

5. We have implemented all the above algorithms and
conducted experiments using real data sets. The
experiment results validate the theoretical claims
about the performance and accuracy of our approx-
imate minimum key algorithms, and confirm the
efficiency of algorithms for finding all keys (semi-
keys). (Section 5)

2 Preliminaries

In this section, we briefly review the connection between
the minimum exact key problem and the minimum set
cover, as well as known approximation algorithms for
the two problems. The reduction between the two prob-
lems and the exact key algorithm play an important role
in designing algorithms for approximate keys in later
sections.

A special case of the minimum exact key problem,
where each attribute is boolean, has been studied under
the name “Minimum Test Collection”.

Minimum Test Collection: Given a set S of
elements and a collection C of subsets of S,
a test collection is a subcollection of C such
that for each pair of distinct elements there
is some set that contains exactly one of the
two elements. The Minimum Test Collection
problem is to find a test collection with the
smallest cardinality.

The Minimum Test Collection problem is known to
be NP-hard [1], and approximable within a factor of
1 + 2 ln |S| [10].

2.1 Reducing Minimum Key Problem to Mini-
mum Set Cover

The reduction from Minimum Test Collection to Mini-
mum Set Cover has been known for a while, see for ex-
ample [10, 2]. The reduction can be easily extended to
the general minimum key problem where each attribute
can be from an arbitrary domain, not just boolean. We
describe below the reduction from the minimum key
problem to minimum set cover.

Given an instance of the minimum key problem with
n tuples and m attributes, reduce it to a set cover in-
stance where the set S consists of all distinct unordered
pairs of tuples (|S| = (

n
2

)
). Each attribute c in the table

is mapped to a subset containing all pairs of tuples sep-
arated by attribute c. Now a collection of subsets covers
S if and only if the corresponding attributes can sepa-
rate all pairs of tuples, i.e., those attributes form a key,

therefore there is a one-to-one map between minimum
set covers and minimum keys.

Consider the example of Table 2. The ground set
of the corresponding set cover instance contains 10 el-
ements where each element is a pair of tuples. The
column age is mapped to a subset cage with 8 pairs:
{(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)}; the
column sex is mapped to a subset csex with 6 pairs,
and state 7 pairs. The attribute set {age, sex} is a key;
correspondingly {cage, csex} is a set cover.

2.2 Approximation Algorithms for Minimum
Set Cover and Minimum Key

The greedy algorithm for the minimum set cover prob-
lem starts with an empty collection (of subsets) and
adds subsets one by one until every element in S has
been covered; each time it chooses the subset covering
the largest number of uncovered elements. It is well
known that this greedy algorithm is a 1 + ln |S| approx-
imation algorithm to the minimum set cover problem.

Theorem 1 [4] The greedy algorithm outputs a set
cover of size at most 1 + ln |S| times the size of the
minimum set cover.

Given a minimum key instance, we first reduce it to
a set cover instance where |S| =

(
n
2

)
, and then use the

greedy algorithm to get a 1+ln |S| approximate solution
to the minimum set cover, which maps back to a 1+2 ln n

approximate solution to the minimum key. It is also
known neither problem is approximable within c ln |S|
for some c > 0 [2].

3 Finding Minimum Semi-Keys

As pointed out in Section 2, it is not only hard to find
the exact minimum key, but also hard to find a good
approximate solution. The best approximation algo-
rithm known gives O(ln n)-approximate solution and re-
quires multiple scans of the table, which is expensive for
large tables. In this section, we relax the minimum key
problem by allowing semi-keys, and design efficient al-
gorithms with approximate guarantees.

We introduce the approximate parameter α meaning
that we allow an “error” of at most 1−α. For example,
the α-Approximate Minimum Set Cover problem looks
for an approximate set cover with small size and requires
to output an α-set cover (an approximate set cover that
covers at least α|S| elements) with probability at least
1− δ. The α-Distinct (Separation) Minimum Key prob-
lem is defined similarly.

Our algorithms are based on random sampling. We
first randomly sample k elements (tuples), and reduce
the input set cover (key) instance to a smaller set cover
(key) instance containing only the sampled elements

3

(tuples). We then solve the exact minimum set cover
(key) problem in the smaller instance (which is again
a hard problem but has much smaller size now; we use
the greedy algorithm and a random deletion heuristic
to solve the exact problem), and output the solution as
an approximate solution to the original problem. The
number of samples k is carefully chosen so that the ap-
proximate parameter α is guaranteed. We present in
detail the algorithms for the approximate minimum set
cover in Section 3.1; the α-separation minimum key can
be solved by reducing to approximate set cover (Section
3.2); we discuss distinct keys in Section 3.3.

Note that α indicates our “error tolerance”, not our
goal. Take α-separation minimum key as example. Its
goal is to find a key as close to the minimum exact key
as possible and our algorithms are likely to output semi-
keys whose separation ratio are far greater than α. For
example, suppose the minimum key of a given table con-
sists of 100 columns, while the minimum 0.9-separation
key has 10 columns, then our 0.9-separation minimum
key algorithm may output a semi-key that has say 98
columns and is 0.999-separation. However, sometimes
we may not need so high precision, and are interested
in finding 0.9-separation keys which have much smaller
sizes. For this purpose we consider the (β, α)-separation
key problem in Section 3.4, which aims at finding the
minimum β-separation key, and again allows an error of
1− α.

3.1 α-Approximate Minimum Set Cover

Before presenting the algorithms, we consider a funda-
mental operation indispensable to any set cover algo-
rithm: checking whether a given collection of subsets is
a set cover. The basic idea of our algorithms is that we
only need to check some randomly sampled elements if
we allow approximate solutions. If the collection only
covers part of S, then it will fail the check after enough
random samples. The idea is formalized as the following
lemma.

Lemma 2 s1, s2, . . . , sk are k elements independently
randomly chosen from S. If |S′| < α|S|, then Pr[si ∈
S′, ∀i] < αk.

The proof is straightforward. The probability that a
random element of S belongs to S′ is |S′|/|S| < α, there-
fore the probability of all k random elements belonging
to S′ is at most αk.

3.1.1 Greedy α-Set Cover Algorithm

We combine the idea of random sample checking with
the greedy algorithm for the exact set cover. Our greedy
α-approximate minimum set cover algorithm works as
follows:

1. Randomly choose k elements from S (k is defined
later);

2. Reduce the problem to a smaller set cover instance
where the ground set S̃ is the set of those k chosen
elements and each subset in the original problem
maps to a subset which is the intersection of S̃ and
the original subset;

3. Apply the greedy algorithm in Section 2.2 to find
an exact set cover for S̃, and output the solution as
an approximate set cover to S.

Let n be the size of the ground set S, and m be the
number of subsets.

Theorem 3 With probability 1−δ, the above algorithm
with k = log 1

α

2m

δ outputs an α-set cover whose cardi-
nality is at most (1 + ln log 1

α

2m

δ)|I∗|, where I∗ is the
optimal (exact) set cover.

Proof: Denote by S̃ the ground set of the reduced in-
stance (|S̃| = k); by Ĩ∗ the minimum set cover of S̃ .
The greedy algorithm outputs a subcollection of subsets
covering all k elements of S̃, denoted by Ĩ. By Theorem
1, |Ĩ| ≤ (1 + ln |S̃|)|Ĩ∗|. Note that I∗, the minimum set
cover of the original set S, corresponds to a set cover of
S̃, so |Ĩ∗| ≤ |I∗|, and hence |Ĩ| ≤ (1 + ln k)|I∗|.

We map Ĩ back to a subcollection I of the original
problem. We always have |I| = |Ĩ| ≤ (1 + ln k)|I∗| =
(1 + ln log 1

α

2m

δ)|I∗|.
Now bound the probability that I is not an α-set

cover. By Lemma 2, the probability that a subcollection
covering less than α of S covers all k chosen elements of
S̃ is at most

αk = α
log 1

α

2m

δ = αlogα
δ

2m =
δ

2m
.

There are 2m possible subcollections; by union bound,
the overall error probability, i.e. the probability that
any subcollection is not an α-cover of S but is an exact
cover of S̃, is at most δ. Hence, with probability at least
1− δ, I is an α-set cover for S. ¤

If we take α and δ as constants, the approximation
ratio is essentially ln m+O(1), which is smaller than 1+
ln n when n À m. The space requirement of the above
algorithm is mk = O(m2). The greedy algorithm on
S̃ takes time m2k = O(m3), and the random sampling
takes time mn, therefore the total time is O(mn + m3).

3.1.2 Random Deletion Algorithm

We now propose a heuristics algorithm for the α-
approximate minimum set cover problem. As in Section
3.1.1, we first randomly choose a set S̃ of k elements

4

from S and reduce the problem to a smaller set cover
instance on S̃. Then we use the following procedure
to find a set cover of S̃: start with the collection I of
all subsets; randomly pick a subset c that has not been
picked before, delete c from I if I − c covers S̃, and oth-
erwise keep I unchanged. After all subsets have been
picked once, output I as an approximate set cover for
S.

We call the algorithm “Random Deletion” because it
assigns a random order on the subsets and tries to delete
each subset in turn. It is easy to see that I is a minimal
set cover for S̃ by the end of the algorithm, i.e. any
proper subcollection of I is no longer a set cover.

Theorem 4 With probability 1 − δ, Random Deletion
algorithm with k = log 1

α

m
δ outputs an α-set cover .

Proof: By Lemma 2, the probability that a set covering
less than α of S covers all k chosen elements of S̃ is
at most αk = α

log 1
α

m
δ = δ

m . There are m collections
checked, so the error probability is at most δ by union
bound. ¤

The algorithm only takes mk = m log 1
α

m
δ space,

which is O(m ln m) taking α and δ as constants. The
minimal set cover algorithm on S̃ takes at most 2mk

time: there are m rounds; in each round, we need to
check if I − c covers S, which takes time k by keeping
a counter for each element recording how many times
the element is covered in I and subtracting 1 from the
counter for each element in subset c; there is mk cost to
initialize the counters. It takes additional mn time to
sample from the input, hence the total time requirement
is mn + 2m log 1

α

m
δ .

Although we cannot provide guarantee of the size of
output set cover, experiments on real data sets show
that the algorithm often outputs small set covers.

3.2 α-Separation Minimum Key

The reduction in Section 2.1 preserves the separation
ratio: an α-separation key separates at least a fraction
α of all pairs of tuples, so its corresponding subcollec-
tion is an α-set cover; and vice versa. Therefore, we
can reduce the α-Separation Minimum Key problem to
an α-approximate minimum set cover problem where
|S| = O(n2). Replacing n in the results of Section 3.1
with

(
n
2

)
, we get the space and time complexity and

key-approximation guarantee as listed in Table 1.

3.3 α-Distinct Minimum Key

The α-Distinct Minimum Key problem looks for small
semi-keys, and requires to output an α-distinct key with
probability at least 1− δ.

Unfortunately, the reduction in Section 2.1 does not
necessarily map an α-distinct key to an α-set cover. Let

us consider an example of a 0.5-distinct key in a table of
100 tuples. One possible scenario is that projected on
the key, there are 50 distinct values and each value cor-
responds to 2 tuples. This key can separate all but 50
pairs of tuples, hence it is a 1− 50

(100
2) ≈ 0.99-separation

key, corresponding to a 0.99-set cover in the reduced
set cover problem. The other possible scenario is that
for 49 of the 50 distinct values, there is only one tu-
ple for each value, and all the other 51 tuples have the
same value. Then the 0.5-distinct key becomes a 0.75-
set cover after reduction. Indeed, an α-distinct key can
be an α′-separation key where α′ can be as small as
2α − α2, or as large as 1 − 2(1−α)

n . Therefore reducing
directly to the set cover problem gives too loose bound,
and a new algorithm is desired.

Our algorithms for finding α-distinct minimum keys
are again based on random sampling. We reduce the
input α-distinct key instance to a smaller minimum key
instance by randomly choosing k tuples and keeping all
m columns. The following lemma bounds the proba-
bility that a subset of columns is an (exact) key in the
reduced table, but not an α-distinct key in the original
table.

Lemma 5 Randomly choose k tuples from input table
T to form table T1. Let p be the probability that an
(exact) key of T1 is not an α-distinct key in T . Then

p < e−
(1

α
−1)k2

2n

Proof: Suppose we have n balls distributed in d = αn

distinct bins. Randomly choose k balls without replace-
ment, and the probability that the k balls are all from
different bins is exactly p. Let x1, x2, . . . , xd be the num-
ber of balls in the d bins (

∑d
i=1 xi = n, xi > 0), then

p =

∑
all{i1,i2,...,ik} xi1xi2 . . . xik(

n
k

) .

p is maximized when all xis are equal, i.e. each bin
has 1

α balls. Next we compute p for this case. The
first ball can be from any bin; to choose the second
ball, we have n − 1 choices, but it cannot be from the
same bin as the first one, so 1

α − 1 of the n− 1 choices
are infeasible; similar arguments hold for the remaining
balls. Summing up, the probability that all k balls are
from distinct bins is

p = 1(1−
1
α
− 1

n− 1
)(1− 2(1

α
− 1)

n− 2
) . . . (1− (k − 1)(1

α
− 1)

n− (k − 1)
)

≤ e
−(

1
α
−1

n−1 +
2(1

α
−1)

n−2 +
(k−1)(1

α
−1)

n−(k−1))

< e−
(1

α
−1)k2

2n

5

¤

Having converted the minimum distinct key problem
in T to the minimum exact key problem in T1, we can
now use the greedy and random deletion algorithms to
find small keys in T1.

For the greedy algorithm, we choose k such that
p ≤ δ

2m to guarantee that the overall error probabil-

ity is less than δ, so k =
√

2α
1−αn ln 2m

δ . Now apply the
greedy algorithm to the smaller table and get an exact
key with size at most 1 + 2 ln k = 1 + ln(2α

1−αn ln 2m

δ)
times the minimum key size; with probability 1 − δ, it
is an α-distinct key for T . The approximation ratio is
ln m+lnn+O(1), which slightly improves the 1+2 lnn

result for the exact key. Note that we can run the greedy
set cover algorithm directly on the k×m table without
expanding all the k2 tuple pairs, so the space require-
ment is mk = O(m

√
mn). The time requirement is

m2k = O(m2
√

mn).
For the random deletion heuristic, we choose k such

that p ≤ δ
m to guarantee that the overall error probabil-

ity is less than δ, hence k =
√

2α
1−αn ln m

δ . Now we look
for a minimal exact key in the small table T1, and with
probability 1−δ it is an α-distinct key for T . The space
requirement is mk = O(m

√
n ln m). The algorithm for

finding a minimal exact key is similar to the minimal set
cover algorithm in Section 3.1.2, but each time to check
whether a subset is a key takes time O(mk). The overall
time requirement is mn + m2k = O(mn + m2

√
n ln m).

3.4 Minimum (β, α)-Separation Key

As pointed out at the beginning of this section, our α-
distinct (α-separation) minimum key algorithms aim at
finding keys close to the minimum exact key and are
likely to output semi-keys whose key approximation ra-
tios are far greater than α. However, sometimes we may
be interested in finding say 0.9-separation keys which
have much smaller sizes, and the α-separation minimum
key algorithms in Section 3.2 cannot serve this purpose.

In this section, we consider the problems of finding β-
set cover (key). However, such problems are even harder
than finding exact solutions as the latter is actually a
special case where β = 1. So again we introduce the re-
laxing parameter α to enable more efficient algorithms.

Minimum (β, α)-Set Cover problem looks for the min-
imum β-set cover, and allows an error of 1 − α: we
require to output an αβ-set cover with probability at
least 1 − δ. Minimum (β, α)-Separation (Distinct) Key
problem is defined similarly.

We present the algorithm for set cover. The minimum
(β, α)-separation key problem can be solved by reducing
to (β, α)-set cover problem. Unfortunately, we cannot
provide similar algorithms for (β, α)-distinct keys.

As before, we use random sampling to reduce the
problem to a smaller set cover instance. We need enough
samples to tell, with high probability, whether a subcol-
lection covers more than β or less than αβ fraction of
the ground set.

Lemma 6 If we choose k elements from the ground
set S, then for any given set S′, we can tell whether
|S′| ≤ αβ|S| or |S′| ≥ β|S| with probability at least

1− e−
βk(1−α)2

16 .

The proof is attached in the appendix.
Note that the α-approximate minimum set cover

problem is the special case of the (β, α)-set cover prob-
lem where β = 1, therefore Lemma 6 also applies to
α-cover. However, Lemma 2 provides a tighter bound
for the special case. Suppose we want to tell whether
one subcollection is an exact cover or not an α-cover
with error probability at most δ. We need k = logα δ

samples according to Lemma 2, while Lemma 6 asks
for 16

(1−α)2 ln 1
δ samples. For example, when α = 0.9,

logα δ ≈ 10 ln 1
δ , while 16

(1−α)2 ln 1
δ ≈ 1600 ln 1

δ .
Our Greedy Minimum (β, α)-Set Cover algorithm

works as follows: first randomly sample k =
16

β(1−α)2 ln 2m

δ elements from the ground set S, and con-
struct a smaller set cover instance defined on the k cho-
sen elements; run the greedy algorithm on the smaller
set cover instance until get a subcollection covering at
least (1 + α)βk/2 elements (start with an empty sub-
collection; each time add to the subcollection a subset
covering the largest number of uncovered elements).

Theorem 7 With probability at least 1 − δ, the algo-
rithm outputs an αβ-set cover with size at most (1 +
ln (1+α)βk

2)|I∗|, where I∗ is the minimum β-set cover of
S.

The proof is attached in the appendix. The algorithm
takes space mk = 16m

β(1−α)2 ln 2m

δ .

4 Finding All Minimal Keys

In this section, we consider the problem of finding all
minimal exact, distinct and separation keys. This prob-
lem is inherently hard as the number of minimal keys
can be exponential in the number of attributes m, so it
is inevitable that the worst case running time is expo-
nential in m. Nevertheless we want to design algorithms
efficient in practice, at least for tables with a small num-
ber of attributes.

All algorithms in this section perform a search in the
lattice of attribute subsets (we describe the basic search
procedure in Section 4.1). The key idea for improve-
ment is to use small sample tables to detect non-keys
quickly. In order not to prune any key by mistake, we

6

need to find necessary conditions in the sample table
for an attribute set to be a key (semi-key) in the entire
table. The necessary conditions are different for exact,
distinct and separation keys, and are addressed in Sec-
tion 4.1, 4.2 and 4.3 respectively.

4.1 Finding All Minimal Exact Keys

We first describe a brute-force algorithm using levelwise
algorithm to find all exact keys. Then we will improve
upon the basic algorithm by pruning with random sam-
ples.

The collection of all possible attribute subsets form a
set containment lattice, the bottom of which are all sin-
gleton sets and the top is the set of all attributes. Since
we are only concerned with the minimal keys, once find
a key, we discard all its superset in the lattice. Levelwise
algorithm [8] is an efficient algorithm to perform such
search on lattices and has been exploited in many data
mining applications, see for example [9, 3].

The levelwise algorithm starts the search from the sin-
gleton sets and works its way up to the top of the lattice.
The level Li+1 contains the attribute subsets of size i+1
whose size i subsets are all in Li. Once find a key, we
remove the key from its level, and any of its superset
will thus never appear in higher levels. The procedure
of generating Li+1 given Li is as follows. Sort the at-
tributes in each subset. If two subsets X and Y in Li

have the common prefix of length i−1, i.e. match all the
attributes except the last one, then generate Z = X ∪Y

as a candidate set of Li+1. We need to further check if
all size i subsets of Z are in Li and if Z is not a key;
Z is added to Li+1 only if both conditions are satisfied.
Note that all subsets in Li sharing the common prefix
are clustered together in the lexicographic ordering, so
the procedure can be implemented efficiently. Please
refer to [9, 3] for more detail of levelwise algorithm.

Now we improve upon the brute-force algorithm by
introducing techniques to effectively prune the lattice.
We make use of the following simple fact.

Fact A key of the entire table is still a key in any
sub-table; in other words, if a attribute set is not a key
in some sub-table, it cannot be a key for the entire table.

Our pruning algorithm first samples some random tu-
ples to form a small table and find all minimal keys in
the small table, which defines a lower border in the lat-
tice. Then we use the levelwise algorithm to search keys
in the original table, but start from the lower border
instead of the bottom of lattice. 1

1There are two obvious alternatives. One is that when check if
an attribute set is a key, keep fetching the next tuple until detect
a collision. However the check is hard to implement efficiently if
the table cannot be fit in memory. The second alternative is that
when check if an attribute set is a key, first check in a small sub-
table, and check the original table only if it is a key in sub-table.

Furthermore, we can apply the pruning idea itera-
tively by constructing a series of tables with increasing
tuple numbers. The minimal keys of table i defines a
lower border in the lattice where we start the search for
minimal keys of table i + 1.

We implemented all three algorithms (brute-force,
pruning with one sub-table, iterative pruning). Because
the table is too large to fit in memory, we keep the ta-
ble in database and check if an attribute set is a key
by issuing the SQL query “select count(*) from (select
distinct <list of attributes in the checked set> from ta-
ble) ” and comparing the count with the total number
of tuples. Experiments show that pruning with small
sub-tables improves the running time by orders of mag-
nitude, especially for large tables.

4.2 Finding All Minimal Distinct Keys

The brute-force algorithm for finding all minimal β-
distinct keys is similar to that of exact keys: use the
levelwise algorithm to search the lattice except that now
we check whether an attribute set is a β-distinct key.

However, pruning with sub-tables for distinct keys is
not as straightforward as exact keys because the Fact
in Section 4.1 does not extend trivially to distinct keys,
i.e. a β-distinct key in the input table is not necessar-
ily β-distinct in a sub-table. Fortunately, we have the
following lemma analogous to the Fact.

Lemma 8 Randomly sample k tuples from the input
table T into a small table T1 (k ¿ n, where n is
the number of tuples in T). A β-distinct key of T

is an αβ-distinct key of T1 with probability at least
1− e−(1−α)2βk/2.

Proof: By the definition of β-distinct key, the tuples
has at least βn distinct values projected on the distinct
key. Take (any) one tuple from each distinct value, and
call those representing tuples “good tuples”. There are
at least βn good tuples in T .

Let k1 be the number of distinct values in T1 projected
on the distinct key, and k′ be the number of good tuples
in T1. We have k1 ≥ k′ because all good tuples are
distinct. Next we bound the probability Pr[k′ ≤ αβk].
Since each random tuple has a probability at least β of
being good, and each sample are chosen independently,
we can use Chernoff bound (see [7] Ch. 4) and get

Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Since k1 ≥ k′, we have

Pr[k1 ≤ αβk] ≤ Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

We implemented this method and found the performance is worse,
probably due to the redundance of checking sub-table once above
the lower border defined by the minimal keys of the sub-table.

7

Hence with probability at least 1 − e−(1−α)2βk/2, the
attribute set is an αβ-distinct key of T1. ¤

When prune with a sub-table of size k, to guarantee
that with probability 1− δ no β-distinct key is pruned,

we can set the parameter α = 1−
√

2 ln(2m/δ)
βk , and prune

all attribute sets that are not αβ keys in the sub-table.
Again we can construct a series of tables and conduct
pruning iteratively.

We use Chernoff bound in the proof of Lemma 8 to
get a clean formula. In fact, when all the parameters
(n, k, β, α) are given, we can compute Pr[k′ ≤ αβk]
accurately. There are βn good tuples and (1− β)n bad
tuples, so the probability that i of k chosen elements are
bad is

(
βn
k−i

)(
(1−β)n

i

)
/
(
n
k

)
. Therefore,

Pr[k′ ≤ αβk] = 1−
k−αβk∑

i=0

(
βn
k−i

)(
(1−β)n

i

)
(
n
k

)

Given a desired error probability δ and fixed n, k, β, we
can set α to be the maximum value such that Pr[k′ ≤
αβk] ≤ δ is satisfied.

4.3 Finding All Separation Keys

The idea of pruning with sub-tables is also applicable to
finding all β-separation keys. We can use Lemma 6 to
set the pruning parameter α.

5 Experiments

We have implemented the algorithms in Section 3 and
4, and conducted extensive experiments using real data
sets. All experiments were run on a 2.4GHz Pentium
PC with 1GB memory.

5.1 Data Sets

We use two databases adult and covtype provided by
UCI Machine Learning Repository [16]. The covtype ta-
ble has 581012 rows and 54 attributes. adult has 15 at-
tributes such as age, education level, marital status, and
32561 rows, among which only 32537 distinct rows. We
discard one attribute fnlwgt because it is some weight
without physical meaning and has too many distinct val-
ues; this single attribute is a 0.99-separation key/0.67-
distinct key, and all algorithms perform extremely well
in identifying it. The number of distinct rows after re-
moving fnlwgt is 29096.

Another source of data sets is the census microdata
“Public-Use Microdata Samples (PUMS)” [13], pro-
vided by US Census Bureau. We use 1 percent sam-
ples of state-level Census 2000 data containing individ-
ual records. To test the performance of our algorithms
on tables with different sizes, we select 4 states with
different population sizes. We extract 42 attributes in-
cluding age, sex, race, education level, salary etc. It

state total adult distinct
Idaho 13112 8881 8867
Washington 59150 41959 41784
Texas 208074 142629 141130
California 338725 235374 233687

Table 3: Census table sizes. The “total” column
shows the total number of records in the original files;
the “adult” column is the number of adults; the “dis-
tinct” column is the number of distinct adults with 42
extracted attributes.

turns out that even with all 42 attributes, we cannot
distinguish many children, so we only use adult records
(age ≥ 20). Table 3 summarizes the sizes of the 4 census
tables used in the experiment.

5.2 Performance of Finding All Minimal Keys

We implement algorithms for finding all minimal exact,
distinct and separation keys. For each of them, we im-
plement 3 algorithms: no pruning, pruning with one
sub-table, iterative pruning.

The pruning algorithms for distinct and separation
keys are randomized algorithms that guarantee to out-
put the correct result with probability 1− δ. In all the
experiments we set δ = 0.01, and the algorithms are
able to find all the minimal keys correctly throughout
the experiments.

We measure the running time of the three algorithms
on adult table, and the results are illustrated in Figure 1.
The figures show that pruning is highly effective for ex-
act and distinct keys while the improving for separation
keys is only marginal; iterative pruning is effective for
exact keys. For example, to find all minimal exact keys
in the entire table, it takes 6590 seconds without prun-
ing, 559 seconds if prune with one sub-table, and only
134 seconds if prune with two sub-tables; to find all 0.9-
distinct keys, pruning improves the running time from
6373 seconds to around 1600 seconds. The improvement
on separation keys are not significant, because there are
a large number of small separation keys causing pruning
ineffective in reducing the search space. We also gen-
erate input tables of different sizes by taking random
samples from the original table; the running time of all
algorithms increases almost linearly with the number of
tuples.

We next study the influence of pruning levels and sub-
table sizes on the running time. (We do not include
separation keys in future experiments of this subsection
because the pruning is not effective for separation keys.)
From Figure 2, we can see that iterative pruning out-
performs pruning with one sub-table in most cases, es-
pecially when the pruning table size is large; using three

8

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5000 10000 15000 20000 25000 30000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Tuples

no prune
prune once
prune twice

(a) Running time of finding all keys

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5000 10000 15000 20000 25000 30000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Tuples

no prune
prune once
prune twice

(b) Running time of finding all 0.9-
Distinct keys

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Tuples

no prune
prune once
prune twice

(c) Running time of finding all 0.999-
Separation keys

Figure 1: Comparison of running time of finding all minimal keys using different pruning methods. The
three figures show the running time of three algorithms for finding all exact, 0.9-distinct and 0.999-separation keys
in adult table respectively. The “pruning once” algorithm uses a 10% sub-table; the iterative pruning algorithm uses
two sub-tables, the first one with 1% samples and the second one 10%.

levels of pruning is slightly better than using two levels.
Fixing the pruning level and increasing the sub-table
sizes, the running time first decreases because larger
sub-tables are more effective in pruning the search space,
and then increases after a certain point because the gain
cannot compensate the cost of sampling and processing
the sub-tables. We do not have a general algorithm to
compute the optimal pruning level and table sizes; they
depend on the characteristics of the input table, such
as the sizes and numbers of the keys. Our simulation
on various tables show that two or three levels of prun-
ing with each table size 10% of the next level usually
provides reasonably good performance.

In Section 4.2, we mentioned that to set the prun-
ing parameter α, we can either use Chernoff bound or
compute the exact probability. Table 4 compares the
performance of the two methods and shows that com-
puting the exact probability can improve the running
time by a factor of 0.2 to 0.3.

Chernoff Exact
100/600/3000 2036 1501
300/3000 2054 1556
3000 2107 1688
4500 2003 1651

Table 4: Setting pruning parameters using Cher-
noff bound vs by computing exact probabilities.
The second and third columns show the running time (in
seconds) of finding all 0.9-distinct keys in adult table us-
ing different techniques to compute pruning parameters.
The first column is the sub-table sizes used for pruning;
for example, 300/3000 means using a first table of 300
tuples and a second table of 3000 tuples.

Even though our algorithms have effectively reduced
the running time, they are yet not able to process larger
data sets as the running time is still exponential in the
number of attributes. When the number of attributes
reaches 30, with our 2.4GHz PC it takes prohibitively
long time to simply go through the attribute set lattice
without checking any tuple.

5.3 Performance of Approximate Minimum
Key Algorithms

Finding all keys in databases with a large number of
attributes is expensive or even infeasible with current
hardware. For those data sets, we have to settle with
a less ambitious goal and fall back on our approximate
algorithms to find the minimum keys. Table 5 and 6
show the experiment results of finding the minimum 0.9-
distinct keys and 0.999-separation keys using greedy and
random deletion algorithms.

Compared with applying the two algorithms to find-
ing the minimum exact keys (columns “Greedy” and
“RD” in Table 5), finding the approximate minimum
keys is much faster and the gap in running time in-
creases as the table size increases. For Idaho census ta-
ble with 8867 tuples, all the algorithms take less than 1
minute; when the number of tuples increases to 233687
tuple (California table), the greedy algorithm for the
minimum exact key takes almost one hour, while the
0.9-distinct minimum key takes two or three minutes,
and 0.999-separation key merely seconds. The space and
time requirements of our minimum semi-key algorithms
are sublinear in the number of tuples, so we expect the
algorithms to perform well on even larger data sets.

One observation is that the separation ratios of at-
tribute sets are often quite high. Actually if an attribute
only has 2 values and half tuples take on each value, a

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Sample Size

one subtable
two subtables

three subtables

(a) Finding all minimal exact keys

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Sample Size

one subtable
two subtables

three subtables

(b) Finding all minimal 0.9-Distinct keys

Figure 2: Running time using different pruning levels and sub-table sizes. Figures (a) and (b) show the
running time (y axis) for finding all exact keys and 0.9-distinct keys in adult table respectively. The three curves use
one, two, three pruning tables respectively. The x axis gives the pruning table size at the last level; if prune with
more than one table, the table size at each level is 10% of the next level, or 100 tuples at minimum.

Data Sets
Greedy RD 0.9-distinct Greedy 0.9-distinct RD

time key size time key size time key size distinct ratio time key size distinct ratio
adult 35.5s 13 9.1s 13 8.8s 13 1.0 10.7s 13 1.0
idaho 50.4s 14 27.2s 14 15.2s 8 0.997 25.1s 8 0.982
wa 490s 22 159s 22 34.1s 8 0.995 62.0s 7 0.985
texas 2032s 29 490s 29 120s 14 0.995 128s 11 0.981
ca 3307s 29 960s 29 145s 13 0.994 174s 9 0.982
covtype 964s 5 450s 5 78.1s 3 0.9997 83.0s 3 0.997

Table 5: Running time and output key sizes of finding the 0.9-distinct minimum keys. The last two
columns show results of Greedy and Random Deletion (abbreviated as RD) algorithms for the 0.9-distinct minimum
keys on various data sets, contrasted with the same algorithms for the minimum exact keys (columns “Greedy” and
“RD”).

Data Sets
0.999-Separation Greedy 0.999-Separation RD

time key size separation ratio time key size separation ratio
adult 3.11s 5 0.99995 1.34s 5 0.9998
idaho 1.07s 3 0.9999 1.23s 6 0.9993
wa 7.14s 3 0.99993 2.56s 5 0.9991
texas 13.2s 4 0.99995 5.03s 7 0.9997
ca 16.3s 4 0.99998 7.76s 6 0.9999
covtype 27.1s 2 0.999996 20.0s 3 0.99998

Table 6: Running time and output key sizes of finding the 0.999-separation minimum keys using Greedy
and Random Deletion (RD) algorithms.

10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50000 100000 150000 200000 250000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Tuples

Greedy
Random Deletion

(a) Running time vs. table size (0.9-Distinct
keys)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50000 100000 150000 200000 250000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Tuples

Greedy
Random Deletion

(b) Running time vs. table size (0.999-
Separation keys)

 0

 100

 200

 300

 400

 500

 600

 700

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Distinct Ratio

Greedy
Random Deletion

(c) Running time vs. distinct ratio

 5

 10

 15

 20

 25

 30

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Separation Ratio

Greedy
Random Deletion

(d) Running time vs. separation ratio

Figure 3: The relationship of running time with table sizes and distinct (separation) ratios. Figures (a)
and (b) show how running time (y axis) changes as the number of tuples in the table (x axis) increases. We generate
input tables of different sizes by taking random samples from the California census table. Figures (c) and (d) show
how running time (y axis) changes with the distinct (separation) ratio, using the entire California census table. In
each figure, two algorithms (greedy and random deletion) are measured.

simple calculation shows that the separation ratio of this
single attribute is 0.5. From Table 6, we can see that a
subset of 4 attributes can often have separation ratios
as high as 0.9999.

To our surprise, although the random deletion algo-
rithm does not provide bounded key sizes as the greedy
algorithm, it performs well in our experiments. Espe-
cially in finding 0.9-distinct keys, it produces semi-keys
of size equal to or smaller than the greedy algorithm on
all data sets in almost all runs. However, it does not
perform as well in separation keys and the output key
size is instable (the tables show the average key size over
multiple runs). For example, when run on Idaho table,
it generates 0.999-separation keys whose sizes vary from
3 to 10. Since it only takes time O(m ln m) to run the
random deletion algorithm for separation keys on the
sample table, in practice we can afford to run it mul-
tiple times on the same sample table and output the

smallest key found.

We also measure the distinct(separation) ratios of
the output keys, and find the ratios much higher than
the requirement. When required 0.9-distinct keys, the
greedy algorithm usually outputs keys with distinct
ratio > 0.99, and the random deletion outputs keys
with distinct ratio > 0.98. The experiment results
verify that our algorithms output semi-keys with key-
approximation guarantee. On the other hand, if people
are interested in finding 0.9-distinct keys, they should
use the (β, α)-key algorithms in Section 3.4 instead.

We next study how the running time changes with the
number of tuples n and distinct (separation) ratio, and
the experiment results confirm our analysis (illustrated
in Figure 3). In the greedy and random deletion algo-
rithms for α-separation minimum keys, the sample size
is independent on n but it takes linear time to read the
input table, so the total running time increases linear

11

with n; for α-distinct keys, the sample size and the time
to process the sample table are proportional to

√
n. The

running time also increases as we increase the key ap-
proximation ratio α, and the curves get very steep when
distinct (separation) ratio gets close to 1.

6 Related Work

A special case of the minimum exact key problem has
been studied under the name of “Minimum Test Col-
lection”, and there exist a series of papers in theoret-
ical computer science field studying its hardness and
approximability [1, 10, 2]. It is also noticed that the
minimum test collection problem can be reduced to the
well-studied set cover problem [10].

As noted in Section 1, keys are special cases of func-
tional dependencies, and (approximate) functional de-
pendency has received considerable interests. [5, 12]
propose measures for quantifying approximations of
functional dependencies. Many algorithms and systems
have been developed for discovering exact and/or ap-
proximate functional dependencies, for example [6, 5, 3,
11]. These algorithms can of course be used for key and
semi-key discovery, but is not as efficient for this spe-
cific purpose since they are designed for a more general
problem.

The idea of pruning with a smaller sample table has
been exploited in other data mining applications such
as associate rule mining [14, 15]. We are not aware of
any work having used this idea for key and semi-key
discovery.

7 Conclusions and Future Work

In this paper, we design efficient algorithms for discov-
ering keys and semi-keys in large tables. we develop
efficient algorithms that find small semi-keys with prov-
able size and key-approximation guarantees, with space
and time complexity sublinear in the number of tuples.
We also design fast algorithms for finding all minimal
exact, distinct and separation keys.

The idea of pruning the attribute set lattice with small
sample tables can potentially be explored in other data
mining applications. We plan to apply the technique to
accelerate (approximate) functional dependency mining.

Another interesting topic of future research is to study
whether our algorithms are space optimal. The analy-
sis is tight for the current algorithms, but there may
exist different sampling methods. For example, for the
α-separation minimum key algorithm, we sample k ran-
dom pairs of tuples, which requires 2k tuples; 2k tu-
ples can produce almost 2k2 pairs, but we are not using
most of them. There may exist other algorithms mak-
ing better use of the sampled tuples and requiring fewer
samples. Another example is finding all distinct keys.

We have tried another pruning criterion alternative to
Lemma 8: an β-distinct key in the entire table must be
an β′-separation key for some β′ in the sub-table. How-
ever, it turns out not an effective pruning criterion in
practice. Our current algorithm uses the distinct ratio
in the sub-table, but there may exist other quantities
more effective in pruning.

8 Acknowledgements

The Adult and Covtype databases have been obtained
from the UCI Machine Learning Repository [16].

References

[1] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability. WH Freeman and Company,
1979.

[2] Bjarni V. Halldorsson, M. M. Halldorsson and R.
Ravi. On the Approximability of the Minimum Test
Collection Problem. ESA 2001.

[3] Y. Huhtala, J. Karkkainen, P. Porkka and H. Toivo-
nen. Efficient Discovery of Functional and Approx-
imate Dependencies Using Partitions. Proceedings
of the Fourteenth International Conference on Data
Engineering, pp. 392-401, 1998.

[4] D. S. Johnson. Approximation algorithms for com-
binatorial problems. J. Comput. System Sci. 9, 256-
278, 1974.

[5] J. Kivinen and H. Mannila. Approximate depen-
dency inference from relations. Theoretical Com-
puter Science, 149(1):129-149, 1995.

[6] H. Mannila and K.J. Raiha. Algorithms for infer-
ring functional dependencies from relations. Data
and Knowledge Engineering, 12:83-99, 1994.

[7] R. Motwani and P. Raghavan. Randomized Algo-
rithm. Cambridge University Press, 1995.

[8] H. Mannila and H. Toivonen. Levelwise search
and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery, 1(3):241-
258, 1997.

[9] H.Mannila, H.Toivonen and A.I. Verkamo. Discovery
of frequent episodes in event sequences. Data Mining
and Knowledge Discovery, 1(3):259-289, 1997.

[10] B.M.E. Moret and H.D. Shapiro. On minimizing a
set of tests. SIAM Journal on Scientific and Statis-
tical Computing, 6:983-1003, 1985.

[11] N. Novelli and R. Cicchetti. Fun: an efficient algo-
rithm for mining functional and embedded depen-
dencies. ICDT, 2001.

12

[12] B. Pfahringer and S. Kramer. Compression-based
evaluation of partial determinations. SIGKDD,
1995.

[13] Public-Use Microdata Samples (PUMS).
http://www.census.gov/main/www/pums.html

[14] A. Savasere, E. Omiecinski, and S. Navathe. An
Efficient Algorithm for Mining Association Rules in
Large Databases. VLDB 1995.

[15] H. Toivonen. Sampling Large Databases for Asso-
ciation Rules. VLDB 1996.

[16] D.J. Newman, S. Hettich, C.L. Blake and
C.J. Merz. UCI Repository of machine learning
databases. http://www.ics.uci.edu/∼mlearn/ ML-
Repository.html, 1998.

9 Appendix

Lemma 6 If we choose k elements from the ground
set S, then for any given set S′, we can tell whether
|S′| ≤ αβ|S| or |S′| ≥ β|S| with probability at least

1− e−
βk(1−α)2

16 .
Proof: Let k′ be the number of elements covered by S′

in the k chosen elements.
If |S′| ≥ β|S|, then a random element of S is covered

by S′ with probability at least β. Let xi be an indica-
tor random variable which is set to 1 if the ith chosen
element is covered by S′, and 0 otherwise. It is easy to
see

E[xi] = Pr[xi = 1] = |S′|/|S| ≥ β, and
E[k′] =

∑k
i=1 E[xi] ≥ βk.

Since all xis are independent, we can apply Chernoff
bound (see for example [7] Ch. 4),

Pr[k′ ≤ (1 + α)βk/2] < e−
βk(1−α)2

8 .
On the other hand, if |S′| ≤ αβ|S|, similarly we have

Pr[k′ ≥ (1 + α)βk/2] < e−
βk(1−α)2

16 .
Therefore, by checking if S′ covers more than (1 +

α)β/2 fraction of the chosen elements, we can tell with
high probability if S′ covers more than β or less than
αβ fraction of S. ¤

Theorem 7 With probability at least 1 − δ, the greedy
algorithm for (β, α)-set cover outputs an αβ-set cover
with size at most (1 + ln (1+α)βk

2)|I∗|, where I∗ is the
minimum β-set cover of S.

To prove the theorem, we need the following lemma
about approximation ratio of the greedy algorithm on
partial set covers. The proof is similar with the original
proof for the exact set cover.

Lemma 9 Apply the greedy algorithm for minimum set
cover problem until get a γ-set cover. The size of result

subcollection is within 1 + ln γn of the size of the mini-
mum γ-set cover.

Proof: For each element e, define price(e) = 1
size(c) ,

where c is the first subset covering e in the greedy algo-
rithm, and size(c) is the number of elements first cov-
ered by subset c in the greedy algorithm.

Number the elements of S covered by the greedy al-
gorithm in the order of which they were covered by
the greedy algorithm, breaking ties arbitrarily. Let
e1, . . . , eγn be the numbering. Right before ek is cov-
ered, at most k−1 elements have been covered, so OPTγ

covers at least γn − (k − 1) uncovered elements. Since
the greedy algorithm picks a subset c with the maximum
size(c), it follows that

price(ek) ≤ OPTγ

γn− (k − 1)

The size of γ-set cover output by the greedy algorithm
equals to

γn∑

k=1

ek = OPTγ(
1

γn
+

1
γn− 1

+. . .+1) = (1+ln γn)OPTγ

¤

Proof of Theorem 7
We say a subcollection of subsets “good” if it covers

at least (1 + α)βk/2 of the k chosen elements.
We first bound the error probability that the algo-

rithm outputs a subcollection covering less than αβ of
S. According to Lemma 6, the probability that any such
subcollection is good is less than

e−
βk(1−α)2

16 = e− ln 2m

δ =
δ

2m
.

Suppose there are x such small subcollections, then with
probability at least 1− xδ

2m none of them is good.
Similarly, any β-cover of S will be good with prob-

ability δ
2m . Suppose there are y β-covers, then with

probability at least 1− yδ
2m all β-covers are good. Under

the condition that all β-covers are good, it holds that
|I∗| ≥ |Ĩ∗|, where Ĩ∗ is the minimum good subcollection.

By Lemma 9, the greedy algorithm outputs a good
subcollection whose size is within 1 + ln (1+α)βk

2 of the
minimum good subcollection size |Ĩ∗|, thus also within
(1+ln (1+α)βk

2)|I∗| under the condition that all β-covers
are good.

The overall error probability is at most (x+y)δ
2m . Since

x+y is at most the total number of subset 2m, the error
probability is at most δ.¤

13

