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Abstract. Several variations of hat guessing games have been popularly discussed in recre-
ational mathematics. In a typical hat guessing game, after initially coordinating a strategy,
each of n players is assigned a hat from a given color set. Simultaneously, each player tries
to guess the color of his/her own hat by looking at colors of hats worn by other players. In
this paper, we consider a new variation of this game, in which we require at least k correct
guesses and no wrong guess for the players to win the game, but they can choose to “pass”.
A strategy is called perfect if it can achieve the simple upper bound n

n+k
of the winning

probability. We present sufficient and necessary condition on the parameters n and k for the
existence of perfect strategy in the hat guessing games. In fact for any fixed parameter k,
the existence of perfect strategy can be determined for every sufficiently large n.
In our construction we introduce a new notion: (d1, d2)-regular partition of the boolean
hypercube, which is worth to study in its own right. For example, it is related to the k-
dominating set of the hypercube. It also might be interesting in coding theory. The existence
of (d1, d2)-regular partition is explored in the paper and the existence of perfect k-dominating
set follows as a corollary.
Keywords: Hat guessing game; perfect strategy; hypercube; k-dominating set; perfect code

1 Introduction

Several different hat guessing games have been studied in recent years [1–8, 10, 11]. In this paper
we investigate a variation where players can either give a guess or pass. It was first proposed by
Todd Ebert in [4]. In a standard setting there are n players sitting around a table, who are allowed
to coordinate a strategy before the game begins. Each player is assigned a hat whose color is
chosen randomly and independently with probability 1/2 from two possible colors, red and blue.
Each player is allowed to see all the hats but his own. Simultaneously, each player guesses its
own hat color or passes, according to their pre-coordinated strategy. If at least one player guesses
correctly and no player guesses wrong, the players win the game. Their goal is to design a strategy
to maximize their winning probability.

By a simple counting argument there is an upper bound on the maximum winning probability,
n/(n + 1). It is known that this upper bound is achieved if and only if n has the form 2t − 1 [4].
It turns out that the existence of such perfect strategy that achieves the upper bound corresponds
to the existence of a perfect 1-bit error-correcting code in {0, 1}n.

In this paper, we present a natural generalization of Ebert’s hat guessing problem: The setting
is the same as in the original problem, every player can see all other hats except his own, and is
allowed to guess or pass. However, the requirement for them to win the game is generalized to be
that at least k players from them should guess correctly, and no player guesses wrong (1 ≤ k ≤ n).
Note that when k = 1, it is exactly the original problem.

We denote by Pn,k the maximum winning probability for the problem with n players when at
least k correct guesses are required. Similarly to the k = 1 case, Pn,k has a simple upper bound
Pn,k ≤ n

n+k . We call a pair (n, k) perfect if this upper bound can be achieved, i.e. Pn,k = n
n+k .

There is a simple necessary condition for a pair (n, k) to be perfect, and our main result states
that this condition is almost sufficient:
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Theorem 1. For any d, k, s ∈ N with s ≥ k + ⌈log k⌉ − 1, (d(2s − k), dk) is perfect, in particular,
(2s − k, k) is perfect.

There exists pair (n, k) with the necessary condition but not perfect, see the remark in Section 4.

Here is the outline of the proof: first we give a general characterization of the winner probability
Pn,k by using the size of the minimum k-dominating set of the hypercube. Then we convert the
condition of (n, k) perfect to some kind of regular partition of the hypercube (see the definition in
Section 2). Our main contribution is that we present a strong sufficient condition for the existence
of such partition, which nearly matches the necessary condition. Then we can transform it into a
perfect hat guessing strategy.

As a corollary of Theorem 1, we also give asymptotic characterization of the value Pn,k. For
example, we show that for any fixed k, the maximum winning probability approaches 1 as n tends
to the infinity.

Related work:
Feige [5] considered some variations including the discarded hat version and the everywhere

balanced version. Lenstra and Seroussi [8] studied the case that n is not of form 2m − 1, they
also considered the case with multiple colors. In [3], Butler, Hajiaghayi, Kleinberg and Leighton
considered the worst case of hat placement with sight graph G, in which they need to minimize
the maximum wrong guesses over all hat placements. In [6] Feige studied the case that each player
can see only some of other players’ hats with respect to the sight graph G. In [10], Paterson and
Stinson investigated the case that each player can see hats in front of him and they guess one
by one. Very recently, Buhler, Butler, Graham and Tressler [2] studied the case that every player
needs to guess and the players win the game if either exactly k1 or k2 players guess correctly, they
showed that the simple necessary condition is also sufficient in this game.

The rest of the paper is organized as follows: Section 2 describes the definitions, notations and
models used in the paper. Then, Section 3 presents the result of the existence of (d1, d2)-regular
partition of hypercube while Section 4 shows the main result of the hat guessing game. Finally, we
conclude the paper in Section 5 with some open problems. The perfectness of some small (n, k)’s
are listed in the appendix.

2 Preliminaries

We use Qn to denote the the n dimension boolean hypercube {0, 1}n. Two nodes are adjacent on
Qn if they differ by only one bit. We encode the blue and red color by 0 and 1. Thus the placement
of hats on the n players’ heads can be represented as a node of Qn. For any x ∈ Qn, x

(i) is used to
indicate the string obtained by flipping the ith bit of x. Throughout the paper, all the operations
are over F2. We will clarify explicitly if ambiguity appears.

Here is the model of the hat guessing game we consider in this paper: The number of players is
denoted by n and players are denoted by p1, . . . , pn. The colors of players’ hats will be denoted to
be h1, . . . , hn, which are randomly and independently assigned from {0, 1} with equal probability.
h = (h1, . . . , hn). Let h−i ∈ Qn−1 denote the tuple of colors (h1, . . . , hi−1, hi+1, . . . , hn) that player
pi sees on the others’ heads. The strategy of player pi is a function si : Qn−1 → {0, 1,⊥}, which
maps the tuple of colors h−i to pi’s answer, where ⊥ represents pi answers “pass” (if some player
answers pass, his answer is neither correct nor wrong). A strategy S is a collection of n functions
(s1, . . . , sn). The players win the game if at least k of them guess correctly and no one guesses
wrong. We use Pn,k to denote the maximum winning probability of the players. The following two
definitions are very useful in characterization Pn,k:
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Definition 1. A subset D ⊆ V is called a k-dominating set of graph G = (V,E) if for every vertex
v ∈ V \D, v has at least k neighbors in D.

Definition 2. A partition (V1, V2) of hypercube Qn is called a (d1, d2)-regular partition if each
node in V1 has exactly d1 neighbors in V2, and each node in V2 has exactly d2 neighbors in V1.

For example, consider the following partition (V1, V2) of Q3: V1 = {000, 111}, and V2 = Q3 \V1.
For each vertex in V1, there are 3 neighbors in V2, and for each vertex in V2, there is exactly one
neighbor in V1. Thus (V1, V2) forms a (3, 1)-regular partition of Q3.

3 (d1, d2)-Regular Partition of Qn

In this section we study the existence of (d1, d2)-regular partition of Qn.

Proposition 1. Suppose d1, d2 ≤ n, if there exists a (d1, d2)-regular partition of hypercube Qn,
then the parameters d1, d2, n should satisfy d1 + d2 = gcd(d1, d2)2

s for some s ≤ n.

Proof. Suppose the partition is (V1, V2), we count the total number of vertices

|V1|+ |V2| = 2n,

and the number of edges between two parts

d1 |V1| = d2 |V2| .

By solving the equations, we obtain

|V1| =
d2

d1 + d2
2n, |V2| =

d1
d1 + d2

2n.

Both |V1| and |V2| should be integers, therefore d1+d2 = gcd(d1, d2)2
s holds, since gcd(d1, d1+d2) =

gcd(d2, d1 + d2) = gcd(d1, d2).

Proposition 2. If there exists a (d1, d2)-regular partition of hypercube Qn, then there exists a
(d1, d2)-regular partition of Qm for every m ≥ n.

Proof. It suffices to show that the statement holds when m = n+1, since the desired result follows
by induction. Qn+1 can be treated as the union of two copies of Qn (for example partition according

to the last bit), i.e. Qn+1 = Q
(1)
n ∪ Q

(2)
n . Suppose (V1, V2) is a (d1, d2)-regular partition of Q

(1)
n .

We can duplicate the partition (V1, V2) to get another partition (V ′
1 , V

′
2) of Q

(2)
n . Then we can see

that (V1 ∪ V ′
1 , V2 ∪ V ′

2) forms a partition of Qn+1, in which each node has an edge to its duplicate
through the last dimension. Observe that each node in V1 (V ′

1) still has d1 neighbors in V2 (V ′
2)

and same for V2 (V ′
2), and the new edges introduced by the new dimension are among V1 and V ′

1 ,
or V2 and V ′

2 , which does not contribute to the edges between two parts of the partition. Therefore
we constructed a (d1, d2)-regular partition of Qn+1.

Proposition 3. If there exists a (d1, d2)-regular partition of Qn, then there exists (td1, td2)-regular
partition of Qtn, for any positive integer t.

Proof. Suppose (V1, V2) is a (d1, d2)-regular partition of Qn. Let x = x1x2 · · ·xnt be a node in Qnt.
We can divide x into n sections of length t, and denote the sum of ith section by wi, i.e.

wi(x) =

ti∑
j=ti−t+1

xj , (1 ≤ i ≤ n).
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Let R(x) = w1(x)w2(x) . . . wn(x) ∈ Qn. Define

V ′
i = {x ∈ Qnt|R(x) ∈ Vi}, (i = 1, 2).

We claim that (V ′
1 , V

′
2) is a (td1, td2)-regular partition of Qnt. This is because for any vertex x in

V ′
1 , R(x) is in V1. So R(x) has d1 neighbors in V2, and each of which corresponds t neighbors of x

in V ′
2 , thus in total td1 neighbors in V ′

2 . It is the same for vertices in V ′
2 .

By Proposition 1-3 we only need to consider the existence of (d1, d2)-regular partition of Qn

where gcd(d1, d2) = 1 and d1 + d2 = 2s (where s ≤ n), or equivalently, the existence of (d, 2s − d)-
regular partition of Qn, where s ≤ n and d is odd. The following Lemma from [2] showed that
when n = 2s − 1 such regular partition always exists.

Lemma 1. [2] There exists a (t, 2s − t)-regular partition of Q2s−1, for any integer s, t with 0 <
t < 2s.

The following theorem shows how to construct the (t, 2s − t)-regular partition for n = 2s − r
(where r ≤ t).

Theorem 2. Suppose there exists a (t, 2s − t)-regular partition for Q2s−r and t > r, then there
exists a (t, 2s+1 − t)-regular partition for Q2s+1−r−1.

Proof. For convenience, let m = 2s − r. Suppose that (V1, V2) is a (t, 2s − t)-regular partition for
Qm. Observer that 2s+1−(r+1) = 2m+r−1. We want to construct a (t, 2s+1−t)-regular partition
for Q2m+r−1. The basic idea of the construction is as follows:

We start from set V2. We construct a collection of linear equation systems, each of which
corresponds to a node in V2. The variables of the linear systems are the (2m+ r − 1) bits of node
x ∈ Q2m+r−1. Let V ′

2 be the union of solutions of these linear equation systems, and V ′
1 be the

complement of V ′
2 . Then (V ′

1 , V
′
2) is the (t, 2s+1 − t)-regular partition as we desired.

Here is the construction. Since (V1, V2) is a (t, 2s − t) regular partition for Qm, the subgraph
induced by V2 of Qm is a (t−r)-regular bipartite graph, i.e. for every node p ∈ V2, there are (t−r)
neighbors of p in V2. By Hall’s theorem [9], we can find a perfect matching of nodes in V2. For each
p ∈ V2, suppose q is the corresponding node of p in the matching. Let I(p) be the index of bit at
which p and q are different. Note that in this case I(p) = I(q).

Now for each node p = (p1, . . . , pm) ∈ V2, we construct a linear equation system as follows:

x1 + x2 = p1,

x3 + x4 = p2,

. . . . . . . . . ,

x2m−1 + x2m = pm,∑m
j=1 x2j−1 + x2I(p) +

∑r−1
j=1 x2m+j = 0.

(1)

Note that all variables xi and the addition operations are over F2. Denote by S(p) ⊆ Q2m+r−1

the solutions of this linear system. For convenience, let f : Q2m+r−1 → Qm be the operator such
that

f(x1, . . . , x2m+r−1) = (x1 + x2, x3 + x4, . . . , x2m−1 + x2m).

Then in the linear system (1) the first m equations is nothing but f(x) = p.
Let V ′

2 =
∪

p∈V2
S(p), and V ′

1 = Q2m+r−1 \ V ′
2 be its complement. We claim that (V ′

1 , V
′
2) is a

(t, 2s+1 − t)-regular partition of Q2m+r−1.

To begin with, observe the following two facts.
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Observation 1 For every x ∈ V ′
2 , we have f(x) ∈ V2. It can be seen clearly from the first m

equations in each equation system.
Observation 2 If k ≤ 2m, then f(x(2k)) = f(x(2k−1)) = (f(x))(k). If k > 2m, f(x(k)) = f(x).

Recall the x(i) is the node obtained by flipping the ith bit of x. The observation can be seen from
the definition of f(x).

For any node x ∈ V ′
1 , we show that there are t different ways of flipping one bit of x so that we

can get a node in V ′
2 . There are two possible cases:

Case 1: f(x) ̸∈ V2. In this case if we flip the ith bit of x for some i > 2m, then from Observation 2,
f(x(i)) = f(x), so f(x(i)) will remain not in V2, and therefore x(i) will not be in V ′

2 , by Observation
1. So we can only flip the bit in {x1, . . . , x2m}.

Suppose by flipping the ith bit of x we get x(i) ∈ V ′
2 (i ∈ [2m]), from the definition of V ′

2 we
have : f(x(i)) ∈ V2, and x(i) satisfies the last equation in the equation systems corresponding to
f(x(i)):

m∑
j=1

x
(i)
2j−1 + x

(i)

2I(f(x(i)))
+

r−1∑
j=1

x
(i)
2m+j = 0. (2)

Since f(x) /∈ V2 and (V1, V2) is a (t, 2s − t)-regular partition of Qm, so there are exactly t
neighbors of f(x) in V2, which implies there are t bits of f(x) we can flip to get a node in V2. Let
{j1, . . . , jt} ⊆ [m] be these bits, i.e. f(x)(j1), . . . , f(x)(jt) ∈ V2, by Observation 2,

f(x(2jk−1)) = f(x(2jk)) = f(x)(jk) ∈ V2, (k = 1, . . . , t).

But exactly one of {x(2jk−1), x(2jk)} satisfies the equation (2) (here we use the fact f(x) /∈ V2, then
jk ̸= I(f(x)(jk))). Thus totally, there are t possible i’s such that x(i) ∈ V ′

2 .

Case 2: f(x) ∈ V2. Since x /∈ V ′
2 , the last linear equation must be violated, i.e.

m∑
j=1

x2j−1 + x2I(f(x)) +

r−1∑
j=1

x2m+j = 1. (3)

We further consider three cases here: flip a bit in {x1, . . . , x2m} \ {x2I(f(x)), x2I(f(x))−1}; flip a bit
in {x2I(f(x)), x2I(f(x))−1}; flip a bit in {x2m+1, . . . , x2m+r−1}:

a) if i ∈ [m] , i ̸= I(f(x)). If f(x)(i) /∈ V2, both x(2i) and x(2i−1) will be in V ′
1 since first m

equations cannot be satisfied. Otherwise, since (V1, V2) is a (t, 2s−t)-regular partition of Qm, there
are m−(2s−t)−1 = (2s−r)−(2s−t)−1 = t−r−1 such index i. Note that for all such i’s, exactly
one of x(2i−1) and x(2i) is in V ′

2 , depending on the value of Equation 3 for f(x)(i). x(2i) ∈ V ′
2 if it

is originally 0, x(2i−1) ∈ V ′
2 if it is originally 1. This is based on the fact that I(f(x)(i)) ̸= i. Thus

in this case there are (t− r − 1) neighbors of x in V ′
2 .

b) if i = I(f(x)), then both of x(2i−1), x(2i) are in V ′
2 , since I(f(x)(i)) = i in this case. There

are 2 such neighbors.
c) if i > 2m, then every x(i) is in V ′

2 , there are r − 1 such neighbors.
Hence, totally x has (t− r − 1) + 2 + r − 1 = t neighbors in V ′

2 .

The rest thing is to show that every node x ∈ V ′
2 has (2s+1 − t) neighbors in V ′

1 . The proof is
similar to the proof of Case 2 above, we consider three cases:

a) If i ∈ [m], i ̸= I(f(x)), and f(x)(i) ∈ V2. Then exactly one of x(2k−1), x(2k) in V ′
2 , thus there

are m− (2s − t)− 1 = 2s − r − (2s − t)− 1 = t− r − 1 such neighbors of x in V ′
2 .

b) If i = I(f(x)) both x(2i−1), x(2i) are not in V ′
2 .

c) If i > 2m, then every x(i) is not in V ′
2 .
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Hence totally, x has (t−r−1) neighbors in V ′
2 , and therefore (2m+r−1)−(t−r−1) = 2s+1−t

neighbors in V ′
1 .

Hence we prove that (V ′
1 , V

′
2) is indeed a (t, 2s+1 − t)-regular partition of Q2s+1−r−1.

Theorem 3. For any odd number t and any 0 < c ≤ t, when s ≥ ⌈log t⌉ + c − 1, there exists a
(t, 2s − t)-regular partition of Q2s−c.

Proof. Let s0 = s− c+ 1. Note that we have 2s0 > t > 0, by Lemma 1, there exists a (t, 2s0 − t)-
regular partition of Q2s0−1. By repeatedly using Theorem 2, we obtain that there exists (t, 2s0+1−
t)-regular partition of Q2s0+1−2, (t, 2s0+2 − t)-regular partition of Q2s0+2−3. Finally we get a
(t, 2s0+c−1− t)-regular partition of Q2s0+c−1−c, which is just a (t, 2s− t)-regular partition of Q2s−c.

Combining Proposition 2, Proposition 3 and Theorem 3, we have the following corollary.

Corollary 1. Suppose d1 = dt, d2 = d(2s− t), n = d(2s− c), where d, t, s are positive integers with
0 < t < 2s, c ≤ t and s ≥ ⌈log t⌉+ c− 1, then there exists a (d1, d2)-regular partition for Qn.

4 The Maximum Winning Probability Pn,k

The following lemma characterizes the relationship between the maximum winner probability Pn,k

and the minimum k-dominating set of Qn. The same result was showed in [6] for k = 1.

Lemma 2. Suppose D is a k-dominating set of Qn with minimum number of vertices. Then

Pn,k = 1− |D|
2n

.

Proof. Given a k-dominating set D of Qn, the following strategy will have winning probability at

least 1− |D|
2n : For any certain placement of hats, each player can see all hats but his own, so player pi

knows that current placement h is one of two adjacent nodes {x, x(i)} of Qn. If x ∈ D (or x(i) ∈ D),
he guesses that the current placement is x(i) (or x), otherwise he passes. We claim that by using
this strategy, players win the game when the placement is a node which is not in D. Observe that
since D is a k-dominating set, for any node y /∈ D, y has l neighbors y(i1), y(i2), . . . , y(il) that are
in D, where l ≥ k. According to the strategy desribed, players pi1 , . . . , pil would guess correctly

and all other players will pass. This shows the winning probability is at least 1− |D|
2n .

Next we show that Pn,k ≤ 1− |D|
2n . Suppose we have a strategy with winning probability Pn,k.

We prove that there exists a k-dominating setD0, such that |D0| = 2n(1−Pn,k). The construction is
straightforward: Let D0 = {h ∈ Qn : h is not a winning placement}. Thus |D0| = 2n(1−Pn,k). For
every winning placement h /∈ D0, suppose players pi1 , . . . , pil will guess correctly (l ≥ k), consider
the placement h(i1), which differs from h only at player pi1 ’s hat, so player pi1 will guess incorrectly
in this case, thus h(i1) ∈ D0. Similarly h(i2), . . . , h(il) ∈ D0, therefore D0 is a k-dominating set. We
have

|D| ≤ |D0| = 2n(1− Pn,k),

which implies

Pn,k ≤ 1− |D|
2n

.

Combining these two results, we have Pn,k = 1− |D|
2n as desired.

Proposition 4. The following properties hold:
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(a) If n1 < n2 then Pn1,k ≤ Pn2,k.

(b) (n, k) is perfect iff there exists a (k, n)-regular partition of Qn.

(c) For any t ∈ N, Pnt,kt ≥ Pn,k. As a consequence, if (n, k) is perfect, (nt, kt) is perfect.

Proof. For part (a), suppose that D is a minimum k-dominating set of Qn1 . We make 2n2−n1

copies of Qn1 , and by combining them we get a Qn2 , which has dominating set of size 2n2−n1 |D|.
By Lemma 2, Pn2,k ≥ 1− 2n2−n1 |D|

2n2
= Pn1,k.

For part (b), suppose (U, V ) is a (k, n)-regular partition of Qn, note that V is a k-dominating
set of Qn and |V | = k

n+k · 2n, thus V is a minimum k-dominating set of Qn. We have that

Pn,k = 1− |V |
2n = n

n+k , which implies that (n, k) is perfect.

On the other hand, if (n, k) is perfect, suppose D is the minimum k-dominating set, we have
|D| = k

n+k · 2n. It can be observed that (Qn \D,D) is a (k, n)-regular partition of Qn.

For part (c), since n
n+k = nt

nt+kt , once Pnt,kt ≥ Pn,k holds, it’s an immediate consequence that
the perfectness of (n, k) implies the perfectness of (nk, nt).

Suppose for n players, we have a strategy S with probability of winning Pn,k. For nt players,
we divide them into n groups, each of which has t players. Each placement h = (h1, h2, . . . , hnt)
of nt players can be mapped to a placement P (h) of n players in the following way: for Group i,
suppose the sum of colors in the group is wi, i.e.

wi(h) =

ti∑
j=ti−t+1

hj , (1 ≤ i ≤ n).

Let P (h) = (w1(h), w2(h), . . . , wn(h)) be a placement of n players. Each player in Group i
knows the color of all players in P (h) other than Player i, thus he uses Player i’s strategy si in S
to guess the sum of colors in Group i or passes. Moreover once he knows the sum, his color can be
uniquely determined.

Note that the players in Group i would guess correctly or incorrectly or pass, if and only if
Player i in the n-player-game would do. Since the hat placement is uniformly at random, the
probability of winning using this strategy is at least Pn,k, thus Pnt,kt ≥ Pn,k.

Now we can prove our main theorem:

Theorem 1 For any d, k, s ∈ N with s ≥ ⌈log k⌉+ k − 1, (d(2s − k), dk) is perfect, in particular,
(2s − k, k) is perfect.

Proof. It is an immediate consequence of part (b) of Proposition 4 and Corollary 1.

Remark: By Proposition 1 and Proposition 4(b) there is a simple necessary condition for (n, k)
to be perfect, n + k = gcd(n, k)2t. Theorem 1 indicates that when n + k = gcd(n, k)2t and n is
sufficiently large, (n, k) is perfect. The necessary condition and sufficient condition nearly match
in the sense that for each k, there’s only a few n that we don’t know whether (n, k) is perfect.
Moreover, the following proposition shows that the simple necessary condition can’t be sufficient.
The first counterexample is (5, 3), it is not perfect while it satisfies the simple necessary condition.
But (13, 3) is perfect by Theorem 1 and more generally for all s ≥ 4, (2s − 3, 3) is perfect. We
verified by computer program that (24 − 5, 5) = (11, 5) is not perfect, while our main theorem
implies that (27 − 5, 5) = (123, 5) is perfect. By applying Theorem 2 in a more delicate way, we
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could obtain (59, 5) is perfect as well. 1 But we still don’t know whether the case between them,
(25 − 5, 5) = (27, 5), is perfect.

Proposition 5. (n, k) is not perfect unless 2k + 1 ≤ n when n ≥ 2 and k < n.

Proof. Suppose (n, k) is perfect. According to part (b) of Proposition 4, we can find (U, V ), a
(k, n)-regular partition of Qn. Suppose x is some node in U , and y is some neighbor of x which is
also in U , y has k neighbors in V . They all differ from x at exactly 2 bits and one of them is what y
differs from x at, i.e. each of them “dominates” 2 neighbors of x, one of them is y. So x has totally
k + 1 neighbors “dominated” by k of nodes in V . Since all nodes in V are pairwise nonadjacent,
these k + 1 nodes must be in U . Now we have k + 1 neighbors of x are in U and k neighbors are
in V , it has totally n neighbors. We must have 2k + 1 ≤ n.

For each odd number k, let s(k) be the smallest number such that (2s(k) − k, k) is perfect. We
know that s(k) ∈ [⌈log k⌉, ⌈log k⌉ + k − 1]. The following proposition indicates that all s ≥ s(k),
(2s − k, k) is also perfect.

Proposition 6. If (2s − k, k) is perfect, (2s+1 − k, k) is perfect.

Proof. If (2s−k, k) is perfect, by Proposition 4(b) there is a (k, 2s−k)-regular partition of Q2s−k.
Thus by Proposition 2, we have a (k, 2s − k)-regular partition of Q2s−k+1. Combine this partition
and Theorem 2, we get a (k, 2s+1 − k)-regular partition of Q2s+1−k. Therefore (2s+1 − k, k) is
perfect.

Using Theorem 1 we can give a general lower bound for the winning probability Pn,k. Recall
that there’s upper bound Pn,k ≤ 1− k

n+k .

Lemma 3. Pn,k > 1− 2k
n+k , when n ≥ 2⌈log k⌉+k−1 − k.

Proof. Let n′ be the largest integer of form 2t − k which is no more than n. By Theorem 1, (n′, k)
is perfect, i.e. Pn′,k = 1− k

n′+k . By part (a) of Proposition 4, Pn,k ≥ Pn′,k. On the other hand we

have n+ k < 2t+1, so we have

Pn,k ≥ 1− k

n′ + k
= 1− 2k

2t+1
> 1− 2k

n+ k
.

Corollary 2. For any integer k > 0, limn→∞ Pn,k = 1.

5 Conclusion

In this paper we investigated the existence of regular partition for boolean hypercube, and its
applications in finding perfect strategies of a new hat guessing games. We showed a sufficient
condition for (n, k) to be perfect, which nearly matches the necessary condition. Several problems
remain open: for example, determine the minimum value of s(k) such that (2s(k) − k, k) is perfect,
and determine the exact value of Pn,k. It is also very interesting to consider the case when there
are more than two colors in the game.

1 By Theorem 2, a (3, 1)-regular parition of Q3 implies a (3, 5)-regular parition of Q6, by switching the
two parts of which, we have a (5, 3)-regular partition of Q6. Then by applying Theorem 2 three times,
we have (5, 11)-regular partition of Q12, and then (5, 27)-partition of Q28, and then (5, 59)-partition of
Q59, which implies that (5, 59) is perfect by Proposition 4 (b).
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6 Appendix

Here are some small values of n and k satisfying the necessary condition and being coprime,
n = 2s − k for some s. “Y” means we know it is perfect, “N” means we know it is not perfect, and
“U” means we are unsure.

@
@@k
s
1 2 3 4 5 6 7 8 9

1 Y Y Y Y Y Y Y Y Y
3 - - N Y Y Y Y Y Y
5 - - - N U Y Y Y Y
7 - - - N U U U U Y
9 - - - - U U U U U
11 - - - - N U U U U
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