Arrays I: Quantifier-free Fragment of T_{A}

CS156: The Calculus of Computation

Zohar Manna
Winter 2008

Chapter 11: Arrays

Signature:

$$
\Sigma_{\mathrm{A}}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}
$$

where

- a[i] binary function read array a at index $i($ "read (a, i) ")
- $a\langle i \triangleleft v\rangle$ ternary function write value v to index i of array a ("write (a, i, v) ")

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
2. $\forall a, i, j . i=j \rightarrow a[i]=a[j] \quad$ (array congruence)
3. $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v \quad$ (read-over-write 1)
4. $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j] \quad$ (read-over-write 2)

Infinite Domain

We add an axiom schema to T_{A} that forbids interpretations with finite arrays.

For each positive natural number n, the following is an axiom:

$$
\forall x_{1}, \ldots, x_{n} . \exists y . \bigwedge_{i=1}^{n} y \neq x_{i}
$$

Equality in T_{A}
Note: $=$ is only defined for array elements:

$$
a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

not T_{A}-valid, but

$$
a[i]=e \rightarrow \forall j . a\langle i \triangleleft e\rangle[j]=a[j],
$$

is T_{A}-valid.

Also

$$
a=b \rightarrow a[i]=b[i]
$$

is not T_{A}-valid: We only axiomatized a restricted congruence.
T_{A} is undecidable
Quantifier-free fragment of T_{A} is decidable

Example: Quantifier-free fragment (QFF) of T_{A}
Is

$$
a[i]=e_{1} \wedge e_{1} \neq e_{2} \rightarrow a\left\langle i \triangleleft e_{2}\right\rangle[i] \neq a[i]
$$

T_{A}-valid?
Alternatively, is

$$
a[i]=e_{1} \wedge e_{1} \neq e_{2} \wedge a\left\langle i \triangleleft e_{2}\right\rangle[i]=a[i]
$$

T_{A}-unsatisfiable?

Decision Procedure for T_{A}

Given quantifier-free conjunctive Σ_{A}-formula F.
To decide the T_{A}-satisfiability of F :

Step 1

If F does not contain any write terms $a\langle i \triangleleft v\rangle$, then

1. associate array variables a with fresh function symbol f_{a}, and replace read terms $a[i]$ with $f_{a}(i)$;
2. decide the T_{E}-satisfiability of the resulting formula.

Decision Procedure for T_{A}

Step 2

Select some read-over-write term $a\langle i \triangleleft v\rangle[j]$ (note that a may itself be a write term) and split on two cases:

1. According to (read-over-write 1), replace

$$
F[a\langle i \triangleleft v\rangle[j]] \quad \text { with } \quad F_{1}: F[v] \wedge i=j
$$

and recurse on F_{1}. If F_{1} is found to be T_{A}-satisfiable, return satisfiable.
2. According to (read-over-write 2), replace

$$
F[a\langle i \triangleleft v\rangle[j]] \quad \text { with } \quad F_{2}: F[a[j]] \wedge i \neq j
$$

and recurse on F_{2}. If F_{2} is found to be T_{A}-satisfiable, return satisfiable.
If both F_{1} and F_{2} are found to be T_{A}-unsatisfiable, return unsatisfiable.

Returning, we try the second case:
according to (read-over-write 2), assume $i_{2} \neq j$ and recurse on
$F_{2}: i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a\left\langle i_{1} \triangleleft v_{1}\right\rangle[j] \neq a[j]$.
F_{2} contains a write term. According to (read-over-write 1), assume $i_{1}=j$ and recurse on
$F_{3}: i_{1}=j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge \underbrace{a[j]=v_{1} \wedge v_{1} \neq a[j]}$.
Contradiction. Thus, according to (read-over-write 2),
assume $i_{1} \neq j$ and recurse on
$F_{4}: \quad i_{1} \neq j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge \underbrace{a[j] \neq a[j]}$.
Contradiction: all branches have been tried, and thus F is
$T_{A \text {-unsatisfiable. }}$
Question: Suppose instead that F does not contain the literal $\overline{i_{1} \neq i_{2}}$. Is this new formula T_{A}-satisfiable?

Is there a decidable fragment of T_{A} that contains the above formulae?

Decision Procedure for Arrays

The quantifier free fragment of T_{A} is decidable.
However too weak to express important properties:

- Containment: $\forall i . \ell \leq i \leq u \Longrightarrow a[i] \neq e$
- Sortedness: $\forall i, j . \ell \leq i \leq j \leq u \Longrightarrow a[i] \leq a[j]$
- Partitioning: $\forall i, j . \ell_{1} \leq i \leq u_{1} \wedge \ell_{2} \leq j \leq u_{2} \Longrightarrow a[i] \leq a[j]$

The general theory of arrays T_{A} with quantifier is not decidable.

Example

We want to prove validity for a formula, such as:

$$
(\forall i . a[i] \neq e) \wedge e \neq f \rightarrow(\forall i . a(j \triangleleft f\rangle[i] \neq e) .
$$

Equivalently show unsatisfiability of

$$
(\forall i . a[i] \neq e) \wedge e \neq f \wedge(\exists i . a(j \triangleleft f\rangle[i]=e) .
$$

or the equisatisfiable formula

$$
(\forall i . a[i] \neq e) \wedge e \neq f \wedge a\langle j \triangleleft f\rangle[i]=e .
$$

We need to handle a universal quantifier.

Arrays II: Array Property Fragment of T_{A} (cont)

- value constraint $\beta[\bar{i}]$:

Any qff, but a universally quantified index can occur only in a read $a[i]$, where a is an array term.

Array property Fragment:
Boolean combinations of quantifier-free Σ_{A}-formulae and array properties

Note: $a[b[k]]$ for unquantified variable k is okay, but $a[b[i]]$ for universally quantified variable i is forbidden. Cannot replace it by

$$
\forall i, j . \ldots b[i]=j \wedge a[j] \ldots
$$

In β, the universally quantified variable j may occur in $a[j]$ but not in $b[i]=j$.

Array property fragment and extensionality

Array property fragment allows expressing equality between arrays (extensionality): two arrays are equal precisely when their corresponding elements are equal.

For given formula

$$
F: \cdots \wedge a=b \wedge \cdots
$$

with array terms a and b, rewrite F as

$$
F^{\prime}: \cdots \wedge(\forall i . T \rightarrow a[i]=b[i]) \wedge \cdots
$$

F and F^{\prime} are equisatisfiable.

Example: Array Property Fragment

Is this formula in the array property fragment?

$$
F: \forall i . i \neq a[k] \rightarrow a[i]=a[k]
$$

The antecedent is not a legal index guard since $a[k]$ is not a variable (neither a uvar nor an evar); however, by simple manipulation

$$
F^{\prime}: v=a[k] \wedge \forall i . i \neq v \rightarrow a[i]=a[k]
$$

Here, $i \neq v$ is a legal index guard, and $a[i]=a[k]$ is a legal value constraint. F and F^{\prime} are equisatisfiable.
However, no manipulation works for:

$$
G: \forall i . i \neq a[i] \rightarrow a[i]=a[k]
$$

Thus, G is not in the array property fragment.

Decision Procedure for Array Property Fragment

Basic Idea: Replace universal quantification $\forall i . F[i]$ by finite conjunction $F\left[t_{1}\right] \wedge \ldots \wedge F\left[t_{n}\right]$.

We call t_{1}, \ldots, t_{n} the index terms and they depend on the formula.

Example

Consider

$$
F: a\langle i \triangleleft v\rangle=a \wedge a[i] \neq v,
$$

which expands to

$$
F^{\prime}: \forall j . a\langle i \triangleleft v\rangle[j]=a[j] \wedge a[i] \neq v .
$$

Intuitively, to determine that F^{\prime} is T_{A}-unsatisfiable requires merely examining index i :

$$
F^{\prime \prime}:\left(\bigwedge_{j \in\{i\}} a\langle i \triangleleft v\rangle[j]=a[j]\right) \wedge a[i] \neq v,
$$

or simply

$$
a\langle i \triangleleft v\rangle[i]=a[i] \wedge a[i] \neq v .
$$

Simplifying,

$$
v=a[i] \wedge a[i] \neq v,
$$

it is clear that this formula, and thus F, is T_{A}-unsatisfiable.

Page 17 of 55

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.
Main idea: select a set of symbolic index terms on which to instantiate all universal quantifiers. The set is sufficient for correctness.

Step 4

From the output F_{3} of Step 3, construct the index set \mathcal{I} :
$\mathcal{I}=U\left\{t: \cdot[t] \in F_{3}\right.$ such that t is not a universally quantified variable $\}$
$\cup\{t: t$ occurs as an evar in the parsing of index guards $\}$
$\cup\{\lambda\}$
This index set is the finite set of "symbolic indices" that need to be examined. It includes

- all terms t that occur in some read $a[t]$ anywhere in F_{3} (unless it is a universally quantified variable); e.g., k in $a[k]$.
- all terms t (unquantified variable) that are compared to a universally quantified variable in some index guard $F[i]$; e.g., k in $i=k$.
- λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I}.

The Algorithm

Given array property formula F, decide its T_{A}-satisfiability by the following steps:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:
$\frac{G[a\langle i \triangleleft v\rangle]}{G\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)}$ for fresh $a^{\prime} \quad$ (write)
After an application of the rule, the resulting formula contains at least one fewer write terms than the given formula.

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists \bar{i} . G[\bar{i}]]}{F[G[\bar{j}]]} \text { for fresh } \bar{j} \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

$$
\begin{equation*}
\frac{H[\forall \bar{i} \cdot \alpha[\bar{i}] \rightarrow \beta[\bar{i}]]}{\left.H \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(\alpha[\bar{i}] \rightarrow \beta[\bar{i}])\right]} \tag{forall}
\end{equation*}
$$

where n is the size of the list of quantified variables \bar{i}.

Step 6

From the output F_{5} of Step 5, construct

$$
F_{6}: F_{5} \wedge \bigwedge_{t \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq t
$$

The new conjuncts assert that the variable λ introduced in Step 4 is indeed unique.

Step 7

Decide the T_{A}-satisfiability of F_{6} using the decision procedure for the quantifier-free fragment. Page 20 of 55

Example: Extensional theory (Stump et al., 2001)

$$
F: a=b\langle i \triangleleft v\rangle \wedge a[i] \neq v
$$

In array property fragment:

$$
(\forall j . a[j]=b\langle i \triangleleft v\rangle[j]) \wedge a[i] \neq v
$$

Eliminate write:

$$
\begin{array}{ll}
& \left(\forall j . a[j]=b^{\prime}[j]\right) \\
\wedge & a[i] \neq v \\
\wedge & b^{\prime}[i]=v \\
\wedge & \left(\forall j . j \neq i \rightarrow b^{\prime}[j]=b[j]\right)
\end{array}
$$

Index set:

$$
\mathcal{I}:\{i, \lambda\}
$$

Example

Is this $T_{\mathrm{A}}^{=}$-formula (arrays with extensionality) valid?

$$
F:(\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \rightarrow a\langle k \triangleleft v\rangle=b
$$

Check unsatisfiability of T_{A}-formula:
$\neg((\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \rightarrow(\forall i . a\langle k \triangleleft v\rangle[i]=b[i]))$

Step 1: NNF
$F_{1}:(\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge(\exists i . a\langle k \triangleleft v\rangle[i] \neq b[i])$
Step 2: Remove array writes

$$
\begin{aligned}
F_{2}: & (\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge\left(\exists i . a^{\prime}[i] \neq b[i]\right) \\
& \wedge a^{\prime}[k]=v \wedge\left(\forall i . i \neq k \rightarrow a^{\prime}[i]=a[i]\right)
\end{aligned}
$$

Example: Extensional theory (Stump et al., 2001) (cont) QF formula:

$$
\begin{array}{ll}
& a[i]=b^{\prime}[i] \wedge a[\lambda]=b^{\prime}[\lambda] \\
\wedge & a[i] \neq v \wedge b^{\prime}[i]=v \\
\wedge & \left(i \neq i \rightarrow b^{\prime}[i]=b[i]\right) \wedge\left(\lambda \neq i \rightarrow b^{\prime}[\lambda]=b[\lambda]\right) \\
\wedge & \lambda \neq i
\end{array}
$$

Simplified:

$$
\begin{aligned}
& a[i]=b^{\prime}[i] \\
& \wedge a[\lambda]=b^{\prime}[\lambda] \\
& \wedge a[i] \neq v \\
& \wedge b^{\prime}[\lambda]=b[\lambda] \\
& \wedge \lambda \neq i
\end{aligned}
$$

Contradiction. So F is unsatisfiable.

Example (cont)
Step 3: Remove existential quantifier

$$
\begin{aligned}
F_{3}: & (\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge a^{\prime}[j] \neq b[j] \\
& \wedge a^{\prime}[k]=v \wedge\left(\forall i . i \neq k \rightarrow a^{\prime}[i]=a[i]\right)
\end{aligned}
$$

Example (cont)

Step 4: Compute index set $\mathcal{I}=\{\lambda, k, j\}$
Step 5+6: Replace universal quantifier:

$$
\begin{aligned}
F_{6}: & (\lambda \neq k \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq k \rightarrow a[k]=b[k]) \\
& \wedge(j \neq k \rightarrow a[j]=b[j]) \\
& \wedge b[k]=v \wedge a^{\prime}[j] \neq b[j] \wedge a^{\prime}[k]=v \\
& \wedge\left(\lambda \neq k \rightarrow a^{\prime}[\lambda]=a[\lambda]\right) \\
& \wedge\left(k \neq k \rightarrow a^{\prime}[k]=a[k]\right) \\
& \wedge\left(j \neq k \rightarrow a^{\prime}[j]=a[j]\right) \\
& \wedge \lambda \neq k \wedge \lambda \neq j
\end{aligned}
$$

Case distinction on $j=k$ (4th line) and $j \neq k$ (3rd line, 4th line, and 7 th line) proves unsatisfiability of F_{6}.
Therefore F is valid.

The importance of λ (cont)
Without λ we had the formula:

$$
\begin{aligned}
F_{6}^{\prime}: & j \neq j \rightarrow a[j]=b[j] \\
& \wedge k \neq j \rightarrow a[k]=b[k] \\
& \wedge j \neq k \rightarrow a[j] \neq b[j] \\
& \wedge k \neq k \rightarrow a[k] \neq b[k]
\end{aligned}
$$

which simplifies to:

$$
j \neq k \rightarrow a[k]=b[k] \wedge a[j] \neq b[j]
$$

This formula F is satisfiable!

The importance of λ
Is this formula satisfiable?

$$
F:(\forall i . i \neq j \rightarrow a[i]=b[i]) \wedge(\forall i . i \neq k \rightarrow a[i] \neq b[i])
$$

The algorithm produces (for $\{\lambda, j, k\}$):

$$
\begin{aligned}
F_{6}: & \lambda \neq j \rightarrow a[\lambda]=b[\lambda] \\
& \wedge j \neq j \rightarrow a[j]=b[j] \\
& \wedge k \neq j \rightarrow a[k]=b[k] \\
& \wedge \lambda \neq k \rightarrow a[\lambda] \neq b[\lambda] \\
& \wedge j \neq k \rightarrow a[j] \neq b[j] \\
& \wedge k \neq k \rightarrow a[k] \neq b[k] \\
& \wedge \lambda \neq j \wedge \lambda \neq k
\end{aligned}
$$

The 1st, 4th and last lines give a contradiction! F is unsatisfiable.

Page 26 of 55

Example

Consider array property formula

$$
\begin{aligned}
F: & a\langle\ell \triangleleft v\rangle[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \\
& \wedge \underbrace{(\forall i . i \neq \ell \rightarrow a[i]=b[i])}_{\text {array property }}
\end{aligned}
$$

By Step 2, rewrite F as

F_{2} does not contain any existential quantifiers. Its index set is

$$
\mathcal{I}=\{\lambda, k, \ell\}
$$

Example (cont)
Thus, by Step 5, replace universal quantification (and step 6):

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge \bigwedge_{i \in \mathcal{I}}(i \neq \ell \rightarrow a[i]=b[i]) \\
& F_{6}: \wedge a^{\prime}[\ell]=v \wedge \bigwedge_{j \in \mathcal{I}}\left(j \neq \ell \rightarrow a[j]=a^{\prime}[j]\right) \\
& \wedge \lambda \neq k \wedge \lambda \neq \ell
\end{aligned}
$$

Expanding produces

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \\
& \wedge(\lambda \neq \ell \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq \ell \rightarrow a[k]=b[k]) \\
& \wedge(\ell \neq \ell \rightarrow a[\ell]=b[\ell]) \\
& \wedge a^{\prime}[\ell]=v \\
& \wedge\left(\lambda \neq \ell \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \\
& \wedge\left(k \neq \ell \rightarrow a[k]=a^{\prime}[k]\right) \wedge\left(\ell \neq \ell \rightarrow a[\ell]=a^{\prime}[\ell]\right) \\
& \wedge \lambda \neq k \wedge \lambda \neq \ell \quad \text { Page } 29 \text { of } 55
\end{aligned}
$$

Correctness of Decision Procedure

Theorem

Consider a Σ_{A}-formula F from the array property fragment of T_{A}.
The output F_{6} of Step 6 of the algorithm is T_{A}-equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with signature Σ for the elements:

Theorem
Consider a $\Sigma_{\mathrm{A}} \cup \Sigma$-formula F from the array property fragment of $T_{\mathrm{A}} \cup T$. The output F_{6} of Step 6 of the algorithm is
$T_{\mathrm{A}} \cup T$-equisatisfiable to F.

Example (cont)
Simplifying,

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \\
& \wedge a[\lambda]=b[\lambda] \wedge(k \neq \ell \rightarrow a[k]=b[k]) \\
F_{6}^{\prime \prime}: & \wedge a^{\prime}[\ell]=v \\
& \wedge a[\lambda]=a^{\prime}[\lambda] \wedge\left(k \neq \ell \rightarrow a[k]=a^{\prime}[k]\right) \\
& \wedge \lambda \neq k \wedge \lambda \neq \ell
\end{aligned}
$$

There are two cases to consider.

- If $k=\ell$, then $a^{\prime}[\ell]=v$ (3rd line) and $a^{\prime}[k]=b[k]$ (1st line) imply $b[k]=v$, yet $b[k] \neq v$.
- If $k \neq \ell$, then $a[k]=v$ (1st line) and $a[k]=b[k]$ (2nd line) imply $b[k]=v$, but again $b[k] \neq v$.
Hence, $F_{6}^{\prime \prime}$ is T_{A}-unsatisfiable, indicating that F is T_{A}-unsatisfiable.
Page 30 of 55

Nelson-Oppen Combination Method

Given:

- Theories T_{1}, \ldots, T_{k} that share only $=$ (and are stably infinite)
- Decision procedures P_{1}, \ldots, P_{k}
- Quantifier-free $\left(\Sigma_{1} \cup \cdots \cup \Sigma_{k}\right)$-formula F

Decide if F is $\left(T_{1} \cup \cdots \cup T_{k}\right)$-satisfiable using P_{1}, \ldots, P_{k}.
Think about arrays in context of Nelson-Oppen.

History

- 1962: John McCarthy formalizes arrays as first-order theory T_{A}.
- 1969: James King describes and implements DP for QFF of T_{A}.
- 1979: Nelson \& Oppen describe combination method for QF theories sharing $=$.
- 1980s: Suzuki, Jefferson; Jaffar; Mateti describe DPs for QFF of theories of arrays with predicates for sorted, partitioned, etc.
- 1997: Levitt describes DP for QFF of extensional theory of arrays in thesis.
- 2001: Stump, Barrett, Dill, Levitt describe DP for QFF of extensional theory of arrays.
- 2006: Bradley, Manna, Sipma describe DP for array property fragment of $T_{\mathrm{A}}, T_{\mathrm{A}}^{\mathbb{Z}}$.

Arrays III: Theory of Integer-Indexed Arrays $T_{\mathrm{A}}^{\mathbb{Z}}$

Signature:

$$
\Sigma_{A}^{\mathbb{Z}}: \Sigma_{A} \cup \Sigma_{\mathbb{Z}}=\{a[i], a\langle i \triangleleft v\rangle,=, 0,1,+, \leq\}
$$

\leq enables reasoning about subarrays and properties such as whether the subarray is sorted or partitioned.
Axioms of $T_{\mathrm{A}}^{\mathbb{Z}}$: both axioms of T_{A} and $T_{\mathbb{Z}}$

Array Property Fragment of $T_{A}^{\mathbb{Z}}$

Array property: $\sum_{A}^{\mathbb{Z}}$-formula of the form

$$
\forall \bar{i} . \alpha[\bar{i}] \rightarrow \beta[\bar{i}],
$$

where \bar{i} is a list of integer variables.

- $\alpha[\bar{i}]$ index guard:

$$
\begin{aligned}
\text { iguard } & \rightarrow \text { iguard } \wedge \text { iguard } \mid \text { iguard } \vee \text { iguard } \mid \text { atom } \\
\text { atom } & \rightarrow \text { expr } \leq \text { expr } \mid \text { expr }=\text { expr } \\
\text { expr } & \rightarrow \text { uvar } \mid \text { pexpr } \\
\text { pexpr } & \rightarrow \text { pexpr } \\
\text { pexpr }^{\prime} & \rightarrow \mathbb{Z} \mid \mathbb{Z} \cdot \text { evar } \mid \text { pexpr }^{\prime}+\text { pexpr }^{\prime}
\end{aligned}
$$

where uvar is any universally quantified integer variable, and evar is any unquantified free integer variable.

Note: Why both pexpr and pexpr'? E.g., in $i \leq 3 k+j$, the expression $3 k+j$ is pexpr, but not k or j

Application: array property fragments

- Array equality $a=b$ in T_{A} :

$$
\forall i . a[i]=b[i]
$$

- Bounded array equality beq (a, b, ℓ, u) in $T_{\mathrm{A}}^{\mathbb{Z}}$:

$$
\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]
$$

- Universal properties $F[x]$ in T_{A} :

$$
\forall i . F[a[i]]
$$

- Bounded universal properties $F[x]$ in $T_{\mathrm{A}}^{\mathbb{Z}}$:

$$
\forall i . \ell \leq i \leq u \rightarrow F[a[i]]
$$

- Bounded sorted arrays sorted (a, ℓ, u) in $T_{\mathrm{A}}^{\mathbb{Z}}$ or $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Q}}$:

$$
\forall i, j \cdot \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
$$

- Partitioned arrays partitioned $\left(a, \ell_{1}, u_{1}, \ell_{2}, u_{2}\right)$ in $T_{\mathrm{A}}^{\mathbb{Z}}$ or $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Q}}:$

$$
\forall i, j . \ell_{1} \leq i \leq u_{1}<\ell_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j] \quad \begin{aligned}
& \text { Page } 37 \text { of } 55
\end{aligned}
$$

The Decision Procedure (Step 3-4)

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists \bar{i} \cdot G[\bar{i}]]}{F[G[\bar{j}]]} \text { for fresh } \bar{j} \quad \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 4

From the output of Step 3, F_{3}, construct the index set \mathcal{I} :
$\mathcal{I}=\begin{aligned} & \left\{t: \cdot[t] \in F_{3} \text { such that } t \text { is not a universally quantified variable }\right\} \\ & \cup\{t: t \text { occurs as a pexpr in the parsing of index guards }\}\end{aligned}$
If $\mathcal{I}=\emptyset$, then let $\mathcal{I}=\{0\}$. The index set contains all relevant symbolic indices that occur in F_{3}. Note: no λ !

The Decision Procedure (Step 1-2)

The idea again is to reduce universal quantification to finite conjunction.
Given F from the array property fragment of $T_{\mathrm{A}}^{\mathbb{Z}}$, decide its $T_{\mathrm{A}}^{\mathbb{Z}}$-satisfiability as follows:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:
$\frac{G[a\langle i \triangleleft e\rangle]}{G\left[a^{\prime}\right] \wedge a^{\prime}[i]=e \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)}$ for fresh $a^{\prime} \quad$ (write)
To meet the syntactic requirements on an index guard, rewrite the third conjunct as

$$
\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a[j]=a^{\prime}[j] .
$$

Page 38 of 55

The Decision Procedure (Step 5-6)

Step 5

Apply the following rule exhaustively to remove universal quantification:

$$
\begin{equation*}
\frac{H[\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]]}{H\left[\bigwedge_{\left[\bar{i} \in \mathcal{I}^{n}\right.}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \tag{forall}
\end{equation*}
$$

n is the size of the block of universal quantifiers over \bar{i}.

Step 6

F_{5} is quantifier-free in the combination theory $T_{\mathrm{A}} \cup T_{\mathbb{Z}}$. Decide the ($T_{\mathrm{A}} \cup T_{\mathbb{Z}}$)-satisfiability of the resulting formula.

Example

$\Sigma_{A}^{\mathbb{Z}}$-formula:

$$
\begin{aligned}
F: \quad & (\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
& \wedge \neg(\forall i . \ell \leq i \leq u+1 \rightarrow a\langle u+1 \triangleleft b[u+1]\rangle[i]=b[i])
\end{aligned}
$$

In NNF, we have

$$
\begin{aligned}
& F_{1}: \quad(\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
& \quad \wedge(\exists i \cdot \ell \leq i \leq u+1 \wedge a\langle u+1 \triangleleft b[u+1]\rangle[i] \neq b[i])
\end{aligned}
$$

Step 2 produces

$$
\begin{aligned}
& (\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{2}: \quad & \wedge\left(\exists i . \ell \leq i \leq u+1 \wedge a^{\prime}[i] \neq b[i]\right) \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j . j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Page 41 of 55
Step 5 rewrites universal quantification to finite conjunction over this set:

$$
\begin{aligned}
& \bigwedge_{i \in \mathcal{I}}(\ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{5}: \quad & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge \bigwedge_{j \in \mathcal{I}}\left(j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Expanding the conjunctions according to the index set \mathcal{I} and simplifying according to trivially true or false antecedents (e.g., $\ell \leq u+1 \leq u$ simplifies to \perp, while $u \leq u \vee u+2 \leq u$ simplifies to T) produces:

Step 3 removes the existential quantifier by introducing a fresh constant k :

$$
\begin{aligned}
&(\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
& F_{3}: \quad \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j . j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

The index set is

$$
\mathcal{I}=\{k, u+1\} \cup\{\ell, u, u+2\},
$$

which includes the read indices k and $u+1$ and the terms ℓ, u, and $u+2$ that occur as pexprs in the index guards.

$$
\begin{align*}
& (\ell \leq k \leq u \rightarrow a[k]=b[k]) \tag{1}\\
& \wedge(\ell \leq u \rightarrow a[\ell]=b[\ell] \wedge a[u]=b[u]) \tag{2}\\
& \wedge \ell \leq k \leq u+1 \tag{3}\\
F_{5}^{\prime}: & \wedge a^{\prime}[k] \neq b[k] \tag{4}\\
& \wedge a^{\prime}[u+1]=b[u+1] \tag{5}\\
& \wedge\left(k \leq u \vee u+2 \leq k \rightarrow a[k]=a^{\prime}[k]\right) \tag{6}\\
& \wedge\left(\ell \leq u \vee u+2 \leq \ell \rightarrow a[\ell]=a^{\prime}[\ell]\right) \tag{7}\\
& \wedge a[u]=a^{\prime}[u] \wedge a[u+2]=a^{\prime}[u+2] \tag{8}
\end{align*}
$$

($T_{\mathrm{A}} \cup T_{\mathbb{Z}}$)-unsatisfiability of this quantifier-free $\left(\Sigma_{A} \cup \Sigma_{\mathbb{Z}}\right)$-formula can be decided using the techniques of Combination of Theories.
Informally, $\ell \leq k \leq u+1$ (3)

- If $k \in[\ell, u]$ then $a[k]=b[k]$ (1). Since $k \leq u$ then $a[k]=a^{\prime}[k]$ (6), contradicting $a^{\prime}[k] \neq b[k]$ (4).
- if $k=u+1, a^{\prime}[k] \neq b[k]=b[u+1]=a^{\prime}[u+1]=a^{\prime}[k]$ by
(4) and (5), a contradiction.

Hence, F is $T_{\mathrm{A}}^{\mathbb{Z}}$-unsatisfiable.

Correctness of Decision Procedure
Theorem
Consider a $\Sigma_{\mathrm{A}}^{\mathbb{Z}} \cup \Sigma$-formula F from the array property fragment of $T_{\mathrm{A}}^{\mathbb{Z}} \cup T$.
The output F_{5} of Step 5 of the algorithm is $T_{\mathrm{A}}^{\mathbb{Z}} \cup T$-equisatisfiable to F.

Example

$$
\operatorname{sorted}(a, \ell, u): \forall i, j . \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
$$

Is

```
sorted (a\langle0\triangleleft0\rangle\langle5\triangleleft1\rangle,0,5) \ sorted (a\langle0\triangleleft10\rangle\langle5\triangleleft11\rangle,0,5)
```

$T_{\mathrm{A}}^{\mathbb{Z}}$-satisfiable?

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & w & x & y & z & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 10 & w & x & y & z & 11 \\
\hline
\end{array}
\end{aligned}
$$

Undecidable Extensions

- Extra quantifier alternation (e.g., $\forall i \exists j . \cdots$)
- Nested reads: a[a[i]]
- No separation: $\forall i . F[a[i], i]($ e.g., $a[i]=i)$
- Arithmetic: $a[i+1]$ when i is universal
- Strict comparison: $i<j$ when i, j are universal
- Permutation predicate (even weak permutation)

Contradiction:

$$
\begin{aligned}
a[0] \leq a[1] \leq a[5] & \wedge a[0] \leq a[1] \leq a[5] \\
0 \leq a[1] \leq 1 & \wedge 10 \leq a[1] \leq 11
\end{aligned}
$$

Need 1 or 4 in index set.

Theory of Sets

Consider a theory $T_{\text {set }}$ of sets with signature

$$
\Sigma_{\text {set }}:\{\epsilon, \subseteq,=, \subset, \cap, \cup, \backslash\}
$$

where symbols are intended as follows:

- $e \in s: e$ is a member of s;
- $s \subseteq t: s$ is a subset of t;
- $s=t: s$ and t are equal;
- $s \subset t: s$ is a strict subset of t;
- $s \cap t$ is the intersection of s and t;
- $s \cup t$ is the union of s and t;
- $s \backslash t$, the set difference of s and t, is the set that includes all elements of s that are not members of t.

Theory of Sets (cont)
Atoms with complex terms can be written more simply via "flattening" (as in the Nelson-Oppen procedure); for example, write

$$
s \cap(t \cap u) \text { as } s \cap w \wedge w=t \cap u
$$

Then the encodability of an arbitrary $\Sigma_{\text {set }}$-formula into a Σ_{E}-formula (or a Σ_{A}-formula) follows by structural induction.

Claim

Satisfiability of the quantifier-free fragment of $T_{\text {set }}$ is decidable:

- simply apply the decision procedure for T_{E} (or T_{A}) to the new formula.

Theory of Sets (cont)

Let us encode an arbitrary $\Sigma_{\text {set }}$-formula as a Σ_{E}-formula (or a Σ_{A}-formula). To do so, simply consider the atoms:

- $e \in s$: let $s(\cdot)$ be a unary predicate; then replace

$$
e \in s \text { by } s(e)
$$

- $s \subseteq t: \forall e . e \in s \rightarrow e \in t$, or in other words, $\forall e . s(e) \rightarrow t(e) ;$
- $s=t: \forall e . s(e) \leftrightarrow t(e) ;$
- $s \subset t: s \subseteq t \wedge s \neq t$;
- $u=s \cap t: \forall e . u(e) \leftrightarrow s(e) \wedge t(e) ;$
- $u=s \cup t: \forall e . u(e) \leftrightarrow s(e) \vee t(e) ;$
- $u=s \backslash t: \forall e . u(e) \leftrightarrow s(e) \wedge \neg t(e)$.

$$
\text { Page } 50 \text { of } 55
$$

Theory of Multisets

Consider a theory $T_{\text {mset }}$ of multisets with signature

$$
\Sigma_{\text {mset }}:\{C, \leq,=,<, \uplus, \cap,-\}
$$

Multisets can have multiple occurrences of elements.
For example: $\{1,3,5\}$ is a set and $\{1,1,3,5,5,5\}$ is a multiset.
The symbols are intended as follows:

- $C(s, e)$: the number of occurrences (the "count") of e in s;
- $s \leq t$: the count of each element of s is bounded by its count in t;
- $s=t$: element counts are the same in s and t;
- $s<t$: the count of each element of s is bounded by its count in t, and some element has a lower count;
- $s \uplus t$ is the multiset union, whose counts are the element-wise sums of counts in s and t;

Theory of Multisets (cont)

- $s \cap t$ is the multiset intersection, whose counts are the element-wise minima of counts in s and t;
- $s-t$ is the multiset difference, whose counts are the element-wise maxima of 0 and the difference of counts in s and t.
Let us encode an arbitrary $\Sigma_{\text {mset }}$-formula as a ($\Sigma_{E} \cup \Sigma_{\mathbb{Z}}$) -formula (or a $\left(\Sigma_{A} \cup \Sigma_{\mathbb{Z}}\right)$-formula). A multiset is modeled by an uninterpreted function whose range is the nonnegative integers.

Theory of Multisets (cont)

Now consider the atoms:

- $C(s, e)$: let s be a unary function whose range is \mathbb{N}; then replace

$$
C(s, e) \text { by } s(e)
$$

and conjoin $\forall e . s(e) \geq 0$ to the formula;

- $s \leq t: \forall e . s(e) \leq t(e)$;
- $s=t: \forall e . s(e)=t(e)$;
- $s<t: s \leq t \wedge s \neq t$;
- $u=s \uplus t: \forall e . u(e)=s(e)+t(e)$;
- $u=s \cap t$:

$$
\begin{gathered}
\forall e .(s(e)<t(e) \wedge u(e)=s(e)) \vee \\
\quad(s(e) \geq t(e) \wedge u(e)=t(e)) ;
\end{gathered}
$$

Theory of Multisets (cont)

- $u=s-t$:

$$
\begin{aligned}
& \forall e . \quad(s(e)<t(e) \wedge u(e)=0) \vee \\
& \quad(s(e) \geq t(e) \wedge u(e)=s(e)-t(e)) .
\end{aligned}
$$

As before, encodability follows by structural induction.

