
Using Redundancies to Find Errors
Yichen Xie and Dawson Engler

Abstract—Programmers generally attempt to perform useful work. If they performed an action, it was because they believed it served

some purpose. Redundant operations violate this belief. However, in the past, redundant operations have been typically regarded as

minor cosmetic problems rather than serious errors. This paper demonstrates that, in fact, many redundancies are as serious as

traditional hard errors (such as race conditions or null pointer dereferences). We experimentally test this idea by writing and applying

five redundancy checkers to a number of large open source projects, finding many errors. We then show that, even when redundancies

are harmless, they strongly correlate with the presence of traditional hard errors. Finally, we show how flagging redundant operations

gives a way to detect mistakes and omissions in specifications. For example, a locking specification that binds shared variables to their

protecting locks can use redundancies to detect missing bindings by flagging critical sections that include no shared state.

Index Terms—Extensible compilation, error detection, program redundancy, software quality.

æ

1 INTRODUCTION

PROGRAMMING languages have long used the fact that
many high-level conceptual errors map to low-level

type errors. This paper demonstrates the same mapping in a
different direction: Many high-level conceptual errors also
map to low-level redundant operations. With the exception
of a few stylized cases, programmers are generally
attempting to perform useful work. If they performed an
action, it was because they believed it served some purpose.
Spurious operations violate this belief and are likely errors.
However, in the past, redundant operations have been
typically regarded as merely cosmetic problems rather than
serious mistakes. Evidence for this perception is that, to the
best of our knowledge, the many recent error checking
projects focus solely on hard errors such as null pointer
dereferences or failed lock releases, rather than redundancy
checking [2], [4], [5], [9], [13], [23], [25].

We experimentally demonstrate that, in fact, many

redundancies signal mistakes as serious as traditional hard

errors. For example, impossible Boolean conditions can

signal mistaken expressions, critical sections without shared

states can signal the use of the wrong variable, and

variables written but not read can signal an unintentionally

lost result. Even when harmless, these redundancies signal

conceptual confusion, which we would also expect to

correlate with hard errors, such as deadlocks, null pointer

dereferences, etc.
In this paper, we use redundancies to find errors in three

ways: 1) by writing checkers that automatically flag

redundancies, 2) using these errors to predict nonredun-

dant errors (such as null pointer dereferences), and 3) using

redundancies to find incomplete program specifications.

We discuss each below.

We wrote five checkers that flagged potentially danger-
ous redundancies:

1. idempotent operations,
2. assignments that were never read,
3. dead code,
4. conditional branches that were never taken, and
5. redundant NULL-checks.

The errors found would largely be missed by traditional
type systems and checkers. For example, as Section 2 shows,
assignments of variables to themselves can signal mistakes,
yet such assignments will type check in any common
programming language we know of.

Of course, some legitimate actions cause redundancies.
Defensive programming may introduce “unnecessary”
operations for robustness; debugging code, such as asser-
tions, can check for “impossible” conditions; and abstrac-
tion boundaries may force duplicate calculations. Thus, to
effectively find errors, our checkers must separate such
redundancies from those induced by high-level confusion.

The technology behind the checkers is not new. Optimiz-
ing compilers use redundancy detection and elimination
algorithms extensively to improve code performance. One
contribution of our work is the realization that these analyses
have been silently finding errors since their invention.

We wrote our redundancy checkers in the MC extensible
compiler system [15], which makes it easy to build system-
specific static analyses. Our analyses do not depend on an
extensible compiler, but it does make it easier to prototype
and perform focused suppression of false positive classes.

We evaluated how effective flagging redundant opera-
tions is at finding dangerous errors by applying the above
five checkers to three open source software projects: Linux,
OpenBSD, and PostgreSQL. These are large, widely used
source code bases (we check 3.3 million lines of them) that
serve as a known experimental base. Because they have
been written by many people, they are representative of
many different coding styles and abilities.

We expect that redundancies, even when harmless,
strongly correlate with hard errors. Our relatively uncon-
troversial hypothesis is that confused or incompetent

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003 915

. The authors are with the Computer Systems Laboratory, 353 Serra Mall,
Stanford University, Stanford, CA 94305.
E-mail: yxie@cs.stanford.edu, engler@csl.stanford.edu.

Manuscript received 4 Mar. 2003; revised 9 June 2003; accepted 21 June 2003.
Recommended for acceptance by W. Griswold.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 118735.

0098-5589/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

programmers tend to make mistakes. We experimentally
test this hypothesis by taking a large database of hard Linux
errors that we found in prior work [8] and measure how
well redundancies predict these errors. In our experiments,
files that contain redundancies are roughly 45 to 100 percent
more likely to have traditional hard errors compared to
those drawn by chance. This difference holds across the
different types of redundancies.

Finally, we discuss how traditional checking approaches
based on annotations or specifications can use redundancy
checks as a safety net to find missing annotations or
incomplete specifications. Such specification mistakes com-
monly map to redundant operations. For example, assume
we have a specification that binds shared variables to locks.
A missed binding will likely lead to redundancies: a critical
section with no shared state and locks that protect no
variables. We can flag such omissions because we know
that every lock should protect some shared variable and
that every critical section should contain some shared state.

This paper makes four contributions:

1. The idea that redundant operations, like type errors,
commonly flag serious correctness errors.

2. Experimentally validating this idea by writing and
applying five redundancy checkers to real code. The
errors found often surprised us.

3. Demonstrating that redundancies, even when harm-
less, strongly correlate with the presence of tradi-
tional hard errors.

4. Showing how redundancies provide a way to detect
dangerous specification omissions.

The main caveat with our approach is that the errors we
count might not be errors since we were examining code we
did not write. To counter this, we only diagnosed ones that
we were reasonably sure about. We have had close to three
years of experience with Linux bugs, so we have reasonable
confidence that our false positive rate of bugs that we
diagnose, while nonzero, is probably less than 5 percent.

In addition, some of the errors we diagnose are not
traditional “hard errors”—they, by themselves, would
probably not cause system crashes or security breaches.
Rather, they are nonsensical redundancies that, in our
opinion, result in unnecessary complexity and confusion.
So, the diagnosis of these errors involve personal judgments
that may not be shared by all readers. Although they are not
as serious as hard errors, we think they should nevertheless
be fixed in order to improve program clarity and read-
ability.

Sections 2 through 6 present the five checkers. Section 7
measures how well these redundant errors correlate with
and predict traditional hard errors. Section 8 discusses how
to check for completeness using redundancies. Section 9
discusses related work. Finally, Section 10 concludes.

2 IDEMPOTENT OPERATIONS

The checker in this section flags idempotent operations
where a variable is:

1. assigned to itself (x = x),
2. divided by itself (x / x),

3. bitwise or’d with itself (x | x), or
4. bitwise and’d with itself (x & x).

The checker is the simplest in the paper (it requires about
10 lines of code in our system). Even so, it found several
interesting cases where redundancies signal high-level
errors (see Table 1). Four of these were apparent typos in
variable assignments. The clearest example was the follow-
ing Linux code, where the programmer makes a mistake
while copying structure sa to da:

/*_linux2.4.1/net/appletalk/aarp.c:aarp_rcv_*/
else { /* We need to make a copy of the entry.*/

da.s_node = sa.s_node;

da.s_net= da.s_net;

This is a good example of how redundancies catch cases
that type systems miss. This code—an assignment of an
integer variable to itself—will type check in all common
languages we know of, yet clearly contains an error. Two of
the other errors in Linux were caused by integer overflow
(or’ing an 8-bit variable by a constant that only had bits set
in the upper 16 bits) which was optimized away by the gcc

front end. The final one in Linux was caused by an
apparently missing conversion routine. The code seemed to
have been tested only on a machine where the conversion
was unnecessary, which prevented the tester from noticing
the missing routine.

The two errors we found in OpenBSD are violations of
the ANSI C standard. They both lie in the same function in
the same source file. We show one of them below:

1 /* openbsd3.2/sys/kern/subr_userconf.c:userconf_add */

2 for (i= 0; i< pv_size; i++) {
3 if (pv[i] != -1 && pv[i] >= val)

4 pv[i] = pv[i]++; /* error */

5 }

The error occurs at line 4 and is detected with the help of
the code canonicalization algorithm in the xgcc front end
that translates this statement into:

pv[i] = pv[i]; /* redundant */

pv[i]++;

The ANSI C standard (Section 6.3) stipulates that “between
the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation of
an expression.” It is mere coincidence that gcc chooses to
implement the side-effects of pv[i]++ after that of the
assignment itself. In fact, the Compaq C compiler1 evaluates
pv[i]++ first and stores the old value back to pv[i], causing the
piece of code to fail in a nonobvious way. We tested four

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

TABLE 1
Bugs Found by the Idempotent Checker in

Linux 2.4.5-ac8, OpenBSD 3.2, and PostgreSQL 7.2

1. Compaq C V6.3-129 (dtk) on Compaq Tru64 UNIX V5.0A (Rev. 1094).

C compilers by different vendors on different architectures.2

None of them issued a warning on this illegal statement.
The minor errors were operations that seemed to follow

a nonsensical but consistent coding pattern, such as adding
0 to a variable for typographical symmetry with other
nonzero additions such as the following:

/* linux2.4.5-ac8/drivers/video/riva/riva_hw.c:

nv4CalcArbitration */

nvclks += 1;

nvclks += 1;

nvclks += 1;
if (mp_enable)

mclks +=4;

nvclks += 0; /* suspicious, is it a typo or should it

really be“+=1”? */

Curiously, each of the 11 false positives we found was
annotated with a comment explaining why the redundant
operation was being done. This gives evidence for our belief
that programmers regard redundancy as somewhat unusual.

Macros are the main source of false positives. They
represent logical operations that may not map to concrete
actions. For example, networking code contains many calls
of the form “x = ntohs(x)” used to reorder the bytes in
variable x in a canonical “network order” so that a machine
receiving the data can unpack it appropriately. However,
on machines on which the data is already in network order,
the macro will expand to nothing, resulting in code that will
simply assign x to itself. To suppress these false positives,
we modified the preprocessor to note which lines contain
macros—we simply ignore warnings on these lines.

3 REDUNDANT ASSIGNMENTS

The checker in this section flags cases where a value
assigned to a variable is not subsequently used. The checker
tracks the lifetime of variables using a simple intraproce-
dural analysis. At each assignment, it follows the variable
forward on all paths. It emits an error message if the
variable is not read on any path before either exiting scope
or being assigned another value. As we show, in many
cases, such lost values signal real errors, such as control
flow following unexpected paths, results computed but not
returned, etc.

The checker found thousands of redundant assignments
in the three systems we checked. Since it was so effective,
we minimized the chance of false positives by radically
restricting the variables it would follow to nonglobal and
nonvolatile ones that were not aliased in any way (i.e., local
variables that never had their addresses taken).

Most of the checker code deals with differentiating the
errors into three classes, which it ranks in the following
order:

1. Variables assigned values that are not read, and
which are never subsequently reassigned. Empiri-
cally, these errors tend to be the most serious since
they flag unintentionally lost results.

2. Variables assigned a nonconstant value that are not
read, and which are subsequently reassigned. These

are also commonly errors, but tend to be less severe.

False positives in this class tend to come from

assigning a return value from a function call to a

dummy variable that is ignored, which is prevalent

in PostgreSQL. Fortunately, such variables tend to

share a consistent naming pattern (e.g., they are

commonly prefixed with double underscores (_ _) in
PostgreSQL) and, therefore, can be easily suppressed

with grep. In presenting bug counts in Table 2, we

do not count warnings that are so suppressed.
3. Variables assigned a constant and then reassigned

other values without being read. These are fre-

quently due to defensive programming, where the

programmer always initializes a variable to some

safe value (most commonly: NULL, 0, 0xffffffff, and

-1) but does not read it before redefinition. We track

the initial value and emit it when reporting the error
so that messages with a common defensive value can

be easily filtered out. Again, we do not count filtered

messages in Table 2.

Suppressing false positives. As with many redundant

checkers, macros and defensive programming cause most

false positives. To minimize the impact of macros, the

checker does not track variables killed or generated within

them. Its main remaining vulnerability is values assigned

and then passed to debugging macros that are turned off:

x = foo->bar;

DEBUG(”bar = %d”, x);

Typically, there are a small number of such debugging

macros, which we manually turn back on by modifying the

header files in which they are defined.

We use ranking to minimize the impact of defensive

programming. Redundant operations that can be errors

when done within the span of a few lines can be robust

programming practice when separated by 20 lines. Thus, we

rank reported errors based on 1) the line distance between

the assignment and reassignment and 2) the number of

conditional branches on the path. Close errors are most

likely; farther ones arguably defensive programming.

The errors. This checker found more errors than all the

others we have written combined. There were two inter-

esting error patterns that showed up as redundant assign-

ments: 1) variables whose values were (unintentionally)

discarded and 2) variables whose values were not used

because of surprising control flow (e.g., an unexpected

return).

XIE AND ENGLER: USING REDUNDANCIES TO FIND ERRORS 917

TABLE 2
Bugs Found by the Redundant Assignment Checker in
Linux 2.4.5-ac8, OpenBSD 3.2, and PostgreSQL 7.2

2. Sun Workshop 6 update 2, GNU GCC 3.2.1, Compaq C V6.3-129, and
MS Visual Studio .NET.

The majority of the errors (126 of the 129 diagnosed ones)
fall into the first category. Fig. 1 shows a representative
example from Linux. Here, if the function signal_pending
returns true (a signal is pending to the current process), an
error code is set (err = -ERESTARTSYS) and the code
breaks out of the enclosing loop. The value in err must be
passed back to the caller so that it will retry the system call.
However, the code always returns 0 to the caller, no matter
what happens inside the loop. This will lead to an insidious
error: The code usually works but, occasionally, it will abort
but return a success code, causing the client to assume that
the operation happened.

There were numerous similar errors on the caller side
where the result of a function was assigned to a variable,
but then ignored rather than being checked. The fact that
logically the code contains errors is readily flagged by
looking for variables assigned but not used.

The second class contains three diagnosed errors that

comes from calculations aborted by unexpected control

flow. Fig. 2 gives one example from Linux: Here, all paths

through a loop end in a return, wrongly aborting the loop

after a single iteration. This error is caught by the fact that

an assignment used to walk down a linked list is never read

because the loop iterator that would do so is dead code.

Fig. 3 shows a variation on the theme of unexpected control

flow. Here, an if statement has an extraneous statement

terminator at its end, making the subsequent return to be

always taken. In these cases, a coding mistake caused

“dangling assignments” that were not used. This fact allows

us to flag such bogus structures, even when we do not

know how control flows in the code. It is the presence of

these errors that has led us to write the dead-code checker

in the next section.
Reassigning values is typically harmless, but it does

signal fairly confused programmers. For example:

/* linux2.4.5-ac8/drivers/net/wan/sdla_x25.c:

alloc_and_init_skb_buf */

struct sk_buff *new_skb = *skb;

new_skb = dev_alloc_skb(len+ X25_HRDHDR_SZ);

where new_skb is assigned the value *skb, but then

immediately reassigned another allocated value. A different

case shows a potential confusion about how C’s iteration

statement works:

/* linux2.4.5-ac8/drivers/scsi/scsi.c:

scsi_bottom_half_handler */

SCnext = SCpnt->bh_next;

for (; SCpnt; SCpnt = SCnext) {

SCnext = SCpnt->bh_next;

Note that the variable SCnext is assigned and then

immediately reassigned in the loop. The logic behind this

decision remains unclear.
The most devious error. A few of the values reassigned

before being used were suspicious lost values. One of the

worst (and most interesting) was from a commercial system

which had the equivalent of the following code:

c= p->buf[0][3];

c= p->buf[0][3];

At first glance, this seems like a harmless obvious copy-

and-paste error. It turned out that the redundancy flags a

much more devious bug. The array buf actually pointed to a

“memory mapped” region of kernel memory. Unlike

normal memory, reads and writes to this region cause the

CPU to issue I/O commands to a hardware device. Thus,

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

Fig. 1. Lost return value caught by flagging the redundant assignment

to err.

Fig. 2. A single-iteration loop caught by flagging the redundant
assignment next = entry!maps next. The assignment appears to be
read in the loop iteration statement (entry = next), but it is dead code
since the loop always exits after a single iteration. The logical result will
be that, if the entry the loop is trying to delete is not the first one in the
list, it will not be deleted.

Fig. 3. Catastrophic return caught by the redundant assignment to c2.

The second to last conditional is accidentally terminated because of a

stray statement terminator (“;”) at the end of the line, causing the routine

to always return err_val.

the reads are not idempotent, and the two of them in a row

rather than just one can cause very different results to

happen. However, the above code does have a real (but

silent) error—in the variant of C that this code was written,

pointers to device memory must be declared as “volatile.”

Otherwise, the compiler is free to optimize duplicate reads

away, especially since, in this case, there were no pointer

stores that could change their values. Dangerously, in the

above case, buf was declared as a normal pointer rather

than a volatile one, allowing the compiler to optimize as it

wished. Fortunately, the error had not been triggered

because the GNU C compiler that was being used had a

weak optimizer that conservatively did not optimize

expressions that had many levels of indirection. However,

the use of a more aggressive compiler or a later version of

gcc could have caused this extremely difficult to track down

bug to surface.

4 DEAD CODE

The checker in this section flags dead code (see Table 3).
Since programmers generally write code to run it, dead
code catches logical errors signaled by false beliefs that
unreachable code can execute.

The core of the dead code checker is a straightforward
mark-and-sweep algorithm. For each routine, it 1) marks
all blocks reachable from the routine’s entry node and
2) traverses all blocks in the routine, flagging any that are
not marked. The checker has three modifications to this
basic algorithm. First, it truncates all paths that reach
functions that would not return. Examples include
“panic,” “abort,” and “BUG,” which are used by Linux
to signal a terminal kernel error and reboot the system—

code dominated by such calls cannot run. Second, we

suppress error messages for dead code caused by constant

conditions involving macros or the sizeof operator, such as

/* case 1: debugging statement that is turned ‘off’ */

#define DEBUG 0

if (DEBUG) printf(”in_foo”);

/* case 2: gcc coverts the condition to 0

on 32-bit architectures */

if (sizeof(int) == 64)

printf(”64 bit architecture\n”);

The former frequently signals code “commented out” by

using a false condition, while the latter is used to carry out

architecture dependent operations. We also annotate error

messages when the flagged dead code is only a break or

return. These are commonly a result of defensive program-

ming. Finally, we suppress dead code in macros.
Despite its simplicity, dead code analysis found a high

number of clearly serious errors. Three of the errors caught

by the redundant assignment checker are also caught by the

dead code detector: 1) the single iteration loop in Fig. 2,

2) the mistaken statement terminator in Fig. 3, and 3) the

unintentional fall through in Fig. 4.
Fig. 5 gives the most frequent copy-and-paste error.

Here, the macro “pseterr” has a return statement in its

definition, but the programmer does not realize it. Thus, at

all seven call sites that use the macro, there is dead code

after the macro that the programmer intended to have

executed.
Fig. 6 gives another common error—a single-iteration

loop that always terminates because it contains an if-else

statement that breaks out of the loop on both branches. It is

hard to believe that this code was ever tested. Fig. 7 gives a

variation on this, where one branch of the if statement

breaks out of the loop but the other uses C’s continue

statement, which skips the rest of the loop body. Thus, none

of the code thereafter can be executed.
Type errors can also result in dead code. Fig. 8 shows an

example from OpenBSD. Here, the function tv_channel

returns -1 on error, but, since temp is an unsigned variable,

the error handling code in the true branch of the if statement

is never executed. An obvious fix is to declare temp as int.

As before, none of the four compilers we tested warned

about this suspicious typing mistake.

XIE AND ENGLER: USING REDUNDANCIES TO FIND ERRORS 919

TABLE 3
Bugs Found by the Dead Code Checker on

Linux 2.4.5-ac8, OpenBSD 3.2, and PostgreSQL 7.2

Fig. 4. Unintentional switch “fall through” causing the code to always

return an error. This maps to the low-level redundancy that the value

assigned to val is never used.

Fig. 5. Unexpected return: The call pseterr is a macro that returns its
argument value as an error. Unfortunately, the programmer does not
realize this and inserts subsequent operations, which are flagged by our
dead code checker. There were many other similar misuses of the same
macro.

5 REDUNDANT CONDITIONALS

The checker in this section uses path-sensitive analysis to

detect redundant (always true or always false) conditionals

in branch statements, such as if, while, switch, etc. (see

Table 4). They cannot affect the program state or control

flow. Thus, their presence is a likely indicator of errors. To

avoid double reporting bugs found in the previous section,

we only flag nonconstant conditional expressions that are

not evaluated by the dead code checker.
The implementation of the checker uses the false path

pruning (FPP) feature in the xgcc system [15]. FPP was

originally designed to eliminate false positives from

infeasible paths. It prunes a subset of logically inconsistent

paths by keeping track of assignments and conditionals

along the way. The implementation of FPP consists of three

separate modules, each keeping track of one class of

program properties as described below:

1. The first module maintains a mapping from vari-
ables to integer constants. It tracks assignments (e.g.,
x = 1; x = x * 2;) and conditional branch statements

(e.g., if (x == 5) {...}) along each execution path to
derive variable-constant bindings.

2. The second module keeps track of a known set of
predicates that must hold true along the current
program path. These predicates are collected from
conditional branches (e.g., in the true branch of if (x
!= NULL) {...}, we will collect x != NULL into the
known predicate set), and they will be used later to
test the validity of subsequent control predicates
(e.g., if we encounter if (x != NULL) later in the
program, we will prune the else branch). Note if the
value of variable x is killed (either directly by
assignments or indirectly through pointers), we
remove any conditional in the known predicate set
that references x.

3. The third module keeps track of constant bounds of
variables. We derive these bounds from conditional
statements. For example, in the true branch of if (x <=
5), we enter 5 as x’s upper bound. We prune paths
that contradict with the recorded bound information
(e.g., the true branch of if (x > 7)).

These three simple modules were able to capture enough

information that allows us to find interesting errors in

Linux and OpenBSD.
With FPP, the checker works as follows: For each

function, it traverses the control flow graph (CFG) with

FPP and marks all reachable CFG edges. At the end of the

analysis, it emits conditionals associated to untraversed

ones as errors.
Macros and concurrency are the two major sources of

false positives. To suppress those, we discard warnings that

take place within macros and ignore conditionals that

involve global, static, or volatile variables whose values

might be changed by another thread.
The checker is able to find hundreds of redundant

conditionals in Linux and OpenBSD. We classify them into

three major categories which we describe below.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

Fig. 6. Broken loop: The first if-else statement of the loop contains a

break on both paths, causing the loop to always abort, without ever

executing the subsequent code it contains.

Fig. 7. Useless loop body: Similarly to Fig. 6, this loop has a broken

if-else statement. One branch aborts the loop, the other uses C’s

continue statement to skip the body and begin another iteration.

Fig. 8. Unsigned variable tested for negativity.

TABLE 4
Bugs Found by the Redundant Conditionals Checker in

Linux 2.4.5-ac8, OpenBSD 3.2, PostgreSQL 7.2

The first class of errors, which are the least serious of the

three, are labeled as “nonsensical programming style.” Fig. 9

shows a representative example from Linux 2.4.5-ac8. The if

statement at line 3 is clearly redundant and leaves one to

wonder about the purpose of such a check. These errors,

although harmless, signal a confused programmer. The

latter conjecture is supported by the statistical analysis

described in Section 8.

Fig. 10 shows a more problematic case. The second if

statement is redundant because the first one has already

taken care of the case where slave is false. The fact that a

different error code is returned signals a possible bug in

this code.

The second class of errors are again seemingly harmless

on the surface, but, when we give a more careful look at the

surrounding code, we often find serious errors. The while

loop in Fig. 11 is obviously trying to recover from hardware

errors encountered when reading network packets. But,

since the variable err is not updated in the loop body, it

would never become SUCCESS and, thus, the loop body

will never be executed more than once, which is suspicious.

This signals a possible error where the programmer forgets

to update err in the large chunk of recovery code in the

loop. This bug would be difficult to detect by testing,

because it is in an error handling branch that is only

executed when the hardware fails in a certain way.

The third class of errors is clearly composed of serious

bugs. Fig. 12 shows an example from Linux 2.4.5-ac8. As we

can see, the second and third if statements carry out entirely

different actions on identical conditions. Apparently, the

programmer has cut-and-pasted the conditional without

changing one of the two NODE_LOGGED_OUTs into a

more likely fourth possibility: NODE_NOT_PRESENT.

Fig. 13 shows another serious error. The author

obviously wanted to insert sp into a doubly-linked list that

starts from q->q_first, but the while loop clearly does

nothing other than setting srb_p to NULL, which is

nonsensical. The checker detects this error by inferring that

the ensuing if statement is redundant. An apparent fix is

to replace the while condition (srb_p) with (srb_p &&

srb_p->next). This bug can be dangerous and hard to detect,

because it quietly discards everything that was in the

original list and constructs a new one with sp as its sole

element. As a matter of fact, the same error is still present in

the latest stable 2.4.20 release of the Linux kernel source as

of this writing.

6 REDUNDANT NULL-CHECKS

The checker described in this section uses redundancies to

flag misunderstandings of function interfaces in Linux.

Certain functions, such as kmalloc, return a NULL pointer

on failure. Callers of these functions need to check the

validity of their return values before they can safely

dereference them. In prior work [11], we described an

algorithm that automatically derives the set of potential

NULL-returning functions in Linux. Here, we use the

XIE AND ENGLER: USING REDUNDANCIES TO FIND ERRORS 921

Fig. 9. Nonsensical programming style: The check at line 3 is clearly

redundant.

Fig. 10. Nonsensical programming style: The check of slave at line 9 is

guaranteed to be true and also notice the difference in return value.

Fig. 11. Redundant conditional that suggests a serious program error.

Fig. 12. Redundant conditionals that signal errors: a conditional

expression being placed in the else branch of another identical one.

logical opposite of that algorithm to flag functions whose

return values should never be checked against NULL. A

naive view is that, at worst, such redundant checks are

minor performance mistakes. In practice, we found they can

flag two dangerous situations.

1. The programmer believes that a function can fail
when it cannot. If they misunderstand the function’s
interface at this basic level, they likely misunder-
stand other aspects.

2. The programmer correctly believes that a function
can fail, but misunderstands how to check for
failure. Linux and other systems have functions that
indicate failure in some way other than returning a
null pointer.

For each pointer-returning function f, the checker tracks

two counts:

1. The number of call sites where the pointer returned
by f was checked against null before use.

2. The number of call sites where the returned pointer
was not checked against null before use.

A function f whose result is often checked against NULL

implies the belief that f could potentially return NULL.

Conversely, many uses with few NULL-checks implies the

belief that the function should not be checked against

NULL. We use the z-statistic [14] to rank functions from

most to least likely to return NULL based on these counts.

Return values from functions with highest z-values should

probably be checked before use, whereas NULL-checks on

those from the lowest ranked functions are most likely

redundant.
Fig. 14 shows one of the two bugs we found in a recent

release of Linux. Here, the redundant NULL-check at line 6

signals the problem: The programmer has obviously

misunderstood the interface to the function ntfs_rl_realloc,

which, as shown below,

/* 2.5.53/fs/ntfs/attrib.c:ntfs_rl_realloc */

. . .

new_rl = ntfs_malloc_nofs(new_size);

if (unlikely(!new_rl))
returnERR PTR(-ENOMEM);

. . .

will never return NULL. Instead, on memory exhaustion, it

will return what is essentially ((void*)-ENOMEM), which

should be checked using the special IS_ERR macro. When

ntfs_rl_realloc fails, the null check will fail too and the code

will dereference the returned value, which will likely

correspond to a valid physical address, causing a very

difficult-to-diagnose memory corruption bug. Unsurpris-

ingly, the same error appeared again at another location in

this author’s code.

7 PREDICTING HARD ERRORS WITH REDUNDANCIES

In this section, we show the correlation between redundant
errors and hard bugs that can crash a system. The
redundant errors are collected from the redundant assign-
ment checker, the dead code checker, and the redundant
conditional checker.3 The hard bugs were collected from
Linux 2.4.1 with checkers described in [8]. These bugs
include use of freed memory, dereferences of null pointers,
potential deadlocks, unreleased locks, and security viola-
tions (e.g., the use of an untrusted value as an array index).
They have been reported to and largely confirmed by Linux
developers. We show that there is a strong correlation
between these two error populations using a statistical
technique called the contingency table method [6]. Further,
we show that a file containing a redundant error is roughly
45 to 100 percent more likely to have a hard error than one
selected at random. These results indicate that 1) files with
redundant errors are good audit candidates and 2) redun-
dancy correlates with confused programmers who will
probably make a series of mistakes.

7.1 Methodology

This section describes the statistical methods used to
measure the association between program redundancies
and hard errors. Our analysis is based on the 2� 2
contingency table [6] method. It is a standard statistical

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

Fig. 13. A serious error in a linked list insertion implementation: srb_p is

always null after the while loop (which appears to be checking the wrong

Boolean condition).

Fig. 14. Redundant NULL-check of drl signals a more serious problem:

return values of ntfs_rl_realloc should in fact be checked with IS_ERR. A

NULL-check will never catch the error case.

3. We exclude the idempotent operation and redundant NULL-check
results because the total number of bugs is too small to be statistically
significant.

tool for studying the association between two different

attributes of a population. In our case, the population is the

set of files we have checked in Linux, and the two attributes

are: 1) whether a file contains redundancies and 2) whether

it contains hard errors.

In the contingency table approach, the population is

cross-classified into four categories based on two attributes,

say A and B, of the population. We obtain counts (oij) in

each category and tabulate the results as follows:

The values in the margin (n1�; n2�; n�1; n�2) are row and

column totals, and n�� is the grand total. The null hypothesis

H0 of this test is that A and B are mutually independent, i.e.,

knowing A gives no additional information about B. More

precisely, if H0 holds, we expect that:4

o11

o11 þ o12
� o21

o21 þ o22
� n�1
n�1 þ n�2

:

We can then compute expected values (eij) for the four cells

in the table as follows:

eij ¼
ni�n�j
n��

:

We use a “chi-squared” test statistic [14]:

T ¼
X

i;j2f1;2g

ðoij ÿ eijÞ2

eij

to measure how far the observed values (oij) deviates from

the expected values (eij). Using the T statistic, we can derive

the the probability of observing oij if the null hypothesis H0

is true. This probability is called the p-value.5 The smaller

the p-value, the stronger the evidence against H0, thus the

stronger the correlation between attributes A and B.

7.2 Data Acquisition and Test Results

In our previous work [8], we used the xgcc system to check
2,055 files in Linux 2.4.1. These focused on serious system
crashing hard bug and collected more than 1,800 serious
hard bugs in 551 files. The types of bugs we checked for
included null pointer dereference, deadlocks, and missed
security checks. We use these bugs to represent the class of
serious hard errors and derive correlation with program
redundancies.

We cross-classify the program files in the Linux kernel
into the following four categories and obtain counts in each:

1. o11: number of files with both redundancies and
hard errors.

2. o12: number of files with redundancies, but not hard
errors.

3. o21: number of files with hard errors, but not
redundancies.

4. o22: number of files with neither redundancies nor
hard errors.

We can then carry out the test described in Section 7.1 for
the redundant assignment checker, dead code checker, and
redundant conditional checker.

The result of the tests are given in Tables 5, 6, 7, and 8.
Note that, in the aggregate case, the total number of
redundancies is less than the sum of number of redun-
dancies from each of the four checkers. That is because we
avoid double counting files that are flagged by two or
more checkers. As we can see, the correlation between
redundancies and hard errors are extremely high, with
p-values being approximately 0 in all four cases. The results
strongly suggest that redundancies often signal confused
programmers and, therefore, are a good predictor for hard,
serious errors.

7.3 Predicting Hard Errors

In addition to the qualitative measure of correlation, we
want to know quantitatively how much more likely it is that

XIE AND ENGLER: USING REDUNDANCIES TO FIND ERRORS 923

TABLE 5
Contingency Table: Redundant Assignments vs. Hard Bugs

There are 345 files with both error types, 435 files with a redundant
assignments and no hard bugs, 206 files with a hard bug and no
redundant assignments, and 1,069 files with no bugs of either type. A
T -statistic value above four gives a p-value of less than 0.05, which
strongly suggests the two events are not independent. The observed
T value of 194.37 gives a p-value of essentially 0, noticeably better than
the standard threshold. Intuitively, the correlation between error types
can be seen in that the ratio of 345/435 is considerably larger than the
ratio 206/1,069—if the events were independent, we expect these two
ratios to be approximately equal.

TABLE 6
Contingency Table: Dead Code vs. Hard Bugs

TABLE 7
Contingency Table: Redundant Conditionals vs. Hard Bugs

4. To see this is true, consider 100 white balls in an urn. We first
randomly draw 40 of them and put a red mark on them. We put them back
in the urn. Then, we randomly draw 80 of them and put a blue mark on
them. Obviously, we should expect roughly 80 percent of the 40 balls with
red marks to have blue marks, as should we expect roughly 80 percent of
the remaining 60 balls without the red mark to have a blue mark.

5. Technically, under H0, T has a �2 distribution with one degree of
freedom. The p-value can be looked up in the cumulative distribution table
of the �2

1 distribution. For example, if T is larger than 4, the p-value will go
below 5 percent.

we will find hard errors in a file that contains one or more
redundant operations. More precisely, let E be the event
that a given source file contains one or more hard errors and
R be the event that it has one or more forms of redundant
operations, we can compute a confidence interval for
T 0 ¼ ðP ðEjRÞ ÿ P ðEÞÞ=P ðEÞ, which measures how much
more likely we are to find hard errors in a file given the
presence of redundancies.

The prior probability of hard errors is computed as
follows:

P ðEÞ ¼ Number of files with hard errors

Total number of files checked
¼ 551

2; 055
¼ 0:2681:

We tabulate the conditional probabilities and T 0 values in
Table 9. (Again, we excluded the idempotent operations
and redundant NULL-checks because of their small bug
sample.) As shown in the table, given presence of any form
of redundant operation, it is roughly 45-100 percent more
likely we will find an error in that file than in a randomly
selected file.

8 DETECTING SPECIFICATION MISTAKES

This section describes how to use redundant code actions to

find several types of specification errors and omissions.

Often program specifications give extra information that

allow code to be checked: whether return values of routines

must be checked against NULL, which shared variables are

protected by which locks, which permission checks guard

which sensitive operations, etc. A vulnerability of this

approach is that if a code feature is not annotated or

included in the specification, it will not be checked. We can

catch such omissions by flagging redundant operations. In

the above cases, and in many others, at least one of the

specified actions makes little sense in isolation—critical

sections without shared states are pointless as are permis-

sion checks that do not guard known sensitive actions.

Thus, if code does not intend to do useless operations, then

such redundancies will happen exactly when checkable

actions have been missed. (At the very least, we will have

caught something pointless that should be deleted.) We

sketch four examples below and close with two case studies

that use redundancies to find missing checkable actions.
Detecting omitted null annotations. Tools such as Splint

[12] let programmers annotate functions that can return a
null pointer with a “null” annotation. The tool emits an error
for any unchecked use of a pointer returned from a null

routine. In a real system, many functions can return null,
making it easy to forget to annotate them all. We can catch
such omissions using redundancies. We know only the
return value of null functions should be checked. Thus, a
check on a nonannotated function means that either the
function: 1) should be annotated with null or 2) the function
cannot return null and the programmer has misunderstood
the interface. A variant of this technique has been applied
with success in [11] and also in the checker described in
Section 6.

Finding missed lock-variable bindings. Data race
detection tools such as Warlock [24] let users explicitly
bind locks to the variables they protect. The tool warns
when annotated variables are accessed without their lock
held. However, lock-variable bindings can easily be for-
gotten, causing the variable to be (silently) unchecked. We
can use redundancies to catch such mistakes. Critical
sections must protect some shared state: flagging those that
do not will find either 1) useless locking (which should be
deleted for better performance) or 2) places where a shared
variable was not annotated.

Missed “volatile” annotations. As described in Section 4,
in C, variables with unusual read/write semantics must be
annotated with the “volatile” type qualifier to prevent the
compiler from doing optimizations that are safe on normal
variables, but incorrect on volatile ones, such as eliminating
duplicate reads or writes. A missing volatile annotation is a
silent error, in that the software will usually work, but only
occasionally give incorrect results on certain hardware-
compiler combinations. As shown, such omissions can be
detected by flagging redundant operations (reads or writes)
that do not make sense for nonvolatile variables.

Missed permission checks. A secure system must guard
sensitive operations (such as modifying a file or killing a
process) with permission checks. A tool can automatically
catch such mistakes given a specification of which checks
protect which operations. The large number of sensitive
operations makes it easy to forget a binding. As before, we
can use redundancies to find such omissions: Assuming
programmers do not do redundant permission checks,

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

TABLE 8
Contingency Table: Program Redundancies (Aggregate)

vs. Hard Bugs

TABLE 9
Program Files with Redundancies are, on Average, Roughly 50 Percent More Likely to Contain Hard Errors

finding permission check that does not guard a known
sensitive operation signals an incomplete specification.

8.1 Case Study: Finding Missed Security Holes

In a separate paper [3], we describe a checker that found
operating system security holes caused when an integer
read from untrusted sources (network packets, system call
parameters) was passed to a trusting sink (array indices,
length parameters in memory copy operations) without
being checked against a safe upper and lower bound. A
single violation can let a malicious attacker take control of
the entire system. Unfortunately, the checker is vulnerable
to omissions. An omitted source means the checker will not
track the data produced. An omitted sink means the checker
will not warn when unsanitized data reaches it.

When implementing the checker, we used the ideas in
this section to detect such omissions. Given a list of known
sources and sinks, the normal checking sequence is: 1) the
code reads data from an unsafe source, 2) checks it, and
3) passes it to a trusting sink. Assuming programmers do
not do gratuitous sanitization, a missed sink can be detected
by flagging when code does steps 1 and 2, but not 3.
Reading a value from a known source and sanitizing it
implies the code believes the value will reach a dangerous
operation. If the value does not reach a known sink, we
have likely missed one in our specification. Similarly, we
could (but did not) infer missed sources by doing the
converse of this analysis: flagging when the OS sanitizes
data we do not think is tainted and then passes it to a
trusting sink.

The analysis found roughly 10 common uses of sanitized
inputs in Linux 2.4.6 [3]. Nine of these uses were harmless;
however, one was a security hole. Unexpectedly, this was
not from a specification omission. Rather, the sink was
known, but our interprocedural analysis had been overly
simplistic, causing us to miss the path to it. The fact that
redundancies flag errors both in the specification and in the
tool itself was a nice surprise.

8.2 Case Study: Helping Static Race Detection

We have developed a static race detection tool, RacerX [10],
that has been dramatically improved by explicitly using the
fact that programmers do not perform redundant operations.

At a high level, the tool is based on a static lockset
algorithm similar to the dynamic version used in Eraser
[23]. It works roughly as follows: 1) The user supplies a list
of locking functions and a source base to check; 2) the tool
compiles the source base and does a context-sensitive
interprocedural analysis to compute the set of locks held at
all program points; 3) RacerX warns when shared variables
are used without a consistent lock held.

This simple approach needs several modifications to be
practical. We describe two problems below that can be
countered in part by using the ideas in this paper.

First, it is extremely difficult to determine if an
unprotected access is actually an bug. Many unprotected
accesses are perfectly acceptable. For example, program-
mers intentionally do unprotected modifications of statistics
variables for speed, or they may orchestrate reads and
writes of shared variables to be noninterfering (e.g., a
variable that has a single reader and writer may not need

locking). An unprotected access is only an error if it allows
an application-specific invariant to be violated. Thus,
reasoning about such accesses requires understanding
complex code invariants and actual interleavings (rather
than potential ones), both of which are often undocumen-
ted. In our experience, a single race condition report can
easily take tens of minutes to diagnose. Even at the end, it
may not be possible to determine if the report is actually an
error. In contrast, other types of errors found with static
analysis often take seconds to diagnose (e.g., uses of freed
variables, not releasing acquired locks).

We can simplify this problem using a form of redun-
dancy analysis. The assumption that programmers do not
write redundant critical sections, implies that the first, last,
and only shared data accesses in a critical section are
special:

. If a variable or function call is the only statement
within the critical section, we have very strong
evidence that the programmer thinks 1) the state
should be protected in general and 2) that the
acquired lock enforces this protection.

. Similarly, the first and last accesses of shared states
in a critical section also receive special treatment
(although to a lesser degree) since programmers
often acquire a lock on the first shared state access
that must be protected and release it immediately
after the last one—i.e., they do not gratuitously make
critical sections large.

A crucial result of these observations is that displaying
such examples of where a variable or function was
explicitly protected makes it very clear to a user of RacerX
what exactly is being protected. Fig. 15 gives a simple
example of this from Linux. There were 37 accesses to
serial_out with the argument info with some sort of lock
held; in contrast, there was only one unlocked use. This
function-argument pair was the first statement of a critical
section 11 times and the last one 17 times. Looking at the
examples, it is obvious that the programmer is explicitly
disabling interrupts6 before invoking this routine. In
particular, we do not have to look at the implementation
of serial_out and try to reason about whether it or the device
it interacts with needs to be protected with disabled
interrupts. In practice, we almost always look at errors that
have such features over those that do not.

A second problem with static race detection is that many
seemingly multithreaded code paths are actually single-
threaded. Examples include operating system interrupt
handlers and initialization code that runs before other
threads have been activated [23]. Warnings for accesses to
shared variables on single-threaded code paths can swamp
the user with false positives, at the very least hiding real
errors and, in the worse case, causing the user to discard
the tool.

This problem can also be countered using redundancy
analysis. We assume that in general programmers do not do

XIE AND ENGLER: USING REDUNDANCIES TO FIND ERRORS 925

6. cli() clears the Interrupt Enable Flag on x86 architectures, thus it
prevents preemption and has the effect of acquiring a global kernel lock on
single processor systems. sti() and restore_flags(flags) restores the Interrupt
Enable Flag. They can be thought of as releasing the kernel lock previously
acquired by cli().

spurious locking. We can thus infer that any concurrency
operation implies that the calling code is multithreaded.
These operations include locking, as well as calls to library
routines that provide atomic operations such as atomic_add
or test_and_set. (From this perspective, concurrency calls
can be viewed as carefully inserted annotations specifying
that code is multithreaded.)

RacerX considers any function to be multithreaded if
concurrency operations occur 1) anywhere within the
function or 2) anywhere above it in the call chain.7 Note
that such operations below the function may not indicate
the function itself is multithreaded. For example, it could be
calling library code that always conservatively acquires
locks. RacerX computes the information for 1) and 2) in two
passes. First, it walks over all functions, marking them as
multithreaded if they do explicit concurrency operations
within the function body. Second, when doing the normal
lockset computation, it also tracks if it has hit a known
multithreaded function. If so, it adds this annotation to any
error emitted.

Finally, static checkers have the invidious problem that,
errors in their analysis, often cause silent false negatives.
Redundancy analysis can help find these: Critical sections
that contain no shared states imply that either the

programmer made a mistake or the analysis did. We found

eight errors in the RacerX implementation when we

modified the tool to flag empty critical sections. There were

six minor errors, one error where we mishandled arrays

(and so ignored all array uses indexed by pointer variables),

and a particularly nasty silent lockset caching error that

caused us to miss over 20 percent of all code paths.

9 RELATED WORK

In writing the five redundancy checkers, we leverage

heavily from existing research on program redundancy

detection and elimination. Techniques such as partial

redundancy elimination [18], [20], [21] and dead code

elimination algorithms [1], [17], [19] have long been used in

optimizing compilers to reduce code size and improve

program performance. While our analyses closely mirror

these ideas at their core, there are two key differences that

distinguish our approach to that used in optimizing

compilers:

1. Optimizers typically operate on a low-level inter-
mediate representation (IR) with a limited set of
primitive operations on typeless pseudoregisters. In
contrast, our analyses need to operate at the source
level and work with (or around) the full-blown
semantic complexity of C. The reason is three-fold:
1) many redundant operations are introduced in the
translation from source constructs to intermediate
representations, making it hard to distinguish ones
that pre-exist in the source program; 2) useful
diagnostic information such as types (e.g., unsigned
versus signed) and variable or macro names (e.g.,
DEBUG) are typically discarded during the transla-
tion to IR—we find such information essential in
focused suppression of false positives; 3) the
translation to IR usually changes the source con-
structs so much that reporting sensible warning
messages at the IR level is extremely difficult, if not
impossible.

2. While being sound and conservative is vital in
optimizing compilers, error detection tools like ours
can afford (and are often required) to be flexible for
the sake of usefulness and efficiency. The redundant
NULL checker in Section 6 harvests function inter-
face specifications from a statistical analysis of their
usage patterns. Although the analysis is effective, it
is neither sound nor conservative and, therefore,
would most likely not be admissible in optimizers.

3. Compilers are typically invoked far more frequently
than checking tools during the development cycle.
Therefore, speed is essential for the analyses being
used in the optimizer. Expensive path-sensitive
algorithms are carried out sparingly, if at all, on
small portions of performance critical code simply
because their time complexity usually outweighs
their benefit. In contrast, checking tools like ours are
less frequently run and can therefore afford to use
more expensive analyses. The redundant conditional
checker is one such example. The less stringent

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

Fig. 15. Error ranked high because of redundancy analysis: There were

28 places where the routine serial_out was used as the first or last

statement in a critical section.

7. Since RacerX is a static tool, we approximate this information by a
simple reachability analysis on the static call graph.

speed requirement does give us a substantial edge in
detecting more classes of errors with more accuracy.

Redundancy analyses have also been used in existing

checking tools. Fosdick and Osterweil first applied data

flow anomaly detection techniques in the context of software

reliability. In their DAVE system [22], they used a depth

first search algorithm to detect a set of variable def-use type

of anomalies such as uninitialized read, double definition,

etc. However, according to our experiments, path insensi-

tive analysis like theirs produces an overwhelming number

of false positives, especially for the uninitialized read

checker. We were unable to find experimental validations

of their approach to make a meaningful comparison.

Recent releases of the GNU C compiler (version 3 and

up) provides users with the “-Wunreachable-code” option

to detect dead code in the source program. However, their

analysis provides no means of controlled suppression of

false positives, which we find essential in limiting the

number of false warnings. Also, because of its recent

inception, the dead code detection algorithm is not yet fully

functional8 as of this writing.

Dynamic techniques [7], [16] instruments the program

and detects anomalies that arise during execution. How-

ever, they are weaker in that they can only find errors on

executed paths. Furthermore, the runtime overhead and

difficulty in instrumenting low-level operating system code

limits the applicability of dynamic approaches. The effec-

tiveness of the dynamic approach is unclear because of the

lack of experimental results.
Finally, some of the errors we found overlap with ones

detected by other nonredundant checkers. For example,
Splint [12] warns about fall-through case branches in switch

statements even when they do not cause redundancies. It
could have (but did not) issued a warning for the error

shown in Fig. 4.9 However, many, if not most, of the errors
we find (particularly those in Sections 5 and 6) are not
found by other tools and, thus, seem worth investigating.
Unfortunately, we cannot do a more direct comparision to
Splint because it lacks experimental data and we were
unable to use it to compile the programs we check.

10 CONCLUSION

This paper explored the hypothesis that redundancies, like
type errors, flag higher-level correctness mistakes. We
evaluated the approach using five checkers which we
applied to the Linux, OpenBSD, and PostgreSQL. These
simple analyses found many surprising (to us) error types.
Further, they correlated well with known hard errors:
Redundancies seemed to flag confused or poor program-
mers who were prone to other errors. These indicators
could be used to identify low-quality code in otherwise
high-quality systems and help managers choose audit

candidates in large code bases.

ACKNOWLEDGMENTS

This research was supported in part by DARPA contract

MDA904-98-C-A933 and by a grant from the Stanford

Networking Research Center. Dawson Engler is partially

supported by a US National Science Foundation career

award. The authors would like to thank Andy Chou,

Godmar Back, Russel Greene, Ted Kremenek, and Ted

Unangst for their help in writing this paper. They would

also like to thank the editors and the anonymous reviewers

for their helpful comments.

REFERENCES

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] A. Aiken, M. Fahndrich, and Z. Su, “Detecting Races in Relay
Ladder Logic Programs,” Proc. First Int’l Conf. Tools and Algorithms
for the Construction and Analysis of Systems, Apr. 1998.

[3] K. Ashcraft and D.R. Engler, “Using Programmer-Written
Compiler Extensions to Catch Security Holes,” Proc. IEEE Symp.
Security and Privacy, May 2002.

[4] T. Ball and S.K. Rajamani, “Automatically Validating Temporal
Safety Properties of Interfaces,” Proc. SPIN 2001 Workshop Model
Checking of Software, May 2001.

[5] W.R. Bush, J.D. Pincus, and D.J. Sielaff, “A Static Analyzer for
Finding Dynamic Programming Errors,” Software: Practice and
Experience, vol. 30, no. 7, pp. 775-802, June 2000.

[6] G. Casella and R.L. Berger, Statistical Inference. Pacific Grove,
Calif.: Wadsworth Group, 2002.

[7] F.T. Chan and T.Y. Chen, “AIDA—A Dynamic Data Flow
Anomaly Detection System for Pascal Programs,” Software:
Practice and Experience, vol. 17, no. 3, pp. 227-239, Mar. 1987.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D.R. Engler, “An
Empirical Study of Operating Systems Errors,” Proc. 18th ACM
Symp. Operating Systems Principles, Oct. 2001.

[9] R. DeLine and M. Fahndrich, “Enforcing High-Level Protocols in
Low-Level Software,” Proc. ACM SIGPLAN 2001 Conf. Program-
ming Language Design and Implementation, June 2001.

[10] D.R. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of
Race Conditions and Deadlocks,” Proc. 19th ACM Symp. Operating
Systems Principles, Oct. 2003.

[11] D.R. Engler, D.Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
Deviant Behavior: A General Approach to Inferring Errors in
Systems Code,” Proc. 18th ACM Symp. Operating Systems Principles,
pp. 57-72, Oct. 2001.

[12] D. Evans, J. Guttag, J. Horning, and Y.M. Tan, “LCLint: A Tool for
Using Specifications to Check Code,” Proc. Second ACM SIGSOFT
Symp. Foundations of Software Eng., pp. 87-96, Dec. 1994.

[13] C. Flanagan, M.R.K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and
R. Stata, “Extended Static Checking for Java,” Proc. SIGPLAN ’02
Conf. Programming Language Design and Implementation, pp. 234-
245, June 2002.

[14] D. Freedman, R. Pisani, and R. Purves, Statistics, third ed.
W.W. Norton & Co., Sept. 1997.

[15] S. Hallem, B. Chelf, Y. Xie, and D.R. Engler, “A System and
Language for Building System-Specific, Static Analyses,” Proc.
ACM SIGPLAN 2002 Conf. Programming Language Design and
Implementation, pp. 69-82, June 2002.

[16] J.C. Huang, “Detection of Data Flow Anomaly through Program
Instrumentation,” IEEE Trans. Software Eng., vol. 5, no. 3, pp. 226-
236, May 1979.

[17] K. Kennedy, Program Flow Analysis: Theory and Applications.
S. Muchnick and N. Jones, eds., pp. 5-54, Prentice-Hall, 1981.

[18] J. Knoop, O. Rüthing, and B. Steffen, “Lazy Code Motion,” Proc.
SIGPLAN ’92 Conf. Programming Language Design and Implementa-
tion, pp. 224-234, June 1992.

[19] J. Knoop, O. Rüthing, and B. Steffen, “Partial Dead Code
Elimination,” Proc. SIGPLAN ’94 Conf. Programming Language
Design and Implementation, pp. 147-158, June 1994.

[20] E. Morel and C. Renvoise, “Global Optimization by Suppression
of Partial Redundancies,” Comm. ACM, vol. 22, no. 2, pp. 96-103,
Feb. 1979.

XIE AND ENGLER: USING REDUNDANCIES TO FIND ERRORS 927

8. One sample error in the GCC analysis is reported at http://
gcc.gnu.org/ml/gcc-prs/2003-03/msg01359.html.

9. Apparently, the parser was having trouble understanding the code
and did not get far enough to check the problem part of the program.

[21] E. Morel and C. Renvoise, Program Flow Analysis: Theory and
Applications. S. Muchnick and N. Jones, eds., pp. 160-188, Prentice-
Hall, 1981.

[22] L.J. Osterweil and L.D. Fosdick, “DAVE—A Validation Error
Detection and Documentation System for Fortran Programs,”
Software: Practice and Experience, vol. 6, no. 4, pp. 473-486, Dec.
1976.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.E.
Anderson, “Eraser: A Dynamic Data Race Detector for Multi-
threaded Programming,” ACM Trans. Computer Systems, vol. 15,
no. 4, pp. 391-411, Nov. 1997.

[24] N. Sterling, “WARLOCK—A Static Data Race Analysis Tool,”
Proc. USENIX Winter Technical Conf., pp. 97-106, Jan. 1993.

[25] D. Wagner, J. Foster, E. Brewer, and A. Aiken, “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities,”
Proc. 2000 Network and Distributed Systems Security Conf., Feb. 2000.

Yichen Xie is a PhD candidate in the Computer
Science Department at Stanford. He received
the BS degree in computer science from Yale in
2001, and the MS degree in computer science
from Stanford in 2003. His current research
interests include static program analysis and
software model checking.

Dawson Engler received the PhD degree from
the Massachusetts Institute Technology and his
undergraduate degree from the University of
Arizona. He is an assistant professor and Ter-
man fellow at Stanford. His past work has
ranged from extensible operating systems to
dynamic code generation. His current research
focuses on developing techniques to find as
many interesting software errors as possible.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 10, OCTOBER 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

