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ABSTRACT
A quasi-identifier refers to a subset of attributes that can
uniquely identify most tuples in a table. Incautious pub-
lication of quasi-identifiers will lead to privacy leakage. In
this paper we consider the problems of finding and masking
quasi-identifiers. Both problems are provably hard with se-
vere time and space requirements. We focus on designing
efficient approximation algorithms for large data sets.

We first propose two natural measures for quantifying
quasi-identifiers: distinct ratio and separation ratio. We
develop efficient algorithms that find small quasi-identifiers
with provable size and separation/distinct ratio guarantees,
with space and time requirements sublinear in the number
of tuples. We also design practical algorithms for finding all
minimal quasi-identifiers. Finally we propose efficient algo-
rithms for masking quasi-identifiers, where we use a random
sampling technique to greatly reduce the space and time
requirements, without much sacrifice in the quality of the
results. Our algorithms for masking and finding minimum
quasi-identifiers naturally apply to stream databases. Ex-
tensive experimental results on real world data sets confirm
efficiency and accuracy of our algorithms.

1. INTRODUCTION
In the age of globalization, governments, companies and

organizations are publishing and sharing more and more
micro-data for research or business purpose. This puts per-
sonal privacy at risk. As pointed out in the seminal pa-
per by Sweeney [27], naively removing identifying attributes
such as name and SSN leaves open attacks that combine
the data with other publicly available information to iden-
tify represented individuals. A well-known example is that
the combination of gender, date of birth, and zipcode can
uniquely determine about 87% of the population in United
States. Such an identity-leaking attribute combination is
often referred to as a quasi-identifier. In other words, a
quasi-identifier is a subset of attributes that can uniquely
identify most tuples in a table.
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To avoid such linking attacks via quasi-identifiers, the con-
cept of k-anonymity was proposed by Sweeney [27, 26] and
many algorithms for k-anonymity have been developed [25,
2, 5]. In this paper we consider the problem of masking
quasi-identifiers: we want to publish a subset of attributes
(we either publish the exact value of every tuple on an at-
tribute, or not publish the attribute at all), so that no quasi-
identifier is revealed in the published data. This can be
viewed as a variant of k-anonymity where the suppression is
only allowed at the attribute level. There are two reasons we
consider this problem. First, the traditional tuple-level sup-
pression may distort the distribution of the original data and
the association between attributes, so sometimes it is more
desirable to publish fewer attributes with complete and ac-
curate information. Second, as noted in [16], the traditional
k-anonymity algorithms are expensive and do not scale well
to large data sets; by restricting the suppression to a coarser
level, we are able to design much more efficient algorithms.

We also consider the problem of finding minimum or min-
imal keys and quasi-identifiers, which can be used by ad-
versaries to perform linking attacks. When a table which is
not properly anonymized is published, an adversary would
be interested in finding keys or quasi-identifiers in the table
so that once he collects other persons’ information on those
attributes, he will be able to link the records to real world
entities. Collecting information on each attribute incurs cer-
tain cost to the adversary (for example, he needs to look up
yellow pages to collect the area code of phone numbers, to
get party affiliation information from the voter list, etc), so
the adversary wishes to find a small subset of attributes that
is a key or almost a key to minimize the attack cost.

Finding keys and quasi-identifiers also has other impor-
tant applications besides privacy. One application is data
cleaning. Integration of heterogeneous databases sometimes
causes the same real-world entity to be represented by mul-
tiple records in the integrated database due to spelling mis-
takes, inconsistent conventions, etc. A critical task in data
cleaning is to identify and remove such fuzzy duplicates [4,
7]. We can estimate the ratio of fuzzy duplicates, for ex-
ample by checking some samples manually or plotting the
distribution of pairwise similarity; now if we can find a quasi-
identifier whose “quasiness” is similar to the fuzzy duplicate
ratio, then those tuples which collide on the quasi-identifier
are likely to be fuzzy duplicates. Finally, quasi-identifiers
are a special case of approximate functional dependency [14,
24, 12], and their automatic discovery is valuable to query
optimization and indexing.

In this paper, we study the problems of finding and mask-



ing quasi-identifiers in given tables. Both problems are prov-
ably hard with severe time and space requirements, so we fo-
cus on designing efficient approximation algorithms for large
data sets.

Before presenting the algorithms, we need to first define
measures for quantifying the “quasiness” of quasi-identifiers.
We propose two natural measures – separation ratio and
distinct ratio.

Consider the problem of finding the minimum key. The
problem is NP-hard and the best-known approximation al-
gorithm is a greedy algorithm with approximation ratio O(ln n)
(n is the number of tuples); however, even this greedy algo-
rithm requires multiple scans of the table, which is expensive
for large databases that cannot reside in main memory and
prohibitive for stream databases. To enable more efficient
algorithms, we sacrifice accuracy by allowing approximate
answers (quasi-identifiers). We develop efficient algorithms
that find small quasi-identifiers with provable size and sep-
aration/distinct ratio guarantees, with both space and time
complexities sublinear in the number of input tuples. We
also design practical algorithms for identifying all minimal
keys and quasi-identifiers.

Finally we present efficient algorithms for masking quasi-
identifiers. We use a random sampling technique to greatly
reduce the space and time requirements, without sacrificing
much in the quality of the results.

Our algorithms for masking and finding minimum quasi-
identifiers can be viewed as streaming algorithms: we only
require one pass over the table and the space complexity is
sublinear in the number of input tuples (at the cost of only
providing approximate solutions), therefore these algorithms
naturally apply to stream databases.

1.1 Definitions and Overview of Results
A key is a subset of attributes that uniquely identifies each

tuple in a table. A quasi-identifier is a subset of attributes
that can distinguish almost all tuples. We propose two nat-
ural measures for quantifying a quasi-identifier. Since keys
are a special case of functional dependencies, our measures
for quasi-identifiers also conform with the measures of ap-
proximate functional dependencies proposed in earlier work
[14, 24, 12].

(1) An α-distinct quasi-identifier is a subset of
attributes which becomes a key in the table re-
maining after the removal of at most a 1 − α
fraction of tuples in the original table.

(2) We say that a subset of attributes separates
a pair of tuples x and y if x and y have differ-
ent values on at least one attribute in the subset.
An α-separation quasi-identifier is a subset of at-
tributes which separates at least a α fraction of
all possible tuple pairs.

We illustrate the notions with an example (Table 1). The
example table has 3 attributes. The attribute age is a 0.6-
distinct quasi-identifier because it has 3 distinct values in a
total of 5 tuples; it is a 0.8-separation quasi-identifier be-
cause there are 10 distinct pairs of tuples and 8 pairs can
be separated by age. Readers can verify that the attribute
subset {sex, state} is 0.8-distinct and 0.9-separation.

The distinct ratio and separation ratio of a quasi-identifier
can be very different. The separation ratio of a quasi-identifier

age sex state
1 20 Female CA
2 30 Female CA
3 40 Female TX
4 20 Male NY
5 40 Male CA

Table 1: An example table. The first column labels the
tuples for future references and is not part of the table.

is usually much larger than its distinct ratio, but there is no
one-to-one mapping. Let us consider a 0.5-distinct quasi-
identifier in a table of 100 tuples. One possible scenario
is that projected on the quasi-identifier, there are 50 dis-
tinct values and each value corresponds to 2 tuples. This
quasi-identifier separates all but 50 pairs of tuples, hence
is 1 − 50

(1002 )
≈ 0.99-separation. The other possible scenario

is that for 49 of the 50 distinct values, there is only one
tuple for each value, and all the other 51 tuples have the
same value. Then this 0.5-distinct quasi-identifier is 0.75-
separation. Indeed, an α-distinct quasi-identifier can be an
α′-separation quasi-identifier where α′ can be as small as

2α−α2, or as large as 1− 2(1−α)
n

. Both distinct ratio and sep-
aration ratio are very natural measures for quasi-identifiers
and have different applications as noted in the literature on
approximate functional dependency. In this paper we study
quasi-identifiers using both measures.

Given a table with n tuples and m attributes, we consider
the following problems. The size of a key (quasi-identifier)
refers to the number of attributes in the key.

Minimum Key Problem: find a key of the mini-
mum size. This problem is provably hard so we
also consider its relaxed version:

(ε, δ)-Separation or -Distinct Minimum Key Prob-
lem: look for a quasi-identifier with a small size
such that, with probability at least 1 − δ, the
output quasi-identifier has separation or distinct
ratio at least 1− ε.

All Minimal Keys (or β-Separation Quasi-identifiers,
or β-Distinct Quasi-identifiers) Problem: find all
minimal keys (or β-separation quasi-identifiers,
or β-distinct quasi-identifiers). A key is minimal
if it does contain any other key.

β-Separation or -Distinct Quasi-identifier Mask-
ing Problem: delete a minimum number of at-
tributes such that there is no quasi-identifier with
separation or distinct ratio greater than β in the
remaining attributes.

In the example of Table 1, {age, state} is a minimum key,
with size 2; all minimal keys are {age, state}, {age, sex};
the optimal solution to 0.8-distinct quasi-identifier mask-
ing problem is {sex, state}; the optimal solution to 0.8-
separation quasi-identifier masking problem is {age}, {sex}
or {state}, all of size 1.

The result data after quasi-identifier masking can be viewed
as an approximation to k-anonymity. For example, after 0.2-
distinct quasi-identifier masking, the result data is approxi-
mately 5-anonymous, in the sense that on average each tuple
is indistinguishable from another 4 tuples. It does not pro-
vide perfect privacy because there may still exist some tuple



with a unique value, but nevertheless it provides anonymity
for the majority of the tuples. The k-anonymity problem is
NP-hard [19, 2]; further, Lodha and Thomas [16] note that
there is no efficient approximation algorithm known that
scale well for large tables, and they also use a notion similar
to quasi-identifiers to design more efficient algorithms while
preserve privacy for majority tuples. As in the traditional
k-anonymity literature, we would like to maximize the util-
ity of published data, and we measure utility in terms of the
number of attributes published.

We summarize below the contributions of this paper.

1. We propose greedy algorithms for the (ε, δ)-separation
and distinct minimum key problems, which find small
quasi-identifiers with provable size and separation (dis-
tinct) ratio guarantees, with space and time require-
ments sublinear in n. In particular, the space com-
plexity is O(m2) for the (ε, δ)-separation minimum key
problem, and O(m

√
mn) for (ε, δ)-distinct. The algo-

rithms are particularly useful when n À m, which is
typical of database applications where a large table
may consist of millions of tuples, but only a relatively
small number of attributes. We also extend the algo-
rithms to find the approximate minimum β-separation
quasi-identifiers. (Section 2)

2. We design practical algorithms for finding all minimal
keys, β-distinct, and β-separation quasi-identifiers. Our
algorithms use small sample tables to efficiently prune
the key space; experiments show that the pruning is
able to improve the running time by orders of magni-
tude. (Section 3)

3. We present greedy algorithms for β-separation and β-
distinct quasi-identifier masking. The algorithms are
slow on large data sets, and we use a random sam-
pling technique to greatly reduce the space and time
requirements, without much sacrifice in the utility of
the published data. (Section 4)

4. We have implemented all the above algorithms and
conducted extensive experiments using real data sets.
The experimental results confirm the efficiency and ac-
curacy of our algorithms. (Section 5)

2. FINDING MINIMUM KEYS
In this section we consider the Minimum Key problem.

First we show the problem is NP-hard (Section 2.1) and the
best approximation algorithm is a greedy algorithm which
gives O(ln n)-approximate solution (Section 2.2). The greedy
algorithm requires multiple scans of the table, which is ex-
pensive for large tables and inhibitive for stream databases.
To enable more efficient algorithms, we relax the problem
by allowing quasi-identifiers, i.e. the (ε, δ)-Separation (Dis-
tinct) Minimum Key problem. We develop random sampling
based algorithms with approximation guarantees and sub-
linear space (Section 2.3, 2.4).

2.1 Hardness Result
The Minimum Key problem is NP-Hard, which follows

easily from the NP-hardness of the Minimum Test Collection
problem.

Minimum Test Collection: Given a set S of ele-
ments and a collection C of subsets of S, a test
collection is a subcollection of C such that for

each pair of distinct elements there is some set
that contains exactly one of the two elements.
The Minimum Test Collection problem is to find
a test collection with the smallest cardinality.

Minimum Test Collection is equivalent to a special case of
the Minimum Key problem where each attribute is boolean:
let S be the set of tuples and C be all the attributes; each
subset in C corresponds to an attribute and contains all
the tuples whose values are true in this attribute, then a
test collection is equivalent to a key in the table. Minimum
Test Collection is known to be NP-hard [9], therefore the
Minimum Key problem is also NP-hard.

2.2 A Greedy Approximation Algorithm
The best known approximation algorithm for Minimum

Test Collection is a greedy algorithm with approximation
ratio 1+2 ln |S| [20], i.e. it finds a test collection with size at
most 1 + 2 ln |S| times the smallest test collection size. The
algorithm can be extended to the more general Minimum
Key problem, where each attribute can be from an arbitrary
domain, not just boolean.

Before presenting the algorithm, let us consider a naive
greedy algorithm: compute the separation (or distinct) ra-
tio of each attribute in advance; each time pick the attribute
with the highest separation ratio in the remaining attributes,
until get a key. The algorithm is fast and easy to imple-
ment, but unfortunately it does not perform well when the
attributes are correlated. For example if there are many at-
tributes pairwise highly correlated and each has a high sep-
aration ratio, then the optimal solution probably includes
only one of them while the above greedy algorithm are likely
picks all of them. The approximation ratio of this algorithm
can be arbitrarily bad.

A fix to the naive algorithm is to pick each time the at-
tribute which separates the largest number of tuple pairs not
yet separated. To prove the approximation ratio of the algo-
rithm, we reduce Minimum Key to the Minimum Set Cover
problem. The reduction plays an important role in design-
ing algorithms for finding and masking quasi-identifiers in
later sections.

Minimum Set Cover: Given a finite set S (called
the ground set) and a collection C of subsets of
S, a set cover I is a subcollection of C such that
every element in S belongs to at least one mem-
ber of I. Minimum Set Cover problem asks for
a set cover with the smallest size.

Given an instance of Minimum Key with n tuples and m
attributes, we reduce it to a set cover instance as follows:
the ground set S consists of all distinct unordered pairs of
tuples (|S| = �n

2

�
); each attribute c in the table is mapped to

a subset containing all pairs of tuples separated by attribute
c. Now a collection of subsets covers S if and only if the
corresponding attributes can separate all pairs of tuples, i.e.,
those attributes form a key, therefore there is a one-to-one
map between minimum set covers and minimum keys.

Consider the example of Table 1. The ground set of the
corresponding set cover instance contains 10 elements where
each element is a pair of tuples. The column age is mapped
to a subset cage with 8 pairs: {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4),
(2, 5), (3, 4), (4, 5)}; the column sex is mapped to a sub-
set csex with 6 pairs, and state 7 pairs. The attribute set



{age, sex} is a key; correspondingly the collection {cage, csex}
is a set cover.

The Greedy Set Cover Algorithm starts with an empty
collection (of subsets) and adds subsets one by one until
every element in S has been covered; each time it chooses the
subset covering the largest number of uncovered elements.
It is well known that this greedy algorithm is a 1 + ln |S|
approximation algorithm for Minimum Set Cover.

Lemma 1. [13] Greedy Set Cover Algorithm outputs a set
cover of size at most 1+ ln |S| times the minimum set cover
size.

The Greedy Minimum Key Algorithm mimics the greedy
set cover algorithm: start with an empty set of attributes
and add attributes one by one until all tuple pairs are sepa-
rated; each time chooses an attribute separating the largest
number of tuple pairs not yet separated. The running time
of the algorithm is O(m3n). It is easy to infer the approxi-
mation ratio of this algorithm from Lemma 1:

Theorem 2. Greedy Minimum Key Algorithm outputs a
key of size at most 1 + 2 ln n times the minimum key size.

The greedy algorithms are optimal because neither Min-
imum Set Cover nor Minimum Test Collection is approx-
imable within c ln |S| for some c > 0 [10]. Note that this is
the worst case bound and in practice the algorithms usually
find much smaller set covers or keys.

2.3 (ε, δ)-Separation Minimum Key
The greedy algorithm in the last section is optimal in

terms of approximation ratio, however, it requires multiple
scans (O(m2) scans indeed) of the table, which is expen-
sive for large data sets. In this and next section, we relax
the minimum key problem by allowing quasi-identifiers and
design efficient algorithms with approximate guarantees.

We use the standard (ε, δ) formulation: with probability
at least 1 − δ, we allow an “error” of at most ε, i.e. we
output a quasi-identifier with separation (distinct) ratio at
least 1−ε. The (ε, δ) Minimum Set Cover Problem is defined
similarly and requires the output set cover covering at least
a 1− ε fraction of all elements.

Our algorithms are based on random sampling. We first
randomly sample k elements (tuples), and reduce the input
set cover (key) instance to a smaller set cover (key) instance
containing only the sampled elements (tuples). We then
solve the exact minimum set cover (key) problem in the
smaller instance (which is again a hard problem but has
much smaller size, so we can afford to apply the greedy
algorithms in Section 2.2), and output the solution as an
approximate solution to the original problem. The number
of samples k is carefully chosen so that the error probability
is bounded. We present in detail the algorithm for (ε, δ)-
set cover in Section 2.3.1; the (ε, δ)-Separation Minimum
Key problem can be solved by reducing to (ε, δ) Minimum
Set Cover (Section 2.3); we discuss (ε, δ)-Distinct Minimum
Key in Section 2.4.

2.3.1 (ε, δ) Minimum Set Cover
The key observation underlying our algorithm is that to

check whether a given collection of subsets is a set cover,
we only need to check some randomly sampled elements if
we allow approximate solutions. If the collection only covers
part of S, then it will fail the check after enough random
samples. The idea is formalized as the following lemma.

Lemma 3. s1, s2, . . . , sk are k elements independently ran-
domly chosen from S. If a subset S′ satisfies |S′| < α|S|,
then Pr[si ∈ S′, ∀i] < αk.

The proof is straightforward. The probability that a ran-
dom element of S belongs to S′ is |S′|/|S| < α, therefore
the probability of all k random elements belonging to S′ is
at most αk.

Now we combine the idea of random sample checking with
the greedy algorithm for the exact set cover. Our Greedy
Approximate Set Cover algorithm is as follows:

1. Choose k elements uniformly at random from S (k is
defined later);

2. Reduce the problem to a smaller set cover instance:
the ground set S̃ consists of the k chosen elements;
each subset in the original problem maps to a subset
which is the intersection of S̃ and the original subset;

3. Apply Greedy Set Cover Algorithm to find an exact set
cover for S̃, and output the solution as an approximate
set cover to S.

Let n be the size of the ground set S, and m be the number
of subsets. We say a collection of subsets is an α-set cover
if it covers at least a α fraction of the elements.

Theorem 4. With probability 1− δ, the above algorithm
with k = log 1

1−ε

2m

δ
outputs a (1 − ε)-set cover whose car-

dinality is at most (1 + ln log 1
1−ε

2m

δ
)|I∗|, where I∗ is the

optimal exact set cover.

Proof. Denote by S̃ the ground set of the reduced in-
stance (|S̃| = k); by Ĩ∗ the minimum set cover of S̃ . The
greedy algorithm outputs a subcollection of subsets cov-
ering all k elements of S̃, denoted by Ĩ. By Lemma 1,
|Ĩ| ≤ (1 + ln |S̃|)|Ĩ∗|. Note that I∗, the minimum set cover

of the original set S, corresponds to a set cover of S̃, so
|Ĩ∗| ≤ |I∗|, and hence |Ĩ| ≤ (1 + ln k)|I∗|.

We map Ĩ back to a subcollection I of the original prob-
lem. We have
|I| = |Ĩ| ≤ (1 + ln k)|I∗| = (1 + ln log 1

1−ε

2m

δ
)|I∗|.

Now bound the probability that I is not a 1− ε-set cover.
By Lemma 3, the probability that a subcollection covering
less than a 1 − ε fraction of S covers all k chosen elements
of S̃ is at most

(1− ε)k = (1− ε)
log 1

1−ε

2m

δ
= (1− ε)log1−ε

δ
2m =

δ

2m
.

There are 2m possible subcollections; by union bound, the
overall error probability, i.e. the probability that any sub-
collection is not a (1− ε)-cover of S but is an exact cover of

S̃, is at most δ. Hence, with probability at least 1 − δ, I is
a (1− ε)-set cover for S.

If we take ε and δ as constants, the approximation ratio is
essentially ln m + O(1), which is smaller than 1 + ln n when
n À m. The space requirement of the above algorithm is
mk = O(m2) and running time is O(m4).

2.3.2 (ε, δ)-Separation Minimum Key
The reduction from Minimum Key to Minimum Set Cover

preserves the separation ratio: an α-separation quasi-identifier
separates at least an α fraction of all pairs of tuples, so
its corresponding subcollection is an α-set cover; and vice
versa. Therefore, we can reduce the (ε, δ)-Separation Min-
imum Key problem to the (ε, δ)-Set Cover problem where
|S| = O(n2). The complete algorithm is as follows.



1. Randomly choose k = log 1
1−ε

2m

δ
pairs of tuples;

2. Reduce the problem to a set cover instance where the
ground set S̃ is the set of those k pairs and each at-
tribute maps to a subset of the k pairs separated by
this attribute;

3. Apply Greedy Set Cover Algorithm to find an exact set
cover for S̃, and output the corresponding attributes
as a quasi-identifier to the original table.

Theorem 5. With probability 1− δ, the above algorithm
outputs a (1− ε)-separation quasi-identifier whose size is at

most (1 + ln log 1
1−ε

2m

δ
)|I∗|, where I∗ is the smallest key.

The proof directly follows Theorem 4. The approximation
ratio is essentially ln m + O(1). The space requirement of
the above algorithm is mk = O(m2), which significantly
improves upon the input size mn.

2.4 (ε, δ)-Distinct Minimum Key
Unfortunately, the reduction to set cover does not neces-

sarily map an α-distinct quasi-identifier to an α-set cover.
As pointed out in Section 1.1, an α-distinct quasi-identifier
corresponds to an α′-separation quasi-identifier, and thus re-
duces to an α′-set cover, where α′ can be as small as 2α−α2,

or as large as 1 − 2(1−α)
n

. Therefore reducing this problem
directly to set cover gives too loose bound, and a new algo-
rithm is desired.

Our algorithm for finding distinct quasi-identifiers is again
based on random sampling. We reduce the input (ε, δ)-
Distinct Minimum Key instance to a smaller (exact) Mini-
mum Key instance by randomly choosing k tuples and keep-
ing all m attributes. The following lemma bounds the prob-
ability that a subset of attributes is an (exact) key in the
sample table, but not an α-distinct quasi-identifier in the
original table.

Lemma 6. Randomly choose k tuples from input table T
to form table T1. Let p be the probability that an (exact) key
of T1 is not an α-distinct quasi-identifier in T . Then

p < e−
( 1

α
−1)k2

2n

Proof. Suppose we have n balls distributed in d = αn
distinct bins. Randomly choose k balls without replacement,
and the probability that the k balls are all from different bins
is exactly p. Let x1, x2, . . . , xd be the number of balls in the
d bins (

Pd
i=1 xi = n, xi > 0), then

p =

P
all{i1,i2,...,ik} xi1xi2 . . . xik�

n
k

� .

p is maximized when all xis are equal, i.e. each bin has
1
α

balls. Next we compute p for this case. The first ball can
be from any bin; to choose the second ball, we have n − 1
choices, but it cannot be from the same bin as the first one,
so 1

α
−1 of the n−1 choices are infeasible; similar arguments

hold for the remaining balls. Summing up, the probability
that all k balls are from distinct bins is

p = 1(1−
1
α
− 1

n− 1
)(1− 2( 1

α
− 1)

n− 2
) . . . (1− (k − 1)( 1

α
− 1)

n− (k − 1)
)

≤ e
−(

1
α
−1

n−1 +
2( 1

α
−1)

n−2 +
(k−1)( 1

α
−1)

n−(k−1) )

< e−
( 1

α
−1)k2

2n

The Greedy (ε, δ)-Distinct Minimum Key Algorithm is as
follows:

1. Randomly choose k =
q

2(1−ε)
ε

n ln 2m

δ
tuples and keep

all attributes to form table T1;

2. Apply Greedy Minimum Key Algorithm to find an ex-
act key in T1, and output it as a quasi-identifier to the
original table.

Theorem 7. With probability 1− δ, the above algorithm
outputs a (1 − ε)-distinct quasi-identifier whose size is at
most (1 + 2 ln k)|I∗|, where I∗ is the smallest exact key.

The proof is similar to Theorem 4, substituting Lemma
3 with Lemma 6. k is chosen such that p ≤ δ

2m to guar-
antee that the overall error probability is less than δ. The
approximation ratio is essentially ln m + ln n + O(1), which
improves the 1 + 2 ln n result for the exact key. The space
requirement is mk = O(m

√
mn), sublinear in the number

of tuples of the original table.

2.5 Minimum β-Separation Quasi-identifier
In previous sections, our goal is to find a small quasi-

identifier that is almost a key. Note that ε indicates our
“error tolerance”, not our goal. For (ε, δ)-Separation Mini-
mum Key problem, our algorithm is likely to output quasi-
identifiers whose separation ratios are far greater than 1− ε.
For example, suppose the minimum key of a given table
consists of 100 attributes, while the minimum 0.9-separation
quasi-identifier has 10 attributes, then our (0.1, 0.01)-separation
algorithm may output a quasi-identifier that has say 98 at-
tributes and is 0.999-separation. However, sometimes we
may be interested in finding 0.9-separation quasi-identifiers
which have much smaller sizes. For this purpose we consider
the Minimum β-Separation Quasi-identifier Problem: find a
quasi-identifier with the minimum size and separation ratio
at least β.

The Minimum β-Separation Quasi-identifier Problem is
even harder than Minimum Key as the latter is a special case
where β = 1. So again we consider the approximate version
by relaxing the separation ratio: we require the algorithm
to output a quasi-identifier with separation ratio at least
(1− ε)β with probability at least 1− δ.

We present the algorithm for approximate β-set cover; the
β-separation quasi-identifier problem can be reduced to β-
set cover as before.

The Greedy Minimum β-Set Cover algorithm works as fol-
lows: first randomly sample k = 16

βε2
ln 2m

δ
elements from the

ground set S, and construct a smaller set cover instance de-
fined on the k chosen elements; run the greedy algorithm
on the smaller set cover instance until get a subcollection
covering at least (2− ε)βk/2 elements (start with an empty
subcollection; each time add to the subcollection a subset
covering the largest number of uncovered elements).

Theorem 8. The Greedy Minimum β-Set Cover algorithm
runs in space mk = O(m2), and with probability at least
1 − δ, outputs a (1 − ε)β-set cover with size at most (1 +

ln (2−ε)βk
2

)|I∗|, where I∗ is the minimum β-set cover of S.

The proof can be found in the appendix. This algorithm
also applies to the minimum exact set cover problem (the
special case where β = 1), but the bound is worse than
Theorem 4; see the appendix for more detailed comparison.



The minimum β-separation quasi-identifier problem can
be solved by reducing to β-set cover problem and applying
the above greedy algorithm. Unfortunately, we cannot pro-
vide similar algorithms for β-distinct quasi-identifiers; the
main difficulty is that it is hard to give a tight bound to
the distinct ratio of the original table by only looking at
a small sample of tuples. The negative results on distinct
ratio estimation can be found in [6].

3. FINDING ALL MINIMAL KEYS AND
QUASI-IDENTIFIERS

In this section, we consider the problem of finding all
minimal keys, β-separation quasi-identifiers, and β-distinct
quasi-identifiers. This problem is inherently hard as the
number of minimal keys can be exponential in the number of
attributes m, so it is inevitable that the worst case running
time is exponential in m. Nevertheless we want to design al-
gorithms efficient in practice, at least for tables with a small
number of attributes.

All algorithms in this section perform a search in the lat-
tice of attribute subsets (we describe the basic search pro-
cedure in Section 3.1). The key idea for improvement is to
use small sample tables to detect non-keys quickly. In order
not to prune any key (quasi-identifier) by mistake, we need
to find necessary conditions in the sample table for an at-
tribute set to be a key (quasi-identifier) in the entire table.
The necessary conditions are different for keys, separation,
and distinct quasi-identifiers, and are addressed in Section
3.1, 3.2 and 3.3 respectively.

3.1 Finding All Minimal Exact Keys
We first describe the brute-force levelwise algorithm to

find all exact keys. Then we will improve upon the basic
algorithm by pruning with random samples.

The collection of all possible attribute subsets form a set
containment lattice, the bottom of which are all singleton
sets and the top is the set of all attributes. Since we are only
concerned with the minimal keys, once find a key, we discard
all its superset in the lattice. Levelwise algorithm [18] is an
efficient algorithm to perform such search on lattices and has
been exploited in many data mining applications. It starts
the search from the singleton sets and works its way up to
the top of the lattice. Once a key is found, all its supersets
are pruned from the lattice and never checked later. Please
refer to [11, 12] for more detail on levelwise algorithm.

Now we improve upon the brute-force algorithm by intro-
ducing techniques to effectively prune the lattice. We make
use of the following simple fact.

Fact A key of the entire table is still a key in any sub-
table; or equivalently, if a attribute set is not a key in some
sub-table, it cannot be a key for the entire table.

Our pruning algorithm first samples some random tuples
to form a small table and find all minimal keys in the small
table, which defines a lower border in the lattice. Then we
use the levelwise algorithm to search keys in the original
table, but start from the lower border instead of the bottom
of lattice. 1

1There are two obvious alternatives. One is that when check
if an attribute set is a key, keep fetching the next tuple until
detect a collision. However the check is hard to implement
efficiently if the table cannot be fit in memory. The second
alternative is that when check if an attribute set is a key,

Furthermore, we can apply the pruning idea iteratively by
constructing a series of tables with increasing tuple numbers.
The minimal keys of table i defines a lower border in the
lattice where we will start the search for the minimal keys
of table i + 1.

We implemented all three algorithms (brute-force, prun-
ing with one sub-table, iterative pruning). To deal with
large tables that cannot fit in memory, we keep the table in
database and check if an attribute set is a key by issuing the
SQL query “select count(*) from (select distinct <list of at-
tributes in the checked set> from table) ” and comparing the
count with the total tuple number. Experiments show that
pruning with small sub-tables improves the running time by
orders of magnitude, especially for large tables.

3.2 Finding All Minimal β-Separation
Quasi-identifiers

The brute-force algorithm for all minimal β-separation
quasi-identifiers is similar to that of exact keys: use the
levelwise algorithm to search the lattice except that now
we check whether an attribute set is a β-separation quasi-
identifier.

However, pruning with sub-tables for quasi-identifiers is
not as straightforward as exact keys because the Fact in Sec-
tion 3.1 does not extend trivially to quasi-identifiers, i.e. a
β-separation quasi-identifier in the entire table is not neces-
sarily β-separation in a sub-table. Fortunately, we have the
following lemma analogous to the Fact. The proof of the
lemma is similar to the proof of Lemma 13 in the appendix.

Lemma 9. Randomly sample k pairs of tuples, then a
β-separation quasi-identifier separates at least αβ of the k

pairs, with probability at least 1− e−(1−α)2βk/2.

When prune with a sub-table of size k, to guarantee that
with probability 1−δ, no β-separation quasi-identifier is mis-

takenly pruned, we can set the parameter α = 1−
q

2 ln(2m/δ)
βk

,

and prune all attribute sets with separation ratio less than
αβ in the sub-table. Again we can construct a series of
tables and conduct pruning iteratively.

3.3 All Minimal β-Distinct Quasi-identifiers
The idea of pruning with sub-tables is also applicable to

finding all β-distinct keys. We can use the following lemma
to prune in sub-tables.

Lemma 10. Randomly sample k tuples from the input ta-
ble T into a small table T1 (k ¿ n, where n is the num-
ber of tuples in T ). A β-distinct quasi-identifier of T is
an αβ-distinct quasi-identifier of T1 with probability at least

1− e−(1−α)2βk/2.

Proof. By the definition of β-distinct quasi-identifier,
the tuples has at least βn distinct values projected on the
quasi-identifier. Take (any) one tuple from each distinct
value, and call those representing tuples “good tuples”. There
are at least βn good tuples in T .

Let k1 be the number of distinct values in T1 projected
on the quasi-identifier, and k′ be the number of good tuples

first check in a small sub-table, and check the original table
only if it is a key in sub-table. We implemented this method
and found the performance is worse, probably due to the re-
dundance of checking sub-table once above the lower border
defined by the minimal keys of the sub-table.



in T1. We have k1 ≥ k′ because all good tuples are dis-
tinct. (The probability that any good tuple is chosen more
than once is negligible when k ¿ n.) Next we bound the
probability Pr[k′ ≤ αβk]. Since each random tuple has a
probability at least β of being good, and each sample are
chosen independently, we can use Chernoff bound (see [21]
Ch. 4) and get

Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Since k1 ≥ k′, we have

Pr[k1 ≤ αβk] ≤ Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Hence with probability at least 1− e−(1−α)2βk/2, the quasi-
identifier has distinct ratio at least αβ in T1.

When prune with a sub-table of size k, to guarantee that
with probability 1−δ no β-distinct quasi-identifier is mistak-

enly pruned, we can set the parameter α = 1−
q

2 ln(2m/δ)
βk

,

and prune all attribute sets with distinct ratio less than αβ
in the sub-table.

4. MASKING QUASI-IDENTIFIERS
In this section we consider the quasi-identifier masking

problem: when we release a table, we want to publish a
subset of the attributes subject to the privacy constraint
that no β-separation (or β-distinct) quasi-identifier is pub-
lished; on the other hand we want to maximize the utility,
which is measured by the number of published attributes.
For each problem, we first present a greedy algorithm which
generates good results but runs slow for large tables, and
then show how to accelerate the algorithms using random
sampling. (The algorithms can be easily extended to the
case where the attributes have weights and the utility is the
sum of attribute weights.)

4.1 Maskingβ-Separation Quasi-identifiers
As in Section 2.2, we can reduce the problem to a set cover

type problem: let the ground set S be the set of all pairs
of tuples, and let each attribute correspond to a subset of
tuple pairs separated by this attribute, then the problem of
Masking β-Separation Quasi-identifier is equivalent to find-
ing a maximum number of subsets such that at most a β
fraction of elements in S is covered by the selected subsets.
We refer to this problem as Maximum Non-Set Cover prob-
lem. Unfortunately, the Maximum Non-Set Cover problem
is NP-hard by a reduction from the Dense Subgraph prob-
lem. (See the appendix for the hardness proof.)

We propose a greedy heuristic for masking β-separation
quasi-identifiers: start with an empty set of attributes, and
add attributes to the set one by one as long as the separation
ratio is below β; each time pick the attribute separating the
least number of tuple pairs not yet separated.

The algorithm produces a subset of attributes satisfying
the privacy constraint and with good utility in practice, how-
ever it suffers from the same efficiency issue as the greedy
algorithm in Section 2.2: it requires O(m2) scans of the table
and is thus slow for large data sets. We again use random
sampling technique to accelerate the algorithm: Lemma 9
already gives a necessary condition for a β-separation quasi-
identifier in the sample table (with high probability), so only
looking at the sample table and pruning all attribute sets

satisfying the necessary condition will guarantee the privacy
constraint.

The Greedy Approximate β-Separation Masking Algorithm
is as follows:

1. Randomly choose k pairs of tuples;

2. Let β′ = (1−
q

2 ln(2m/δ)
βk

)β. Run the following greedy

algorithm on the selected pairs: start with an empty
set C of attributes, and add attributes to the set C
one by one as long as the number of separated pairs is
below β′k; each time pick the attribute separating the
least number of tuple pairs not yet separated;

3. Publish the set of attributes C.

By the nature of the algorithm the published attributes
C do not contain quasi-identifiers with separation greater
than β′ in the sample pairs; by Lemma 9, this ensures that

with probability at least 1 − 2me−(1−β′/β)2βk/2 = 1 − δ,
C do not contain any β-separation quasi-identifier in the
original table. Therefore the attributes published by the
above algorithm satisfies the privacy constraint.

Theorem 11. With probability at least 1 − δ, the above
algorithm outputs an attribute set with separation ratio at
most β.

We may over-prune because the condition in Lemma 9 is
not a sufficient condition, which means we may lose some
utility. The parameter k in the algorithm offers a tradeoff
between the time/space complexity and the utility. Obvi-
ously both the running time and the space increase linearly
with k; on the other hand, the utility (the number of pub-
lished attributes) also increases with k because the pruning
condition becomes tighter as k increases. Our experiment
results show that the algorithm is able to dramatically re-
duce the running time and space complexity, without much
sacrifice in the utility (see Section 5).

4.2 Maskingβ-Distinct Quasi-identifiers
For masking β-distinct quasi-identifiers, we can use a sim-

ilar greedy heuristic: start with an empty set of attributes,
and each time pick the attribute adding the least number of
distinct values, as long as the distinct ratio is below β. And
similarly we can use a sample table to trade off utility for
efficiency.

1. Randomly choose k tuples and keep all the columns to
form a sample table T1;

2. Let β′ = (1−
q

2 ln(2m/δ)
βk

)β. Run the following greedy

algorithm on T1: start with an empty set C of at-
tributes, and add attributes to the set C one by one as
long as the distinct ratio is below β′; each time pick the
attribute adding the least number of distinct values;

3. Publish the set of attributes C.

The following theorem states the privacy guarantee of the
above algorithm, which follows easily from Lemma 10.

Theorem 12. With probability at least 1−δ, the attribute
set published by the algorithm has distinct ratio at most β.

5. EXPERIMENTS
We have implemented all algorithms for finding and mask-

ing quasi-identifiers, and conducted extensive experiments
using real data sets. All experiments were run on a 2.4GHz
Pentium PC with 1GB memory.
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(a) Masking 0.5-distinct quasi-identifiers
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(b) Masking 0.8-separation quasi-identifiers

Figure 1: Performance of masking quasi-identifier algorithms with different sample sizes on california. Figures
(a) and (b) show how the running time (the left y axis) and the utility (the right y axis) changes with the sample size (the
parameter k) in Greedy Approximate algorithms for masking 0.5-distinct and 0.8-separation quasi-identifiers respectively.
Note the unit of x axis is 1000 tuples/pairs.

5.1 Data Sets
One source of data sets is the census microdata “Public-

Use Microdata Samples (PUMS)” [1], provided by US Cen-
sus Bureau. We gather the 5 percent samples of Census 2000
data from all states and put into a table “census”. To study
the performance of our algorithms on tables with different
sizes, we also extract 1 percent samples of state-level data
and select 4 states with different population sizes – Idaho,
Washington, Texas and California. We extract 41 attributes
including age, sex, race, education level, salary etc. We only
use adult records (age ≥ 20) because many children are in-
distinguishable even with all 41 attributes. The table census
has 10 million distinct adults, and the sizes of Idaho, Wash-
ington, Texas and California are 8867, 41784, 141130 and
233687 respectively.

We also use two data sets adult and covtype provided by
UCI Machine Learning Repository [23]. The covtype table
has 581012 rows and 54 attributes. We use 14 attributes
of adult including age, education level, marital status; the
number of records in adult is around 30000.

5.2 Masking Quasi-identifiers
The greedy approximate algorithms for masking quasi-

identifiers are randomized algorithms that guarantee to sat-
isfy the privacy constraints with probability 1 − δ. We set
δ = 0.01, and the privacy constraint are satisfied in all ex-
periments, which confirms the accuracy of our algorithms.

Figure 1 shows the tradeoff between the running time and
the utility (the number of attributes published), using the
california data set. Both the running time and the utility de-
crease as the sample size k decreases; however, the running
time decreases linearly with k while the utility degrades very
slowly. For example, running the greedy algorithm for mask-
ing 0.5-distinct quasi-identifiers on the entire table (without
random sampling) takes 80 minutes and publishes 34 at-
tributes (the rightmost point in Figure a); using a sample
of 30000 tuples the greedy algorithm takes only 10 minutes
and outputs 32 attributes. The impact of k on the utility

for masking separation quasi-identifier is even minor (Figure
b). To run the greedy algorithm for masking 0.8-separation
quasi-identifier on the entire table takes 728 seconds (not
shown in the figure); using a sample of 50000 pairs offers
the same utility and only takes 30 seconds. The results
show that our random sampling technique can greatly im-
prove time and space complexity (space is also linear in k),
with only minor sacrifice on the utility.

Data Sets
Greedy Greedy Approximate

time utility time utility
adult 36s 12 - -
covtype - - 2000s 46
idaho 172s 33 - -
wa 880s 34 620s 33
texas 3017s 35 630s 33
ca 4628s 34 606s 32
census - - 755s 30

Table 2: Algorithms for masking 0.5-distinct quasi-
identifiers. The column “Greedy” represents the greedy
algorithm on the entire table, and the column “Greedy Ap-
proximate” represents running greedy algorithm on a ran-
dom sample of 30000 tuples. We compare the running time
and the utility (the number of published attributes) of the
two algorithms on different data sets. The results of Greedy
on census and covtype are not available because the algo-
rithm does not terminate in 10 hours; the results of Greedy
Approximate on adult and Idaho are not available because
the input tuple number is less than 30000.

Table 2 and 3 compare the running time and the utility
(the number of published attributes) of running the greedy
algorithm on the entire table versus on a random sample
(we use a sample of 30000 tuples in Table 2 and a sample
of 50000 pairs of tuples in Table 3). Results on all data
sets confirm that the random sampling technique is able
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(b) All 0.9-Distinct Q.ID.s
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(c) All 0.999-Separation Q.ID.s

Figure 2: Comparison of running time of finding all minimal quasi-identifiers using different pruning methods.
The three figures show the running time of three algorithms for finding all keys, 0.9-distinct and 0.999-separation quasi-
identifiers on adult table respectively. The “pruning once” algorithm uses a 10% sub-table; the iterative pruning algorithm
uses two sub-tables, the first one with 1% samples and the second one 10%.

Data Sets
Greedy Greedy Approximate

time utility time utility
adult 19s 5 2s 5
covtype 2 hours 38 104s 37
idaho 147s 24 30s 23
wa 646s 23 35s 23
texas 1149s 19 34s 19
ca 728s 16 30s 16
census - - 170s 17

Table 3: Algorithms for masking 0.8-separation
quasi-identifiers. The column “Greedy” represents the
greedy algorithm on the entire table, and the column
“Greedy Approximate” represents running greedy algorithm
on a random sample of 50000 pairs of tuples. We compare
the running time and the utility of the two algorithms on
different data sets. The result of Greedy on census is un-
available because the algorithm does not terminate in 10
hours.

to reduce the running time dramatically especially for large
tables, with only minor impact on the utility. For the largest
data set census, running the greedy algorithm on the entire
table does not terminate in 10 hours, while with random
sampling it only takes no more than 13 minutes for masking
0.5-distinct quasi-identifier and 3 minutes for masking 0.8-
separation quasi-identifier.

5.3 Finding All Minimal Quasi-identifiers
We implement algorithms for finding all minimal keys, β-

distinct and β-separation quasi-identifiers. For each of them,
we implement 3 algorithms: no pruning, pruning with one
sub-table, iterative pruning.

The pruning algorithms for distinct and separation quasi-
identifiers are randomized algorithms that guarantee to out-
put the correct result with probability 1 − δ. In all experi-
ments we set δ = 0.01, and the algorithms are always able
to find all minimal quasi-identifiers correctly throughout the
experiments, which confirms the accuracy of our algorithms.

We measure the running time of the three algorithms on

adult table, and the results are illustrated in Figure 2. The
figures show that pruning is highly effective for minimal
keys and distinct quasi-identifiers, while the improvement
for separation quasi-identifiers is marginal; iterative prun-
ing is most effective for exact keys. For example, to find all
minimal keys, it takes 6590 seconds without pruning, 559
seconds if prune with one sub-table, and only 134 seconds
if prune with two sub-tables; to find all 0.9-distinct quasi-
identifiers, pruning improves the running time from 6373
seconds to around 1600 seconds. The improvement on sepa-
ration quasi-identifiers are not significant, because there are
a large number of small separation quasi-identifiers causing
pruning ineffective in reducing the search space. We also
generate input tables of different sizes by taking random
samples from the original table; the running time of all al-
gorithms increases linearly with the number of input tuples.

We next study the influence of pruning levels and sub-
table sizes on the running time. From Figure 3, we can see
that iterative pruning outperforms pruning with one sub-
table in most cases, especially when the pruning table size
is large; using three levels of pruning is slightly better than
using two levels. Fixing the pruning level and increasing
the sub-table sizes, the running time first decreases because
larger sub-tables are more effective in pruning the search
space, and then increases after a certain point due to the
large cost of sampling and processing the sub-tables. We do
not have theoretical results for the optimal pruning level and
table sizes; they depend on the characteristics of the input
table, such as the sizes and numbers of the quasi-identifiers.
Our simulation on various tables show that two or three
levels of pruning with each table size 10% of the next level
usually provides reasonably good performance.

Even though our algorithms have effectively reduced the
running time, they are yet unable to process larger data
sets as the running time is still exponential in the number
of attributes.

5.4 Approximate Minimum Key Algorithms
Finally we examine the greedy algorithms for finding min-

imum key and (ε, δ)-separation or -distinct minimum key in
Section 2. Table 4 shows the experimental results of the
Greedy Minimum Key, Greedy (0.1, 0.01)-Distinct Minimum



Data Sets
Greedy distinct Greedy (ε = 0.1) separation Greedy (ε = 0.001)

time key size time key size distinct ratio time key size separation ratio
adult 35.5s 13 8.8s 13 1.0 3.11s 5 0.99995
covtype 964s 5 78.1s 3 0.9997 27.1s 2 0.999996
idaho 50.4s 14 15.2s 8 0.997 1.07s 3 0.9999
wa 490s 22 34.1s 8 0.995 7.14s 3 0.99993
texas 2032s 29 120s 14 0.995 13.2s 4 0.99995
ca 3307s 29 145s 13 0.994 16.3s 4 0.99998
census - - 808s 17 0.993 120s 3 0.99998

Table 4: Running time and output key sizes of the Greedy Minimum Key, Greedy (0.1, 0.01)-Distinct Minimum
Key, and Greedy (0.001, 0.01)-Separation Minimum Key algorithms. The result of Greedy Minimum Key on census
is not available because the algorithm does not terminate in 10 hours.
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Figure 3: Running time using different pruning lev-
els and sub-table sizes. Figures (a) and (b) show the
running time (y axis) for finding all keys and 0.9-distinct
quasi-identifiers in adult table. The three curves use one,
two, three pruning tables respectively. The x axis gives the
pruning table size at the last level; if prune with more than
one table, the table size at each level is 10% of the next level,
or 100 tuples at minimum.

Key, and Greedy (0.001, 0.01)-Separation Minimum Key al-
gorithms on different data sets.

The Greedy Minimum Key algorithm (applying greedy
algorithm directly on the entire table) works well for small
data sets such as adult, idaho, but becomes unaffordable as
the data size increases. The approximate algorithms for sep-
aration or distinct minimum key are much faster. For the
table California, the greedy minimum key algorithm takes
almost one hour, while the greedy distinct algorithm takes
2.5 minutes, and greedy separation algorithm merely sec-
onds; for the largest table census, the greedy minimum key
algorithm takes more than 10 hours, while the approximate
algorithms take no more than 15 minutes. The space and
time requirements of our approximate minimum key algo-
rithms are sublinear in the number of input tuples, and we
expect the algorithms to scale well on even larger data sets.

We measure the distinct and separation ratios of the out-
put quasi-identifiers, and find the ratios always within error
ε. This confirms the accuracy of our algorithms.

Theorem 5 and 7 provide the theoretical bounds on the
size of the quasi-identifiers found by our algorithms (ln m or
ln mn times the minimum key size). Those bounds are worst
case bounds, and in practice we usually get much smaller
quasi-identifiers. For example, the minimum key size of adult
is 13, and the greedy algorithm for both distinct and sep-
aration minimum key find quasi-identifiers no larger than
the minimum key. (For other data sets in Table 4, comput-

ing the minimum key exactly takes prohibitively long time,
so we are not able to verify the approximation ratio of our
algorithms.) We also generate synthetic tables with known
minimum key sizes, then apply the greedy distinct minimum
key algorithm (with ε = 0.1) on those tables and are always
able to find quasi-identifiers no larger than the minimum
key size. Those experiments show that in practice our ap-
proximate minimum key algorithms usually perform much
better than the theoretical worst case bounds, and are often
able to find quasi-identifiers with high separation (distinct)
ratio and size close to the minimum key.

6. RELATED WORK
The implication of quasi-identifiers to privacy is first for-

mally studied by Sweeney, who also proposed the k-anonymity
framework as a solution to this problem [27, 26]. After-
wards there is numerous work which studies the complexity
of this problem [19, 2], designs and implements algorithms to
achieve k-anonymity [25, 5], or extends upon the framework
[17, 15]. Our algorithm for masking quasi-identifiers can be
viewed as an approximation to k-anonymity where the sup-
pression must be conducted at the attribute level. Also it
is an “on average” k-anonymity because it does not provide
perfect anonymity for every individual but does so for the
majority; a similar idea is used in [16]. On the other side,
our algorithms for finding keys/quasi-identifiers attempt to
attack the privacy of published data from the adversary’s
point of view, when the publish data is not k-anonymized.
To the best of our knowledge, there is no existing work ad-
dressing this problem.

Our algorithms exploit the idea of using random samples
to trade off between accuracy and space complexity, and can
be viewed as streaming algorithms. Streaming algorithms
emerged as a hot research topic in the last decade; see [3,
8, 22] for some examples. Our algorithms are similar to all
these algorithms in the sense that we only need one scan of
the input and space sublinear in the input data size, at the
cost of only providing approximate answers. The novelty
of our algorithms is that most classic streaming algorithms
deal with a stream of values, whereas we deal with a stream
of tuples with attribute structure.

The Minimum Key problem is closely related to the classic
Minimum Set Cover and Minimum Test Collection problem,
whose hardness and approximability are well studied in the-
oretical computer science field [9, 20, 10]. Although there
has been extensive work on set cover problem, to the best of
our knowledge, this paper is the first to study the trade-off



between set coverage and space efficiency.
Keys are special cases of functional dependencies, and

quasi-identifiers are a special case of approximate functional
dependency. Our definitions of separation and distinct ra-
tios for quasi-identifiers are adapted from the measures for
quantifying approximations of functional dependencies pro-
posed in [14, 24].

7. CONCLUSIONS AND FUTURE WORK
In this paper, we designed efficient algorithms for discov-

ering and masking quasi-identifiers in large tables. We de-
veloped efficient algorithms that find small quasi-identifiers
with provable size and separation/distinct ratio guarantees,
with space and time complexity sublinear in the number
of input tuples. We also designed efficient algorithms for
finding all minimal quasi-identifiers, and for masking quasi-
identifiers in large tables.

Most of our algorithms can be extended to the weighted
case, where each attribute is associated with a weight and
the size/utility of a set of attributes is defined as the sum
of their weights. The idea of using random samples to trade
off between accuracy and space complexity can potentially
be explored in other problems on large tables.
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9. APPENDIX

9.1 Minimum β-Set Cover
As the greedy approximate set cover algorithm in Sec-

tion 2.3.1, we use random sampling to reduce the problem
to a smaller set cover instance. We need enough samples
to tell, with high probability, whether a subcollection covers
more than β or less than αβ fraction of the ground set.

Lemma 13. If we choose k elements from the ground set
S, then for any given set S′, we can tell whether |S′| ≤ αβ|S|
or |S′| ≥ β|S| with probability at least 1− e−

βk(1−α)2

16 .

Proof. Let k′ be the number of elements covered by S′

in the k chosen elements.
If |S′| ≥ β|S|, then a random element of S is covered by S′

with probability at least β. Let xi be an indicator random
variable which is set to 1 if the ith chosen element is covered
by S′, and 0 otherwise. It is easy to see

E[xi] = Pr[xi = 1] = |S′|/|S| ≥ β, and

E[k′] =
Pk

i=1 E[xi] ≥ βk.
Since all xis are independent, we can apply Chernoff bound

(see for example [21] Ch. 4),

Pr[k′ ≤ (1 + α)βk/2] < e−
βk(1−α)2

8 .
On the other hand, if |S′| ≤ αβ|S|, similarly we have

Pr[k′ ≥ (1 + α)βk/2] < e−
βk(1−α)2

16 .
Therefore, by checking if S′ covers more than (1 + α)β/2
fraction of the chosen elements, we can tell with high proba-
bility if S′ covers at least β or at most αβ fraction of S.

Note that Lemma 3 can be viewed as a special case of
Lemma 13 where β = 1, but Lemma 3 provides a tighter
bound for the special case. Suppose we want to tell whether
one subcollection is an exact cover or not an α-cover with
error probability at most δ. We need k = logα δ samples
according to Lemma 3, while Lemma 13 asks for 16

(1−α)2
ln 1

δ

samples. For example, when α = 0.9, logα δ ≈ 10 ln 1
δ
, while

16
(1−α)2

ln 1
δ
≈ 1600 ln 1

δ
.

The Greedy Minimum β-Set Cover algorithm works as fol-
lows: first randomly sample k = 16

βε2
ln 2m

δ
elements from the

ground set S, and construct a smaller set cover instance de-
fined on the k chosen elements; run the greedy algorithm
on the smaller set cover instance until get a subcollection
covering at least (2− ε)βk/2 elements (start with an empty
subcollection; each time add to the subcollection a subset
covering the largest number of uncovered elements).

To prove the approximation ratio of the algorithm, we
need the following lemma about approximation ratio of the
greedy algorithm on partial set covers. The proof is similar
with the original proof for the exact set cover.

Lemma 14. Apply the greedy algorithm for minimum set
cover problem until get a γ-set cover. The size of result
subcollection is within 1 + ln γn of the size of the minimum
γ-set cover.

Proof. For each element e, define price(e) = 1
size(c)

,

where c is the first subset covering e in the greedy algo-
rithm, and size(c) is the number of elements first covered
by subset c in the greedy algorithm.

Number the elements of S in the order of which they were
covered by the greedy algorithm, breaking ties arbitrarily.

Let e1, . . . , eγn be the numbering. Right before ek is covered,
at most k − 1 elements have been covered, so OPTγ covers
at least γn − (k − 1) uncovered elements. Since the greedy
algorithm picks a subset c with the maximum size(c), it
follows that

price(ek) ≤ OPTγ

γn− (k − 1)

The size of γ-set cover output by the greedy algorithm equals
to
γnX

k=1

ek = OPTγ(
1

γn
+

1

γn− 1
+ . . . + 1) = (1 + ln γn)OPTγ

Now we are ready to prove Theorem 8. It is easy to check
that the algorithm takes space mk = 16m

βε2
ln 2m

δ
.

Theorem 8 With probability at least 1−δ, the Greedy Mini-
mum β-Set Cover algorithm outputs a partial set cover which
covers at least (1−ε)β of the ground set, and has size at most

(1+ ln (2−ε)βk
2

)|I∗|, where I∗ is minimum β-set cover of S.

Proof. We say a subcollection of subsets “good” if it
covers at least (2− ε)βk/2 of the k chosen elements.

We first bound the error probability that the algorithm
outputs a subcollection covering less than (1 − ε)β of S.
According to Lemma 13, the probability that any such sub-
collection is good is less than

e−
βkε2
16 = e− ln 2m

δ =
δ

2m
.

Suppose there are x such small subcollections, then with
probability at least 1− xδ

2m none of them is good.
Similarly, any β-cover of S will be good with probability

δ
2m . Suppose there are y β-covers, then with probability at

least 1− yδ
2m all β-covers are good. Under the condition that

all β-covers are good, it holds that |I∗| ≥ |Ĩ∗|, where Ĩ∗ is
the minimum good subcollection.

By Lemma 14, the greedy algorithm outputs a good sub-

collection whose size is within 1 + ln (2−ε)βk
2

of the min-

imum good subcollection size |Ĩ∗|, thus also within (1 +

ln (2−ε)βk
2

)|I∗| under the condition that all β-covers are good.

The overall error probability is at most (x+y)δ
2m . Since x+y

is at most the total number of subset 2m, the error proba-
bility is at most δ.

9.2 Max Non-Set Cover is NP-hard
Theorem 15. Maximum Non-Set Cover problem is NP-

hard.

Proof. We reduce the Dense Subgraph problem to Max-
imum Non-Set Cover.

Dense Subgraph Problem: given a graph G = (V, E),
find a subset of vertices T with cardinality at most
k and the subgraph induced by T has the maxi-
mum number of edges.

Given a dense subgraph instance, we can reduce it to a
max non-set cover instance: let the ground set be the set
of vertices V ; each edge corresponds to a subset of size 2
containing the two endpoints, then a subgraph of G with at
most k vertices corresponds to a collection of subsets cover-
ing at most k elements, and vice versa. The dense subgraph
problem is NP-hard by a reduction from Maximum Clique,
therefore maximum non-set cover is also NP-hard.


