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Quantifier Elimination (QE)
Algorithm for elimination of all quantifiers of formula F until
quantifier-free formula (qff) G that is equivalent to F remains

Note: Could be enough if F is equisatisfiable to G, that is F is
satisfiable iff G is satisfiable

A theory T admits quantifier elimination iff
there is an algorithm that given X-formula F returns

a quantifier-free Y-formula G that is T-equivalent to F.
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Example: Ix. 2x =y

For X -formula
F: 3x.2x=y,
quantifier-free Tqg-equivalent Y g-formula is

G: T

For Y-formula
F: 3x.2x=y,
there is no quantifier-free Tz-equivalent ¥z-formula.

be Tz with divisibility predicates |.
For ¥ z-formula

F:3x. 2x=y, .
a quantifier-free Tz-equivalent ¥z-formula is
G:2|y.
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About QE Algorithm
In developing a QE algorithm for theory T, we need only consider
formulae of the form
3x. F
for quantifier-free F.

Example: For X-formula
G 3x.Vy. 3z. Ax,y, 2]
N L ]
Falxy]
Gy : 3x.Vy. Rlx.y]
Gy @ 3x.—3dy. —F[x.y]
Flx]
Gy @ 3x. ~F3[x]
—_—
Fe
G : Fy

Gs is quantifier-free and T-equivalent to Gy
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Quantifier Elimination for Ty

Y,

(o =2,-1,0, 1,2, ..., =3, =22, 3 ., 4, —, =, <}

Lemma:
Given quantifier-free ¥z-formula F[y] s.t. free(F[y]) = {y}.
S represents the set of integers

S: {neZ : F[n]is Tg-valid} .

Either SNZ* or Z\ S is finite.
Note: Z* is the set of positive integers.

Example: ¥z-formula  Fly]: 3x. 2x =y
S: even integers
SNZ*: positive even integers — infinite
ZF\ S: positive odd integers — infinite
Therefore, by the lemma, there is no quantifier-free T;-formula
that is Tz-equivalent to F[y].

Thus, Tz does not admit QE.
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Augmented theory ﬁ

%7 with countable number of unary divisibility predicates
k|- forkeZ*
Intended interpretations:

k | x holds iff k divides x without any remainder

Example:
x>1ANy>1A2[x+y

is satisfiable (choose x = 2,y = 2).
(2] x) A4 x

is not satisfiable.

Axioms of ﬁ axioms of Tz with additional countable set of
axioms
Vx. k| x < Jy.x=ky forkeZ"
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T, admits QE (Cooper's method)

Algorithm: Given )Z—fcrmu\a

3x. Flx] ,

where F is quantifier-free, construct quantifier-free )f;;formula
that is equivalent to 3x. Fl[x].

1. Put F[x] into Negation Normal Form (NNF).

. Normalize literals: s < t, k|t, or ~(k]|t).

. Put x in's <t on one side: hx <t ors < hx.

. Replace hx with x" without a factor.

Replace F[x'] by \/ F[j] for finitely many j.
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Cooper's Method: Step 1
Put F[x] in Negation Normal Form (NNF) Fy[x], so that 3x. Fi[x]

> has negations only in literals (only A, V)

> is T-equivalent to Ix. Flx]

Example:
Ix.o(x—6<z—-x AN4|5x+1 — 3x<y)
is equivalent to

Ix. x—6<z—x A4[5x+1 A (3x<y)

—“(AAB— C)& (AANBA-C)
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Cooper's Method: Step 2
Replace (left to right)

s=t & s<t+1At<s+1
S(s=t) & s<tVit<s
S(s<t) & t<s+1

The output 3x. F>[x] contains only literals of form
s<t, k[t, or —(k|t),
where s, t are ﬁ';;terms and k € ZT.

Example:

Ax<y) A o(x=y+3)
1
y<x+1A(x<y+3Vy+3<x)
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Cooper's Method: Step 3

Collect terms containing x so that literals have the form
hx<t, t<hx, k|hx+t, or —(k|hx+t),

where t is a term (does not contain x) and h, k € Z*. The output
is the formula 3x. F3[x], which is Tz-equivalent to Ix. F[x].

Example:

X+x+y<z+3z+2y—4x 5| —Tx+t
4 4
6x <4z+y 5|7x —t
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Cooper's Method: Step 4 |

Let

& =lem{h : his a coefficient of x in F3[x]} ,

where lcm is the least common multiple. Multiply atoms in F3[x]
by constants so that ¢ is the coefficient of x everywhere:
hx<t & dx<ht where hHh=4¢"
t<hx & Ht<dx where h'h ="
k| hx+t « Hk|&x+ht where h'h =14
(k| hx+t) & —(Wk|d'x+ht) where hh=§
The result 3x. F§[x], in which all occurrences of x in Fj[x] are in
terms &'x.
Replace §’'x terms in F} with a fresh variable x’ to form
F : F{d'x— X'}
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Cooper's Method: Step 4 Il

Finally, construct

3. FXT A8 | X
NELAE RGN R

Falx]

3x’.F4[x'] is equivalent to 3x. F[x] and each literal of F4[x'] has
one of the forms:

(A) X' <t

(B) t<x'
(C) k| x'+t
(D) =(k | X' +1)
where t is a term that does not contain x’, and k € Z+.
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Cooper's Method: Step 4 IlI

Example: a—t’ormula

Ix. 3x+1>y AN 2x—6<z A 4|5x+1

Flx]
After step 3:

Ix. 2x<z+6 A y—1<3x A 4|5x+1

F3[x]
Collecting coefficients of x (step 4):
&' =1lem(2,3,5) = 30
Multiply when necessary:
dx. 30x < 15z2+90 A 10y —10 < 30x A 24 | 30x+6
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Cooper's Method: Step 4 IV

Multiply when necessary:
Ix. 30x < 152+ 90 A 10y — 10 < 30x A 24| 30x + 6
Replacing 30x with fresh x’ and adding divisibility conjunct:

I, X <152+90 A 10y —10<x' A 24| x +6 A 30| x

Falx]

3x'. F4[x] is equivalent to Ix. F[x].
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Cooper's Method: Step 5
Construct left infinite projection F_o[x'] of F4[x'] by
(A) replacing literals x" < t by T
(B) replacing literals t < x’ by L

dea: very small numbers satisfy (A) literals but not (B) literals

Let

R k of (C) literals k | X'+t
d=lem .
k of (D) literals ~(k | x' + t)

and B be the set of terms t appearing in (B) literals of F4[x].

Construct 5

k)
Fs: \/Folil v\ V Rlt+]]-
j=1

j=1teB
Fs is quantifier-free and ﬁ—equivalent to Ix. Fx].
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Intuition of Step 5 |
Property (Periodicity)
ifm|d
then m | niff m| n+Ad forall A\ e Z
That is, m |- cannot distinguish between m | nand m | n+ Ad.

By the choice of § (Icm of the k's) — no | literal in Fs can
distinguish between n and n+ A, for any A € Z.

k) 8
Fs: \/ Feoclil v \/ \/ Falt +]

J=1 j=1teB
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Intuition of Step 5 Il
> left disjunct \/J";1 F_ooli] =
Contains only | literals
Asserts: no least n € Z s.t. Fy[n].
For if there exists n satisfying F_,
then every n — A6, for A € Z*, also satisfies F_
> right disjunct \/9_; Ve Falt +J] -
Asserts: There is least n € Z s.t. Fy[n].
For let t* = {largest t | t < x' in (B)}
If n€ Ziss.t. Fy[n], then
A <j<o). " +j<n A R[t"+]]

In other words,
if there is a solution,
then one must appear in § interval to the right of t*
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Example of Step 5 |

Ix. 3x+1>y AN 2x—6<z A4|5x+1
Flx

I, X <152+90 A 10y —10<x’ A 24| x'+6 A 30| x

Falx]

By step 5,
Foo[¥]: TALA24|x+6A30]x,

which simplifies to L.
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Example of Step 5 Il

Compute
0 =lcm{24,30} =120 and B = {10y —10} .
Then replacing x’ by 10y — 10 -+ j in F4[x"] produces

Fs:
Y A 24|10y —10+j+6 A 30| 10y — 10+

120[10y—10+j<152+90 A 10y—10<10y—10+j}
j=1

which simplifies to

F_1\2/° 10y +j < 152+ 100 A 0<F
5'j:1 A 24|10y +j—4 A 30|10y — 10+

Fs is quantifier-free and a—equivalent to Ix. F[x].

Page 19 of 40

Cooper's Method: Example |

Ix. B3x+1<10 V 7x—-6>7) A 2|x
Flx

Isolate x terms

3x. (3x <9V 13<7x) A 2]x,

& =lem{3,7,1} =21.
After multiplying coefficients by proper constants,
3x. (21x < 63 Vv 39 < 21x) A 42| 21x,
we replace 21x by x:
I (X <63 V39<x) A2 X A2L|X .

Falx']
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Cooper's Method: Example Il

Then

Fooolx]: (T Vv L)ynd2[x A21|xX,
or, simplifying,

Fooo[X]: 42| x' A 21X .

Finally,

6 =lem{21,42} =42 and B={39},
so Fs :

2
\@21jn2alj) v

V(39 +j <63V 39<39+j) A 42|39+ A21|39+)).

j=1
Since 42 | 42 and 21 | 42, the left main disjunct simplifies to T, so

that Fs is a-equivalent to T. Thus, 3x. F[x]is ﬁ-valid.
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Cooper's Method: Example |

dx. 2x =y
——
Flx]

Rewriting

Ix. 2x<y+1 A y—-1<2x
-

F3[x]

Then
¢ =lem{2,2} =2,

so by Step 4

I X <y+1Ay—-1<x A2|X

Falx']

F_o produces L.
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Cooper's Method: Example Il

However,
§=lem{2} =2 and B={y—-1},

so

2
Fo: \(y—1+4j<y+1Ay—-1<y-14jA2|y—1+))
j=1

Simplifying,
2
Fo: \/(<2A0<jA2]y—1+])
Jj=1

and then
Fs: 2|y,

which is quantifier-free and ﬁ—equivalent to Ix. F[x].
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Improvement: Symmetric Elimination
In step 5, if there are fewer
(A) literals x" < t
than
(B) literals t < x,
construct the right infinite projection F[x] from F4[x'] by
replacing
(A) literal x" < t by L
than
(B) literal t < x" by T

Then right elimination.

Fs: \/ Frocl=l v \/ \ Falt =11
Jj=1

j=1teA

Page 24 of 40



Improvement: Eliminating Blocks of Quantifiers | Improvement: Eliminating Blocks of Quantifiers Il
Given Treat j as a free variable and examine only 1+ |B| formulae
Ixg. - I ey > 3xq. e 3ot FosolXay ey Xnm1,J]
where F quantifier-free. > 3x1. -+ 3xXpo1. Falx1,....Xp1,t +j] foreach t € B
Eliminating x,, (left elimination) produces

)
G 3x I\ Fsla
j=1

V VAl x4 ]

j=1teB

which is equivalent to

c It Focolxt o X1,J] V

5
\/ \/ Ixa. o Ixno1. Falxa, o xee1,t ]
j=1teB
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Example | Example Il
Commute
F:3y.3x. x<-2AN1-5y<x Al+y<13x 13
Since &' = lem{1,13} = 13 Gll: \/3y.j>0 A 39+j<65y Ay<—27T—jA13] —26—]
= HI]

Jy. 3x. 13x < =26 A 13 -65y <13x A 1+y < 13x
Treating j as free variable (and removing j > 0), apply QE to
Then
HIj]: 3y. 39+ <65y A y<-27—j A 13| —26—
Jy. . X' <—26 A 1365y <x' Al+y<x A13|X

Simplify. ...
There is one (A) literal x' < ... and two (B) literals ... < x', we
use right elimination. 65
H: \/ (k< 1794 —66j A 13| —26—j A 65|39+ + k)
Fiw=1 §={13} =13 A= {-26} k=1

137 06 j <26 A 13— 65y < —26— ) Replace H[j] with H'[j] in G[j]

F': 3y.
4 /_\:/1 Al4y<—26-jA13] —26—)
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Example 111

13 65
F": \/ \/ (k< —1794 —66j A 13 | —26 —j A65 | 39+ + k)
Jj=lk=1
t
j=13 k=13

simplified to
13 < —1794 — 66 - 13

€L

This qff formula is ?Z—equivalent to F.
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Quantifier Elimination over Rationals

Recall: we use > instead of >, as

X>y & x>y Vx=y x>y & x>y A —(x
Ferrante & Rackoff's Method

Given a Yg-formula 3x. F[x], where F[x] is quantifier-free,
generate quantifier-free formula £y (four steps) s.t.

Fy is g-equivalent to 3x. F[x]

by
. putting F[x] in NNF,
. replacing negated literals,
. solving literals such that x appears isolated on one side, and
. taking finite disjunction \/, F[t].
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Ferrante & Rackoff’s Method: Steps 1 and 2
Step 1: Put F[x] in NNF. The result is 3x. F1[x].

Step 2: Replace literals (left to right)

S(s<t) & t<sVit=s
S(s=t) & t<sVit>s

The result 3x. F[x] does not contain negations.
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Ferrante & Rackoff's Method: Step 3

Solve for x in each atom of F[x], e.g.,

t—t
h=2
c

h <X+t =
where ¢ € Z — {0}.

All atoms in the result 3x. F3[x] have form
(A) x<t
(B) t<x
(C) x=t

where t is a term that does not contain x.
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Ferrante & Rackoff's Method: Step 4 |

Construct from F3(x]

» left infinite projection F_ by replacing
(A) atoms x < t by T
(B) atoms t < x by L
(C) atoms x =t by L

» right infinite projection F by replacing
(A) atoms x < t by L
(B) atoms t <x by T
(C) atoms x =t by L

Let S be the set of t terms from (A), (B), (C) atoms.
Construct the final

s+t
Fi: Foo V Fioo V \/Fg[ > }
s, teS

which is Tg-equivalent to 3x. F[x].
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Ferrante & Rackoff’s Method: Step 4 Il
> F_. captures the case when small x € Q satisfy Fz[x]
> Fo captures the case when large x € Q satisfy F3[x]
> last disjunct: for s,t € S
if s = t, check whether s € S satisfies F3[s]
if s # t, in any Tg-interpretation,
> |S| — 1 pairs s, t € S are adjacent. For each such pair, (s, t) is
an interval in which no other s’ € S lies.
> Since #5t represents the whole interval (s, t),
simply check F3[#5¢] .
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Ferrante & Rackoff's Method: Intuition

Step 4 says that four cases are possible:
1. There is a left open interval s.t. all elements satisfy F(x).

—)

N}

. There is a right open interval s.t. all elements satisfy F(x).

—

w

. Some term t satisfies F(x).

t

~

There is an open interval between two s, t terms such that
every element satisfies F(x).

—)

“»

Tt
s+t
2
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Correctness of Step 4 |

Theorem
Let

Fat Fooo V Fine V. \/ F3[S;r:| ,
s.teS

be the formula constructed from 3x. F3[x] as in Step 4. Then
3x. R[] & Fa.
Proof:

< If Fy is true, then F_oo, Fio or F3[55t] is true.
If F3[=54] is true, then obviously 3x. F3[x] is true.
If F_. is true, choose some small x,x < t forall t € S.
Then F3[x] is true.
If Fi is true, choose some big x,x > t for all t € S.
Then F3[x] is true.
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Correctness of Step 4 1|
= If | |= 3x. F3[x] then there is value v such that

I = F3[v].
Ifv<aft]forallt €S, then | |= F_ .
Ifv>aft] forall t € S, then | |= Fio.
If v = at] for some t € S, then | |= F[}].

Otherwise choose largest s € S with a[s] < v and smallest
t €S with aqt] > v.

Since no atom of F3 can distinguish between values in interval
(s,t),

I RN iR {%} .

Hence, / |= F[=£!]. In all cases | |= Fy.
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Ferrante & Rackoff's Method: Example |
Yg-formula
Ix. 3x+1<10 A 7x—6>7
Rl R Sl )
Flxl
Solving for x

3><.)<<3/\><>E
7
Flx]

Stepd: x>2in(B) = Fo=1
x<3in(A) = Fie=1
s+t s+t
Fy:
3 \/( 5 <3A >

Al
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Ferrante & Rackoff’s Method: Example I
s={3,¥ =

Fa: LV-vLIVT=T
Thus, Fy : T is Tg-equivalent to 3x. F[x],

so dx. F[x] is Tgp-valid.
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Example

Ix. 2x >y A 3x<z
- —
Fixl

Solving for x

y z
Ix. = A =
)<><>2 )<<3

F3lx]

Step 4 F oo =L, Fioo = L, F3[4] = L and FR3[§] = L.
+ +
Fy:
s ey A<
which simplifies to:
Fy: 2z >3y

Fy is Tg-equivalent to 3x. Flx].
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