CS156: The Calculus of Computation Zohar Manna

Winter 2008

Chapter 11: Arrays

Page 1 of 55

Infinite Domain

We add an axiom schema to $T_{\rm A}$ that forbids interpretations with finite arrays.

For each positive natural number n, the following is an axiom:

$$\forall x_1, \ldots, x_n. \exists y. \bigwedge_{i=1}^n y \neq x_i$$

Arrays I: Quantifier-free Fragment of TA

Signature:

$$\Sigma_A:\ \{\cdot[\cdot],\ \cdot\langle\cdot \triangleleft \cdot\rangle,\ =\}$$

where

- a[i] binary function read array a at index i ("read(a,i)")
- a(i ⊲ v) ternary function write value v to index i of array a ("write(a,i,v)")

Axioms

- 1. the axioms of (reflexivity), (symmetry), and (transitivity) of $T_{\rm E}$
- 2. $\forall a, i, j. i = j \rightarrow a[i] = a[j]$ (array congruence) 3. $\forall a, v, i, j. i = j \rightarrow a\langle i \triangleleft v \rangle [j] = v$ (read-over-write 1) 4. $\forall a, v, i, i, i \neq i \rightarrow a\langle i \triangleleft v \rangle [i] = a[i]$ (read-over-write 2)

Equality in T_A

Note: = is only defined for array elements:

 $a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$

not T_A -valid, but

$$a[i] = e \rightarrow \forall j. a \langle i \triangleleft e \rangle [j] = a[j]$$
,

is TA-valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not TA-valid: We only axiomatized a restricted congruence.

 T_A is undecidable Quantifier-free fragment of T_A is decidable

Page 3 of 55

Page 2 of 55

Example: Quantifier-free fragment (QFF) of TA

ls

$$a[i] = e_1 \land e_1 \neq e_2 \rightarrow a\langle i \triangleleft e_2 \rangle[i] \neq a[i]$$

T_A-valid?

Alternatively, is

$$a[i] = e_1 \land e_1 \neq e_2 \land a(i \triangleleft e_2)[i] = a[i]$$

T_A-unsatisfiable?

Decision Procedure for T_A

Given quantifier-free conjunctive Σ_A -formula F. To decide the T_A -satisfiability of F:

Step 1

If F does not contain any write terms $a\langle i \triangleleft v \rangle$, then

- 1. associate array variables a with fresh function symbol f_a , and replace read terms a[i] with $f_a(i)$;
- 2. decide the T_E-satisfiability of the resulting formula.

Page 5 of 55

Decision Procedure for T_A

Step 2

Select some read-over-write term $a\langle i \triangleleft v \rangle[j]$ (note that a may itself be a write term) and split on two cases:

1. According to (read-over-write 1), replace

 $F[a\langle i \triangleleft v\rangle[j]] \quad \text{with} \quad F_1: \ F[v] \ \land \ i=j \ ,$

and recurse on ${\it F_1}.$ If ${\it F_1}$ is found to be ${\it T_A}\xspace$ -satisfiable, return satisfiable.

2. According to (read-over-write 2), replace

$$F[a\langle i \triangleleft v \rangle[j]]$$
 with $F_2: F[a[j]] \land i \neq j$.

and recurse on ${\it F}_2.$ If ${\it F}_2$ is found to be ${\it T}_A\text{-satisfiable},$ return satisfiable.

If both F_1 and F_2 are found to be T_A -unsatisfiable, return unsatisfiable. Page 7 of 55 Example

Consider Σ_A -formula

$$F: i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j] .$$

F contains a write term,

 $a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$.

According to (read-over-write 1), assume $i_2 = j$ and recurse on

$$\mathbb{F}_1: i_2 = j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_2 \neq a[j].$$

F1 does not contain any write terms, so rewrite it to

$$F'_1: \underbrace{i_2 = j \land i_1 = j \land i_1 \neq i_2}_{i_1 \neq i_2} \land f_a(j) = v_1 \land v_2 \neq f_a(j) .$$

Contradiction - F'_1 is TE-unsatisfiable.

Page 8 of 55

Page 6 of 55

Returning, we try the second case:

according to (read-over-write 2), assume $i_2 \neq j$ and recurse on

$$F_2: \ i_2 \neq j \ \land \ i_1 = j \ \land \ i_1 \neq i_2 \ \land \ a[j] = v_1 \ \land \ a\langle i_1 \triangleleft v_1 \rangle [j] \neq a[j]$$

 F_2 contains a write term. According to (read-over-write 1), assume $i_1=j$ and recurse on

 $F_3:\ i_1=j\ \land\ i_2\neq j\ \land\ i_1=j\ \land\ i_1\neq i_2\ \land\ a[j]=v_1\ \land\ v_1\neq a[j]\ .$

Contradiction. Thus, according to (read-over-write 2), assume $i_1 \neq j$ and recurse on

$$F_4: i_1 \neq j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a[j] \neq a[j] .$$

Contradiction: all branches have been tried, and thus ${\cal F}$ is ${\cal T}_{A^{-}}{\rm unsatisfiable}.$

<u>Question</u>: Suppose instead that *F* does not contain the literal $i_1 \neq i_2$. Is this new formula *T*_A-satisfiable?

Page 9 of 55

Example

We want to prove validity for a formula, such as:

 $(\forall i.a[i] \neq e) \land e \neq f \rightarrow (\forall i.a\langle j \triangleleft f \rangle [i] \neq e)$.

Equivalently show unsatisfiability of

 $(\forall i.a[i] \neq e) \land e \neq f \land (\exists i.a\langle j \triangleleft f\rangle[i] = e)$.

or the equisatisfiable formula

 $(\forall i.a[i] \neq e) \land e \neq f \land a(j \triangleleft f)[i] = e$.

We need to handle a universal quantifier.

Decision Procedure for Arrays

The quantifier free fragment of T_A is *decidable*. However *too weak* to express important properties:

- ▶ Containment: ∀i. ℓ ≤ i ≤ u ⇒ a[i] ≠ e
- Sortedness: ∀i, j. ℓ ≤ i ≤ j ≤ u ⇒ a[i] ≤ a[j]
- ▶ Partitioning: $\forall i, j. \ \ell_1 \leq i \leq u_1 \ \land \ \ell_2 \leq j \leq u_2 \implies a[i] \leq a[j]$

The general theory of arrays TA with quantifier is not decidable.

Is there a decidable fragment of \mathcal{T}_A that contains the above formulae?

Page 10 of 55

Arrays II: Array Property Fragment of TA

Decidable fragment of T_A that includes \forall quantifiers

 $\frac{\text{Array property}}{\Sigma_{\text{A}}\text{-formula of form}}$

$$\forall \overline{i}. \alpha[\overline{i}] \rightarrow \beta[\overline{i}]$$
,

where \overline{i} is a list of variables.

index guard α[i]:

 $\begin{array}{rcl} \mathsf{iguard} & \to & \mathsf{iguard} \land \mathsf{iguard} \mid \mathsf{iguard} \lor \mathsf{iguard} \mid \mathsf{atom} \\ \mathsf{atom} & \to & \mathsf{var} = \mathsf{var} \mid \mathsf{evar} \neq \mathsf{var} \mid \mathsf{var} \neq \mathsf{evar} \mid \top \\ \mathsf{var} & \to & \mathsf{evar} \mid \mathsf{uvar} \end{array}$

where *uvar* is any universally quantified index variable, and *evar* is any unquantified free variable.

Arrays II: Array Property Fragment of T_A (cont)

value constraint β[i]:

Any qff, but a universally quantified index can occur only in a read a[i], where a is an array term.

Array property Fragment:

Boolean combinations of quantifier-free $\boldsymbol{\Sigma}_A\text{-}\text{formulae}$ and array properties

<u>Note</u>: a[b[k]] for unquantified variable k is okay, but a[b[i]] for universally quantified variable i is forbidden. Cannot replace it by

$$\forall i, j. \ldots b[i] = j \land a[j] \ldots$$

In β , the universally quantified variable j may occur in a[j] but not in b[i] = j.

Example: Array Property Fragment

Is this formula in the array property fragment?

$$F: \forall i. i \neq a[k] \rightarrow a[i] = a[k]$$

The antecedent is not a legal index guard since a[k] is not a variable (neither a *uvar* nor an *evar*); however, by simple manipulation

$$F': v = a[k] \land \forall i. i \neq v \rightarrow a[i] = a[k]$$

Here, $i \neq v$ is a legal index guard, and a[i] = a[k] is a legal value constraint. F and F' are equisatisfiable. However, no manipulation works for:

$$G : \forall i. i \neq a[i] \rightarrow a[i] = a[k]$$
.

Thus, G is not in the array property fragment.

Page 14 of 55

Page 13 of 55

Array property fragment and extensionality

Array property fragment allows expressing equality between arrays (*extensionality*): two arrays are equal precisely when their corresponding elements are equal.

For given formula

$$F: \cdots \land a = b \land \cdots$$

with array terms a and b, rewrite F as

$$F': \cdots \land (\forall i. \top \rightarrow a[i] = b[i]) \land \cdots$$

F and F' are equisatisfiable.

Decision Procedure for Array Property Fragment

<u>Basic Idea</u>: Replace universal quantification $\forall i.F[i]$ by finite conjunction $F[t_1] \land \ldots \land F[t_n]$.

We call t_1, \ldots, t_n the index terms and they depend on the formula.

Example

Consider

$$F: a\langle i \triangleleft v \rangle = a \land a[i] \neq v ,$$

which expands to

 $F': \forall j. a \langle i \triangleleft v \rangle [j] = a[j] \land a[i] \neq v$.

Intuitively, to determine that F' is T_{A} -unsatisfiable requires merely examining index i:

$$F'': \left(\bigwedge_{j\in\{i\}} a\langle i\triangleleft v\rangle[j] = a[j]\right) \land a[i] \neq v$$

or simply

$$a\langle i \triangleleft v \rangle[i] = a[i] \land a[i] \neq v$$
.

Simplifying.

$$v = a[i] \land a[i] \neq v$$
,

it is clear that this formula, and thus F, is TA-unsatisfiable.

101 (B) (2) (2) (2) (2) (0) Page 17 of 55

Steps 4-6 accomplish the reduction of universal guantification to finite conjunction

Main idea: select a set of symbolic index terms on which to instantiate all universal quantifiers. The set is sufficient for correctness.

Step 4

From the output F_3 of Step 3, construct the index set I:

 $\mathcal{I} = \bigcup \{t : [t] \in F_3 \text{ such that } t \text{ is not a universally quantified variable} \}$

 \cup {t : t occurs as an *evar* in the parsing of index guards}

 $\cup \{\lambda\}$

This index set is the finite set of "symbolic indices" that need to be examined It includes

- all terms t that occur in some read a[t] anywhere in F₃ (unless it is a universally quantified variable); e.g., k in a[k].
- all terms t (unquantified variable) that are compared to a universally quantified variable in some index guard F[i]; e.g., k in i = k
- λ is a fresh constant that represents all other index positions that are not explicitly in I.

Page 19 of 55

The Algorithm

Given array property formula F, decide its TA-satisfiability by the following steps:

Step 1

Put E in NNE

Step 2

Apply the following rule exhaustively to remove writes:

$$\frac{G[a(i \triangleleft v)]}{G[a'] \land a'[i] = v \land (\forall j. \ j \neq i \ \rightarrow \ a[j] = a'[j])} \text{ for fresh } a' \quad (\text{write})$$

After an application of the rule, the resulting formula contains at least one fewer write terms than the given formula.

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists \overline{i}. G[\overline{i}]]}{F[G[\overline{j}]]} \text{ for fresh } \overline{j} \quad (\text{exists})$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 5 (Key step)

Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \overline{l}. \alpha[\overline{l}] \rightarrow \beta[\overline{l}]]}{H\left[\bigwedge_{\overline{l} \in \mathcal{I}^{n}} (\alpha[\overline{l}] \rightarrow \beta[\overline{l}])\right]} \quad \text{(forall)}$$

where *n* is the size of the list of quantified variables \overline{i} .

Step 6

From the output F_5 of Step 5, construct

$$F_6: F_5 \land \bigwedge_{t \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq t$$
.

The new conjuncts assert that the variable λ introduced in Step 4 is indeed unique.

Step 7

Decide the T_A -satisfiability of F_6 using the decision procedure for the quantifier-free fragment. Page 20 of 55

Page 18 of 55

$$F: a = b\langle i \triangleleft v \rangle \land a[i] \neq v$$

In array property fragment:

$$(\forall j. a[j] = b \langle i \triangleleft v \rangle [j]) \land a[i] \neq v$$

Eliminate write:

$$\begin{array}{l} (\forall j. \ a[j] = b'[j]) \\ \land \quad a[i] \neq v \\ \land \quad b'[i] = v \\ \land \quad (\forall j. \ j \neq i \rightarrow b'[j] = b[j]) \end{array}$$

Index set:

 $\mathcal{I}: \{i, \lambda\}$

Example: Extensional theory (Stump *et al.*, 2001) (cont) QF formula:

$$\begin{aligned} & a[i] = b'[i] \land a[\lambda] = b'[\lambda] \\ & \wedge a[i] \neq v \land b'[i] = v \\ & \wedge (i \neq i \rightarrow b'[i] = b[i]) \land (\lambda \neq i \rightarrow b'[\lambda] = b[\lambda]) \\ & \wedge \lambda \neq i \end{aligned}$$

Simplified:

$$\begin{array}{c} \hline a[i] = b'[i] & \land \ a[\lambda] = b'[\lambda] \\ \land & \hline a[i] \neq v & \land \ b'[i] = v \\ \land & b'[\lambda] = b[\lambda] \\ \land & \lambda \neq i \end{array}$$

Contradiction. So F is unsatisfiable.

Page 22 of 55

Page 21 of 55

Example

Is this $T_A^{=}$ -formula (arrays with extensionality) valid?

$$F: (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \rightarrow a\langle k \triangleleft v \rangle = b$$

Check unsatisfiability of TA-formula:

$$\neg((\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \rightarrow (\forall i. a \langle k \triangleleft v \rangle [i] = b[i]))$$

Step 1: NNF

$$F_1: (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \land (\exists i. a \langle k \triangleleft v \rangle [i] \neq b[i])$$

Step 2: Remove array writes

$$\begin{aligned} F_2 : (\forall i. \ i \neq k \ \rightarrow \ a[i] = b[i]) \ \land \ b[k] = v \ \land \ (\exists i. \ a'[i] \neq b[i]) \\ \land \ a'[k] = v \ \land \ (\forall i. \ i \neq k \ \rightarrow \ a'[i] = a[i]) \\ Page 23 \text{ of } 55 \end{aligned}$$

Example (cont)

Step 3: Remove existential quantifier

$$F_3: (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \land a'[j] \neq b[j]$$

$$\land a'[k] = v \land (\forall i. i \neq k \rightarrow a'[i] = a[i])$$

Page 24 of 55

Example (cont)

F

Step 4: Compute index set $\mathcal{I} = \{\lambda, k, j\}$ **Step 5+6**: Replace universal quantifier:

$$\begin{split} \mathfrak{f}_{5} : & (\lambda \neq k \rightarrow a[\lambda] = b[\lambda]) \\ & \wedge (k \neq k \rightarrow a[k] = b[\lambda]) \\ & \wedge (j \neq k \rightarrow a[j] = b[j]) \\ & \wedge [k] = v \wedge a'[j] \neq b[j] \wedge a'[k] = v \\ & \wedge (\lambda \neq k \rightarrow a'[\lambda] = a[\lambda]) \\ & \wedge (k \neq k \rightarrow a'[\lambda] = a[\lambda]) \\ & \wedge (j \neq k \rightarrow a'[j] = a[j]) \\ & \wedge \lambda \neq k \wedge \lambda \neq j \end{split}$$

Case distinction on j=k (4th line) and $j\neq k$ (3rd line, 4th line, and 7th line) proves unsatisfiability of $F_6.$ Therefore F is valid.

```
Page 25 of 55
```

The importance of λ (cont)

Without λ we had the formula:

$$F'_{6}: j \neq j \rightarrow a[j] = b[j]$$

$$\land k \neq j \rightarrow a[k] = b[k]$$

$$\land j \neq k \rightarrow a[j] \neq b[j]$$

$$\land k \neq k \rightarrow a[k] \neq b[k]$$

which simplifies to:

$$j \neq k \rightarrow a[k] = b[k] \wedge a[j] \neq b[j].$$

This formula F is satisfiable!

The importance of λ

Is this formula satisfiable?

$$F: (\forall i.i \neq j \rightarrow a[i] = b[i]) \land (\forall i.i \neq k \rightarrow a[i] \neq b[i])$$

The algorithm produces (for $\{\lambda, j, k\}$):

$$\begin{split} F_{6} &: \lambda \neq j \rightarrow \mathbf{a}[\lambda] = b[\lambda] \\ &\wedge j \neq j \rightarrow \mathbf{a}[j] = b[j] \\ &\wedge k \neq j \rightarrow \mathbf{a}[k] = b[k] \\ &\wedge \lambda \neq k \rightarrow \mathbf{a}[\lambda] \neq b[\lambda] \\ &\wedge j \neq k \rightarrow \mathbf{a}[\lambda] \neq b[\lambda] \\ &\wedge k \neq k \rightarrow \mathbf{a}[k] \neq b[k] \\ &\wedge \lambda \neq k \wedge \mathbf{a}[k] \neq b[k] \\ &\wedge \lambda \neq j \wedge \lambda \neq k \end{split}$$

The 1st, 4th and last lines give a contradiction! F is unsatisfiable.

Page 26 of 55

Example

Consider array property formula

$$F : a\langle \ell \triangleleft v \rangle[k] = b[k] \land b[k] \neq v \land a[k] = v$$
$$\land \underbrace{(\forall i. i \neq \ell \rightarrow a[i] = b[i])}_{\text{array property}}$$

By Step 2, rewrite F as

$$\begin{split} F_2: & a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i. \ i \neq \ell \ \rightarrow \ a[i] = b[i]) \\ & \land \ a'[\ell] = v \land (\forall j. \ j \neq \ell \ \rightarrow \ a[j] = a'[j]) \end{split}$$

 F_2 does not contain any existential quantifiers. Its index set is

 $\mathcal{I} = \{\lambda, k, \ell\} .$

Example (cont)

Thus, by Step 5, replace universal quantification (and step 6):

$$\begin{aligned} \mathbf{a}'[k] &= b[k] \land b[k] \neq \mathbf{v} \land \mathbf{a}[k] = \mathbf{v} \land \bigwedge_{i \in \mathcal{I}} (i \neq \ell \to a[i] = b[i] \\ F_6 : \land \mathbf{a}'[\ell] = \mathbf{v} \land \bigwedge_{j \in \mathcal{I}} (j \neq \ell \to a[j] = \mathbf{a}'[j]) \\ \land \lambda \neq k \land \lambda \neq \ell \end{aligned}$$

Expanding produces

$$\begin{aligned} \mathbf{a}'[k] &= \mathbf{b}[k] \land \mathbf{b}[k] \neq \mathbf{v} \land \mathbf{a}[k] = \mathbf{v} \\ \land (\lambda \neq \ell \to a[\lambda] = \mathbf{b}[\lambda]) \\ \land (k \neq \ell \to a[k] = \mathbf{b}[\lambda]) \\ \land (k \neq \ell \to a[k] = \mathbf{b}[\ell]) \\ \land \mathbf{a}'[\ell] = \mathbf{v} \\ \land (\lambda \neq \ell \to a[\lambda] = \mathbf{a}'[\lambda]) \\ \land (k \neq \ell \to a[k] = \mathbf{a}'[k]) \land (\ell \neq \ell \to a[\ell] = \mathbf{a}'[\ell]) \\ \land \lambda \neq k \land \lambda \neq \ell \end{aligned}$$

Correctness of Decision Procedure

Theorem

Consider a Σ_A -formula F from the array property fragment of $T_A.$ The output F_6 of Step 6 of the algorithm is T_A -equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with signature Σ for the elements:

Theorem

Consider a $\Sigma_A \cup \Sigma$ -formula F from the array property fragment of $T_A \cup T$. The output F_6 of Step 6 of the algorithm is $T_A \cup T$ -equisatisfiable to F.

Example (cont)

Simplifying,

$$\begin{split} a'[k] &= b[k] \land b[k] \neq v \land a[k] = v \\ \land a[\lambda] &= b[\lambda] \land (k \neq \ell \rightarrow a[k] = b[k]) \\ F''_0 : \land a'[\ell] = v \\ \land a[\lambda] = a'[\lambda] \land (k \neq \ell \rightarrow a[k] = a'[k]) \\ \land \lambda \neq k \land \lambda \neq \ell \end{split}$$

There are two cases to consider.

- ▶ If $k = \ell$, then $a'[\ell] = v$ (3rd line) and a'[k] = b[k] (1st line) imply b[k] = v, yet $b[k] \neq v$.
- ▶ If $k \neq \ell$, then a[k] = v (1st line) and a[k] = b[k] (2nd line) imply b[k] = v, but again $b[k] \neq v$.

Hence, F_6'' is T_{A} -unsatisfiable, indicating that F_6 is T_{A} -unsatisfiable. Page 30 of 55

Nelson-Oppen Combination Method

Given

- Theories T₁,..., T_k that share only = (and are stably infinite)
- Decision procedures P₁,..., P_k
- ▶ Quantifier-free (Σ₁ ∪ · · · ∪ Σ_k)-formula F

Decide if F is $(T_1 \cup \cdots \cup T_k)$ -satisfiable using P_1, \ldots, P_k .

Think about arrays in context of Nelson-Oppen.

History

- \blacktriangleright 1962: John McCarthy formalizes arrays as first-order theory $T_{\rm A}.$
- \blacktriangleright 1969: James King describes and implements DP for QFF of $T_{\rm A}.$
- 1979: Nelson & Oppen describe combination method for QF theories sharing =.
- 1980s: Suzuki, Jefferson; Jaffar; Mateti describe DPs for QFF of theories of arrays with predicates for sorted, partitioned, etc.
- ▶ 1997: Levitt describes DP for QFF of extensional theory of arrays in thesis.
- 2001: Stump, Barrett, Dill, Levitt describe DP for QFF of extensional theory of arrays.
- \blacktriangleright 2006: Bradley, Manna, Sipma describe DP for array property fragment of $T_{\rm A},~T_{\rm A}^Z.$

Page 33 of 55

Array Property Fragment of $T_A^{\mathbb{Z}}$

Array property: $\Sigma_A^{\mathbb{Z}}\text{-}\mathsf{formula}$ of the form

$$\forall \overline{i}. \alpha[\overline{i}] \rightarrow \beta[\overline{i}]$$

where \overline{i} is a list of integer variables.

α[i] index guard:

 $\begin{array}{rcl} \text{iguard} & \to & \text{iguard} \land \text{iguard} \mid \text{iguard} \lor \text{iguard} \mid \text{atom} \\ \text{atom} & \to & \text{expr} \land \text{expr} \mid \text{expr} \\ \text{expr} & \to & \text{uvar} \mid \text{pexpr} \\ \text{pexpr} & \to & \text{pexpr}' \\ \text{pexpr}' & \to \mathbb{Z} \mid \mathbb{Z} \cdot \text{evar} \mid \text{pexpr}' + \text{pexpr}' \end{array}$

where *uvar* is any universally quantified integer variable, and *evar* is any unquantified free integer variable.

Arrays III: Theory of Integer-Indexed Arrays $T_A^{\mathbb{Z}}$

Signature:

$$\Sigma_{A}^{\mathbb{Z}}: \Sigma_{A} \cup \Sigma_{\mathbb{Z}} = \{a[i], a \langle i \triangleleft v \rangle, =, 0, 1, +, \leq \}$$

 \leq enables reasoning about subarrays and properties such as whether the subarray is sorted or partitioned.

Axioms of $T_A^{\mathbb{Z}}$: both axioms of T_A and $T_{\mathbb{Z}}$

Page 34 of 55

Array Property Fragment of $T_A^{\mathbb{Z}}$ (cont)

 value constraint β[i]: Any qff, but a universally quantified index can occur only in a read a[i], where a is an array term.

Array property Fragment (APF):

Boolean combinations of quantifier-free $\Sigma_A^{\mathbb{Z}}\text{-}\mathsf{formulae}$ and array properties

<u>Note</u>: a[b[k]] for unquantified variable k is okay, but a[b[i]] for universally quantified variable i is forbidden.

Page 36 of 55

Application: array property fragments

Array equality a = b in T_A:

 $\forall i. \ a[i] = b[i]$

▶ Bounded array equality beq(a, b, ℓ, u) in T^Z_A:

$$\forall i. \ \ell \leq i \leq u \rightarrow a[i] = b[i]$$

Universal properties F[x] in T_A:

∀i. F[a[i]]

▶ Bounded universal properties F[x] in T^Z_A:

$$\forall i. \ \ell \leq i \leq u \rightarrow F[a[i]]$$

• Bounded sorted arrays sorted (a, ℓ, u) in $T_A^{\mathbb{Z}}$ or $T_A^{\mathbb{Z}} \cup T_{\mathbb{Q}}$:

$$\forall i, j. \ \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]$$

- Partitioned arrays partitioned(a, ℓ₁, u₁, ℓ₂, u₂) in T^Z_A or T^Z_A ∪ T_Q:
 - $\forall i,j. \ \ell_1 \leq i \leq u_1 < \ell_2 \leq j \leq u_2 \implies a[i] \leq a[j] \implies large 37 \text{ of } 55$

The Decision Procedure (Step 3-4)

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists \overline{i}. G[\overline{i}]]}{F[G[\overline{j}]]} \text{ for fresh } \overline{j} \quad (\text{exists})$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 4

From the output of Step 3, F_3 , construct the index set \mathcal{I} :

 $\mathcal{I} = \bigcup_{i=1}^{n} \{t : \cdot [t] \in F_3 \text{ such that } t \text{ is not a universally quantified variable} \}$

If $\mathcal{I} = \emptyset$, then let $\mathcal{I} = \{0\}$. The index set contains all relevant symbolic indices that occur in F_3 . <u>Note</u>: no λ_2^{h} , $\mathcal{J}_{0,0}^{h}$, $\mathcal{$

The Decision Procedure (Step 1-2)

The idea again is to reduce universal quantification to finite conjunction.

Given F from the array property fragment of $T_A^{\mathbb{Z}}$, decide its $T_A^{\mathbb{Z}}$ -satisfiability as follows:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

$$\frac{G[a\langle i \triangleleft e\rangle]}{G[a'] \land a'[i] = e \land (\forall j. j \neq i \rightarrow a[j] = a'[j])} \text{ for fresh } a' \quad (\text{write})$$

To meet the syntactic requirements on an index guard, rewrite the third conjunct as

$$(j, j \leq i-1 \lor i+1 \leq j \to a[j] = a'[j].$$
Page 38 of 55

The Decision Procedure (Step 5-6)

Step 5

Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \overline{i}. F[\overline{i}] \rightarrow G[\overline{i}]]}{H\left[\bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \rightarrow G[\overline{i}])\right]} \quad \text{(forall)}$$

n is the size of the block of universal quantifiers over \overline{i} .

Step 6

 F_5 is quantifier-free in the combination theory $T_A \cup T_{\mathbb{Z}}$. Decide the $(T_A \cup T_{\mathbb{Z}})$ -satisfiability of the resulting formula.

Page 40 of 55

Example

 $\Sigma^{\mathbb{Z}}_A$ -formula:

$$\begin{array}{ll} {\sf F}: & \begin{pmatrix} \forall i. \ \ell \leq i \leq u \ \rightarrow \ {\sf a}[i] = {\sf b}[i] \end{pmatrix} \\ & \wedge \neg (\forall i. \ \ell \leq i \leq u+1 \ \rightarrow \ {\sf a}\langle u+1 \triangleleft {\sf b}[u+1] \rangle [i] = {\sf b}[i] \end{pmatrix} \end{array}$$

In NNF, we have

$$F_1: \begin{array}{l} (\forall i. \ \ell \leq i \leq u \ \rightarrow \ a[i] = b[i]) \\ \land \ (\exists i. \ \ell \leq i \leq u + 1 \ \land \ a\langle u + 1 \triangleleft b[u + 1]\rangle[i] \neq b[i]) \end{array}$$

Step 2 produces

Step 5 rewrites universal quantification to finite conjunction over this set:

$$\begin{array}{l} \bigwedge_{\substack{i \in \mathcal{I} \\ i \in \mathcal{I} \\ \wedge i = \mathcal{I$$

Expanding the conjunctions according to the index set \mathcal{I} and simplifying according to trivially true or false antecedents (e.g., $\ell \leq u+1 \leq u$ simplifies to \bot , while $u \leq u \lor u+2 \leq u$ simplifies to \top) produces:

Page 43 of 55

Step 3 removes the existential quantifier by introducing a fresh constant k:

$$\begin{array}{ll} (\forall i. \ \ell \leq i \leq u \ \rightarrow \ a[i] = b[i]) \\ F_3: & \land \ \ell \leq k \leq u+1 \ \land \ a'[k] \neq b[k] \\ & \land \ a'[u+1] = b[u+1] \\ & \land \ (\forall j. \ j \leq u \ \lor \ u+2 \leq j \ \rightarrow \ a[j] = a'[j]) \end{array}$$

The index set is

$$\mathcal{I} = \{k, u+1\} \cup \{\ell, u, u+2\}$$
,

which includes the read indices k and u+1 and the terms $\ell,\ u,$ and u+2 that occur as pexprs in the index guards.

```
Page 42 of 55
```

$$\begin{array}{l} (\ell \leq k \leq u \to a[k] = b[k]) & (1) \\ \land (\ell \leq u \to a[\ell] = b[\ell] \land a[u] = b[u]) & (2) \\ \land \ell \leq k \leq u+1 & (3) \\ F'_5 : \land a'[k] \neq b[k] & (4) \\ \land a'[u+1] = b[u+1] & (5) \\ \land (k \leq u \lor u+2 \leq k \to a[k] = a'[k]) & (6) \\ \land (\ell \leq u \lor u+2 \leq \ell \to a[\ell] = a'[\ell]) & (7) \\ \land a[u] = a'[u] \land a[u+2] = a'[u+2] & (8) \end{array}$$

 $(T_A \cup T_Z)$ -unsatisfiability of this quantifier-free $(\Sigma_A \cup \Sigma_Z)$ -formula can be decided using the techniques of Combination of Theories. Informally, $\ell \le k \le u+1$ (3)

- ▶ If $k \in [\ell, u]$ then a[k] = b[k] (1). Since $k \le u$ then a[k] = a'[k] (6), contradicting $a'[k] \neq b[k]$ (4).
- if k = u + 1, $a'[k] \neq b[k] = b[u + 1] = a'[u + 1] = a'[k]$ by (4) and (5), a contradiction.

Hence, F is $T_A^{\mathbb{Z}}$ -unsatisfiable.

Page 44 of 55

Correctness of Decision Procedure

Theorem

Consider a $\Sigma^{\mathbb{Z}}_A \cup \Sigma$ -formula F from the array property fragment of $T^{\mathbb{Z}}_A \cup T$.

The output F5 of Step 5 of the algorithm is $T_A^{\mathbb{Z}} \cup$ T-equisatisfiable to F.

Example

$$\mathsf{sorted}(a, \ell, u): \ \forall i, j. \ \ell \leq i \leq j \leq u \ \rightarrow \ a[i] \leq a[j]$$

ls

 $sorted(a(0 \triangleleft 0)(5 \triangleleft 1), 0, 5) \land sorted(a(0 \triangleleft 10)(5 \triangleleft 11), 0, 5)$

 $T_A^{\mathbb{Z}}$ -satisfiable?

10	w	x	y	z	11

Page 46 of 55

Page 45 of 55

Example

```
sorted(a\langle 0 \triangleleft 0 \rangle \langle 5 \triangleleft 1 \rangle, 0, 5) \land sorted(a\langle 0 \triangleleft 10 \rangle \langle 5 \triangleleft 11 \rangle, 0, 5)
```

Index set: $\{-1, 0, 1, 4, 5, 6\}$

- ▶ $\{0,5\}$ from $0 \le i \le j \le 5$
- $\blacktriangleright~\{-1,1\}$ from $\cdot \langle 0 \triangleleft \cdot \rangle$
- \blacktriangleright {4,6} from $\cdot \langle 5 \triangleleft \cdot \rangle$

Contradiction:

$$a[0] \le a[1] \le a[5] \land a[0] \le a[1] \le a[5]$$

 $0 \le a[1] \le 1 \land 10 \le a[1] \le 11$

Need 1 or 4 in index set.

Undecidable Extensions

- ► Extra quantifier alternation (e.g., ∀i∃j. · · ·)
- ▶ Nested reads: a[a[i]]
- ▶ No separation: ∀i. F[a[i], i] (e.g., a[i] = i)
- Arithmetic: a[i + 1] when i is universal
- Strict comparison: i < j when i, j are universal</p>
- Permutation predicate (even weak permutation)

Theory of Sets

Consider a theory T_{set} of sets with signature

$$\Sigma_{set}: \{\in,\ \subseteq,\ =,\ \subset,\ \cap,\ \cup,\ \backslash\}\ ,$$

where symbols are intended as follows:

- ▶ e ∈ s: e is a member of s;
- s ⊆ t: s is a subset of t;
- s = t: s and t are equal;
- s ⊂ t: s is a strict subset of t;
- s ∩ t is the intersection of s and t;
- s ∪ t is the union of s and t;
- ► s \ t, the set difference of s and t, is the set that includes all elements of s that are not members of t.

Theory of Sets (cont)

Let us encode an arbitrary Σ_{set} -formula as a Σ_E -formula (or a Σ_A -formula). To do so, simply consider the atoms:

▶ $e \in s$: let $s(\cdot)$ be a unary predicate; then replace

 $e \in s$ by s(e)

- ▶ $s \subseteq t$: $\forall e. e \in s \rightarrow e \in t$, or in other words, $\forall e. s(e) \rightarrow t(e)$;
- ▶ s = t: $\forall e. s(e) \leftrightarrow t(e)$;
- ▶ $s \subset t$: $s \subseteq t \land s \neq t$;
- ▶ $u = s \cap t$: $\forall e. \ u(e) \leftrightarrow s(e) \land t(e)$;
- ▶ $u = s \cup t$: $\forall e. u(e) \leftrightarrow s(e) \lor t(e)$;
- ▶ $u = s \setminus t$: $\forall e. u(e) \leftrightarrow s(e) \land \neg t(e)$.

Page 49 of 55

Theory of Sets (cont)

Atoms with complex terms can be written more simply via "flattening" (as in the Nelson-Oppen procedure); for example, write

 $s \cap (t \cap u)$ as $s \cap w \land w = t \cap u$.

Then the encodability of an arbitrary Σ_{set} -formula into a Σ_{E} -formula (or a Σ_{A} -formula) follows by structural induction.

<u>Claim</u>

Satisfiability of the quantifier-free fragment of T_{set} is decidable:

▶ simply apply the decision procedure for T_E (or T_A) to the new formula.

Theory of Multisets

Consider a theory T_{mset} of multisets with signature

$$\Sigma_{mset}$$
: { C , \leq , =, <, \uplus , \cap , -}.

Multisets can have multiple occurrences of elements.

For example: $\{1,3,5\}$ is a set and $\{1,1,3,5,5,5\}$ is a multiset. The symbols are intended as follows:

- C(s, e): the number of occurrences (the "count") of e in s;
- ▶ s ≤ t: the count of each element of s is bounded by its count in t;
- s = t: element counts are the same in s and t;
- s < t: the count of each element of s is bounded by its count in t, and some element has a lower count;
- S ⊎ t is the multiset union, whose counts are the element-wise sums of counts in s and t;

101 (B) (S) (S) (S) (B) (O)

Page 50 of 55

Theory of Multisets (cont)

- s ∩ t is the multiset intersection, whose counts are the element-wise minima of counts in s and t;
- S − t is the multiset difference, whose counts are the element-wise maxima of 0 and the difference of counts in s and t.

Let us encode an arbitrary Σ_{mset} -formula as a $(\Sigma_E\cup\Sigma_{\mathbb{Z}})$ -formula (or a $(\Sigma_A\cup\Sigma_{\mathbb{Z}})$ -formula). A multiset is modeled by an uninterpreted function whose range is the nonnegative integers.

Theory of Multisets (cont)

Now consider the atoms:

▶ C(s, e): let s be a unary function whose range is \mathbb{N} ; then replace

$$(s(e) \ge t(e) \land u(e) = t(e));$$

Page 54 of 55

Page 53 of 55

Theory of Multisets (cont)

 $\forall e. \ (s(e) < t(e) \land u(e) = 0) \lor \\ (s(e) \ge t(e) \land u(e) = s(e) - t(e)) .$

As before, encodability follows by structural induction.