CS156: The Calculus of Computation Zohar Manna

Winter 2010

Chapter 7: Quantified Linear Arithmetic

Example: $\exists x. \ 2x = v$

 $F: \exists x. \ 2x = v.$

 $F: \exists x. 2x = v.$

quantifier-free T_{Ω} -equivalent Σ_{Ω} -formula is

Let $\widehat{T}_{\mathbb{Z}}$ be $T_{\mathbb{Z}}$ with divisibility predicates |.

a quantifier-free $\widehat{T}_{\mathbb{Z}}$ -equivalent $\widehat{\Sigma}_{\mathbb{Z}}$ -formula is

there is no quantifier-free $T_{\mathbb{Z}}$ -equivalent $\Sigma_{\mathbb{Z}}$ -formula.

For Σ∩-formula

G: T

For Σ₇-formula

For $\widehat{\Sigma_{\pi}}$ -formula $F: \exists x. \ 2x = y$

G: 2 | v.

About QE Algorithm

In developing a QE algorithm for theory T, we need only consider

formulae of the form

Quantifier Elimination (QE)

satisfiable iff G is satisfiable

A theory T admits quantifier elimination iff

Algorithm for elimination of all quantifiers of formula F until

quantifier-free formula (qff) G that is equivalent to F remains Note: Could be enough if F is equisatisfiable to G, that is F is

there is an algorithm that given Σ -formula F returns a quantifier-free Σ-formula G that is T-equivalent to F.

∃_Y F

for quantifier-free F.

Example: For Σ-formula

 G_1 : $\exists x. \forall y. \underbrace{\exists z. F_1[x, y, z]}_{F_2[x,y]}$

 G_2 : $\exists x. \forall y. F_2[x, y]$

 G_4 : $\exists x. \neg F_3[x]$

Page 2 of 40

(B) (B) (2) (2) (2) (0) Page 1 of 40

Page 3 of 40

 G_5 is quantifier-free and T-equivalent to G_1

```
\Sigma_{\pi}: {..., -2, -1, 0, 1, 2, ..., -3, -2, 2, 3, ..., +, -, =, <}
     Lemma:
     Given quantifier-free \Sigma_{\mathbb{Z}}-formula F[y] s.t. free(F[y]) = \{y\}.
     S represents the set of integers
                          S: \{n \in \mathbb{Z} : F[n] \text{ is } T_{\pi}\text{-valid}\}.
     Either S \cap \mathbb{Z}^+ or \mathbb{Z}^+ \setminus S is finite.
     Note: \mathbb{Z}^+ is the set of positive integers.
     Example: \Sigma_{\mathbb{Z}}-formula F[y]: \exists x. \ 2x = y
           S: even integers
     S \cap \mathbb{Z}^+: positive even integers — infinite
     \mathbb{Z}^+ \setminus S: positive odd integers — infinite
     Therefore, by the lemma, there is no quantifier-free Ty-formula
     that is T_{\mathbb{Z}}-equivalent to F[v].
     Thus, T_Z does not admit QE.
                                                                            Page 5 of 40
\widehat{T}_{\mathbb{Z}} admits QE (Cooper's method)
     Algorithm: Given \widehat{\Sigma}_{\mathbb{Z}}-formula
                                         \exists x. F[x].
     where F is quantifier-free, construct quantifier-free \widehat{\Sigma}_{\mathbb{Z}}-formula
     that is equivalent to \exists x. F[x].
       1. Put F[x] into Negation Normal Form (NNF).
       2. Normalize literals: s < t, k|t, or \neg(k|t).
```

Put x in s < t on one side: hx < t or s < hx.
 Replace hx with x' without a factor.

Replace F[x'] by \(\frac{F[i]}{F[i]} \) for finitely many i.

Quantifier Elimination for $T_{\mathbb{Z}}$

 $\widehat{\Sigma}_{\mathbb{Z}}$: $\Sigma_{\mathbb{Z}}$ with countable number of unary divisibility predicates $k \mid \cdot \quad \text{for } k \in \mathbb{Z}^+$ Intended interpretations: k | x holds iff k divides x without any remainder Example: $x > 1 \land v > 1 \land 2 \mid x + v$ is satisfiable (choose x = 2, v = 2). $\neg (2 \mid x) \land 4 \mid x$ is not satisfiable. Axioms of \widehat{T}_{π} : axioms of T_{π} with additional countable set of axioms $\forall x. \ k \mid x \leftrightarrow \exists v. \ x = kv \text{ for } k \in \mathbb{Z}^+$ Page 6 of 40 Cooper's Method: Step 1 Put F[x] in Negation Normal Form (NNF) $F_1[x]$, so that $\exists x, F_1[x]$ has negations only in literals (only ∧. ∨) ▶ is $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. F[x]$ Example: $\exists x. \ \neg(x-6 < z-x \land 4 \mid 5x+1 \rightarrow 3x < v)$ is equivalent to

 $\exists x. \ x-6 < z-x \land 4 \mid 5x+1 \land \neg (3x < y)$

 $\neg (A \land B \rightarrow C) \Leftrightarrow (A \land B \land \neg C)$

Augmented theory T_{π}

Note:

(B) (B) (2) (2) 2 900

For let $t^* = \{ \text{largest } t \mid t < x' \text{ in (B)} \}.$ If $n \in \mathbb{Z}$ is s.t. $F_4[n]$, then
$\exists j (1 \leq j \leq \delta). \ t^* + j \leq n \ \land \ F_4[t^* + j]$
In other words, if there is a solution, then one must appear in δ interval to the right of t^*
্লা প্র নাম হ প্র Page 17 of 40
Example of Step 5 II
Compute
$\delta = \operatorname{lcm}\{24,30\} = 120 \text{and} B = \{10y-10\} \; .$
Then replacing x' by $10y - 10 + j$ in $F_4[x']$ produces
$F_5: \bigvee_{j=1}^{120} \left[\begin{array}{c} 10y - 10 + j < 15z + 90 \ \land \ 10y - 10 < 10y - 10 + j \\ \land \ 24 \mid 10y - 10 + j + 6 \ \land \ 30 \mid 10y - 10 + j \end{array} \right]$
$F_5: \bigvee_{j=1}^{120} \left[\begin{array}{c} 10y - 10 + j < 15z + 90 \ \land \ 10y - 10 < 10y - 10 + j \\ \land \ 24 \mid 10y - 10 + j + 6 \ \land \ 30 \mid 10y - 10 + j \end{array} \right]$ which simplifies to
•
which simplifies to

By step 5, $F_{-\infty}[x']: \top \wedge \bot \wedge 24 \mid x' + 6 \wedge 30 \mid x'$ which simplifies to \bot . Page 18 of 40 Cooper's Method: Example I $\exists x. (3x + 1 < 10 \lor 7x - 6 > 7) \land 2 \mid x$ Isolate x terms $\exists x. (3x < 9 \lor 13 < 7x) \land 2 \mid x$, SO $\delta' = \text{lcm}\{3, 7, 1\} = 21$. After multiplying coefficients by proper constants, $\exists x. (21x < 63 \lor 39 < 21x) \land 42 \mid 21x$, we replace 21x by x':

 $\exists x'. \ (x' < 63 \ \lor \ 39 < x') \ \land \ 42 \mid x' \ \land \ 21 \mid x' \ .$

Page 20 of 40

 $\exists x. \ 3x + 1 > y \ \land \ 2x - 6 < z \ \land \ 4 \mid 5x + 1$

 $\exists x'. \ x' < 15z + 90 \ \land \ 10y - 10 < x' \ \land \ 24 \mid x' + 6 \ \land \ 30 \mid x'$

Example of Step 5 I

Cooper's Method: Example I Cooper's Method: Example II Then $F_{-\infty}[x']: (\top \vee \bot) \wedge 42 \mid x' \wedge 21 \mid x'$ or, simplifying, $F_{-\infty}[x']: 42 | x' \wedge 21 | x'$. Rewriting $\exists x. \ \underbrace{2x < y + 1 \ \land \ y - 1 < 2x}_{F_3[x]}$ Finally, $\delta = \text{lcm}\{21, 42\} = 42 \text{ and } B = \{39\}$ so Fs: Then $\delta' = \text{lcm}\{2, 2\} = 2$. $\bigvee^{42} (42 \mid j \land 21 \mid j) \lor$ so by Step 4 $\exists x'. \ \underbrace{x' < y + 1 \ \land \ y - 1 < x' \ \land \ 2 \mid x'}_{E_{x}[x']}$ $\sqrt{((39+j<63 \lor 39<39+j) \land 42 \mid 39+j \land 21 \mid 39+j)}$. $F_{-\infty}$ produces \perp . Since 42 | 42 and 21 | 42, the left main disjunct simplifies to T, so that F_5 is $\widehat{T}_{\mathbb{Z}}$ -equivalent to \top . Thus, $\exists x. \ F[x]$ is $\widehat{T}_{\mathbb{Z}}$ -valid. Page 21 of 40 Cooper's Method: Example II Improvement: Symmetric Elimination However. In step 5, if there are fewer (A) literals x' < t $\delta = \operatorname{lcm}\{2\} = 2 \quad \text{and} \quad B = \{y - 1\} \ ,$ than so (B) literals t < x'. construct the right infinite projection $F_{+\infty}[x']$ from $F_4[x']$ by $F_5: \ \, \bar{\bigvee} \, (y-1+j < y+1 \ \, \wedge \ \, y-1 < y-1+j \ \, \wedge \ \, 2 \mid y-1+j)$ replacing (A) literal x' < t by \bot Simplifying, than (B) literal t < x' by \top $F_5: \bigvee^2 (j < 2 \land 0 < j \land 2 \mid y - 1 + j)$ Then right elimination. and then $F_5: \ \bigvee_{i=1}^{\delta} F_{+\infty}[-j] \ \lor \ \bigvee_{j=1}^{\delta} \bigvee_{t \in A} F_4[t-j] \ .$ $F_5: 2 | v$, which is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x, F[x]$.

Improvement: Eliminating Blocks of Quantifiers I		
Given		
$\exists x_1. \cdots \exists x_n. F[x_1, \ldots, x_n]$		
where F quantifier-free. Eliminating x_n (left elimination) produces		
$G_1: \exists x_1. \cdots \exists x_{n-1}. \bigvee_{\substack{j=1 \\ \delta}}^{\delta} F_{-\infty}[x_1, \dots, x_{n-1}, j] \lor \bigvee_{\substack{j=1 \\ t \in B}} \bigvee_{t \in B} F_4[x_1, \dots, x_{n-1}, t+j]$		
$\bigvee_{j=1}^{o}\bigvee_{t\in B}F_{4}[x_{1},\ldots,x_{n-1},t+j]$		
which is equivalent to		
8		
$G_2: \bigvee_{\substack{j=1\\\delta}} \exists x_1. \cdots \exists x_{n-1}. F_{-\infty}[x_1, \dots, x_{n-1}, j] \lor \bigvee_{\substack{j=1\\j=1 \text{ t} \in B}} \exists x_1. \cdots \exists x_{n-1}. F_4[x_1, \dots, x_{n-1}, t+j]$		
δ \/\/∃ν∃ν . Ε[ν + i]		
$\bigvee_{i=1}^{N} t \in B$		
Page 25 of 40		
Example I		
Example I		
Example I $F: \; \exists y. \; \exists x. \; x < -2 \; \wedge \; 1 - 5y < x \; \wedge \; 1 + y < 13x$		
Example I $F:\ \exists y.\ \exists x.\ x<-2\ \land\ 1-5y< x\ \land\ 1+y<13x$ Since $\delta'=\text{lcm}\{1,13\}=13$		
Example I $F: \; \exists y. \; \exists x. \; x < -2 \; \wedge \; 1 - 5y < x \; \wedge \; 1 + y < 13x$ Since $\delta' = \operatorname{lcm}\{1,13\} = 13$ $\exists y. \; \exists x. \; 13x < -26 \; \wedge \; 13 - 65y < 13x \; \wedge \; 1 + y < 13x$		
Example I $F: \; \exists y. \; \exists x. \; x < -2 \; \wedge \; 1 - 5y < x \; \wedge \; 1 + y < 13x$ Since $\delta' = \mathrm{lcm}\{1,13\} = 13$ $\exists y. \; \exists x. \; 13x < -26 \; \wedge \; 13 - 65y < 13x \; \wedge \; 1 + y < 13x$ Then		
Example I $F: \ \exists y. \ \exists x. \ x < -2 \ \land \ 1 - 5y < x \ \land \ 1 + y < 13x$ Since $\delta' = \operatorname{lcm}\{1,13\} = 13$ $\exists y. \ \exists x. \ 13x < -26 \ \land \ 13 - 65y < 13x \ \land \ 1 + y < 13x$ Then $\exists y. \ \exists x'. \ x' < -26 \ \land \ 13 - 65y < x' \ \land \ 1 + y < x' \ \land \ 13 \ \mid x'$ There is one (A) literal $x' < \ldots$ and two (B) literals $\ldots < x'$, we		

Page 26 of 40 $G[j]: \bigvee_{j=1} \underbrace{\exists y. \ j > 0 \ \land \ 39 + j < 65y \ \land \ y < -27 - j \ \land \ 13 \mid \ -26 - j}_{H[j]}$ Treating j as free variable (and removing j > 0), apply QE to $H[i]: \exists v. 39 + i < 65v \land v < -27 - i \land 13 \mid -26 - i$

 $H'[j]: \ \bigvee^{\circ \circ} (\mathit{k} < -1794 - 66\mathit{j} \ \land \ 13 \mid \ -26-\mathit{j} \ \land \ 65 \mid 39+\mathit{j}+\mathit{k})$

Improvement: Eliminating Blocks of Quantifiers II

 $\vdash \exists x_1. \cdots \exists x_{n-1}. F_{-\infty}[x_1, \dots, x_{n-1}, j]$

Example II Commute

Simplify...

Replace H[j] with H'[j] in G[j]

Treat j as a free variable and examine only 1 + |B| formulae

 $\blacktriangleright \exists x_1. \cdots \exists x_{n-1}. F_4[x_1, \dots, x_{n-1}, t+j]$ for each $t \in B$

$F'': \bigvee^{13} \bigvee^{65} (k < -1794 - 66j \wedge 13 \mid -26 - j \wedge 65 \mid 39 + j + k)$ i = 13 k = 13simplified to $13 < -1794 - 66 \cdot 13$ \perp This off formula is $\widehat{T}_{\mathbb{Z}}$ -equivalent to F.

Example III

Page 29 of 40

by

Ferrante & Rackoff's Method: Steps 1 and 2 Step 1: Put F[x] in NNF. The result is $\exists x. F_1[x]$. Step 2: Replace literals (left to right) $\neg (s < t) \Leftrightarrow t < s \lor t = s$ $\neg (s = t) \Leftrightarrow t < s \lor t > s$

The result $\exists x. F_2[x]$ does not contain negations.

Ferrante & Rackoff's Method: Step 3 Solve for x in each atom of $F_2[x]$, e.g.,

(A) x < t

where $c \in \mathbb{Z} - \{0\}$.

Quantifier Elimination over Rationals

Recall: we use > instead of >, as

Ferrante & Rackoff's Method

putting F[x] in NNF.

2. replacing negated literals.

taking finite disjunction √, F[t].

 $\Sigma_{\mathbb{O}}$: {0, 1, +, -, =, >}

 $x > y \Leftrightarrow x > y \lor x = y$ $x > y \Leftrightarrow x > y \land \neg(x = y)$.

 F_4 is Σ_{Ω} -equivalent to $\exists x. F[x]$

3. solving literals such that x appears isolated on one side, and

Given a Σ_{Ω} -formula $\exists x. F[x]$, where F[x] is quantifier-free,

generate quantifier-free formula F_A (four steps) s.t.

Page 30 of 40

 $t_1 < cx + t_2$ \Rightarrow $\frac{t_1 - t_2}{c} < x$ All atoms in the result $\exists x. F_3[x]$ have form

(B) t < x(C) x = t

where t is a term that does not contain x

Ferrante & Rackoff's Method: Step 4 I
Construct from $F_3[x]$ left infinite projection $F_{-\infty}$ by replacing A atoms $x < t$ by T (B) atoms $t < x$ by L (C) atoms $x = t$ by L right infinite projection L right infinite projection L (B) atoms L (B) atoms L (C) atoms L (D) atoms L (E) atoms L
Let S be the set of t terms from (A), (B), (C) atoms. Construct the final
$F_4: F_{-\infty} \vee F_{+\infty} \vee \bigvee_{s,t \in S} F_3\left[\frac{s+t}{2}\right] ,$
which is $T_{\mathbb{Q}}$ -equivalent to $\exists x.\ F[x]$.
Ferrante & Rackoff's Method: Intuition
Step 4 says that four cases are possible: 1. There is a left open interval s.t. all elements satisfy $F(x)$. \longleftarrow
\leftarrow) 2. There is a right open interval s.t. all elements satisfy $F(x)$.
(→ (x).
3. Some term t satisfies $F(x)$.
··· t ···
 There is an open interval between two s, t terms such that every element satisfies F(x).
$\frac{(\longleftarrow)}{\cdots s\uparrow t \cdots}$
<u>s+t</u>

▶ |S|-1 pairs $s,t \in S$ are adjacent. For each such pair, (s,t) is an interval in which no other $s' \in S$ lies. Since s+t/2 represents the whole interval (s, t), simply check $F_3[\frac{s+t}{2}]$. Page 34 of 40 Correctness of Step 4 I Theorem Let $F_4: F_{-\infty} \vee F_{+\infty} \vee \bigvee_{s,t \in S} F_3 \left[\frac{s+t}{2} \right] ,$ be the formula constructed from ∃x. F₃[x] as in Step 4. Then $\exists x. F_3[x] \Leftrightarrow F_4.$ Proof: \leftarrow If F_4 is true, then $F_{-\infty}$, F_{∞} or $F_3\left[\frac{s+t}{2}\right]$ is true. If $F_3[\frac{s+t}{2}]$ is true, then obviously $\exists x. F_3[x]$ is true. If $F_{-\infty}$ is true, choose some small x, x < t for all $t \in S$. Then $F_3[x]$ is true. If $F_{+\infty}$ is true, choose some big x, x > t for all $t \in S$. Then $F_3[x]$ is true.

Ferrante & Rackoff's Method: Step 4 II

last disjunct: for s, t ∈ S

▶ $F_{-\infty}$ captures the case when small $x \in \mathbb{Q}$ satisfy $F_3[x]$ ▶ $F_{+\infty}$ captures the case when large $x \in \mathbb{Q}$ satisfy $F_3[x]$

if $s \equiv t$, check whether $s \in S$ satisfies $F_3[s]$ if $s \not\equiv t$, in any T_0 -interpretation,

Correctness of Step 4 II $\Rightarrow \text{ If } I \models \exists x. \ F_3[x] \text{ then there is value v such that} \\ I \models F_3[v]. \\ \text{ If } v < \alpha_I[t] \text{ for all } t \in S, \text{ then } I \models F_{-\infty}. \\ \text{ If } v > \alpha_I[t] \text{ for all } t \in S, \text{ then } I \models F_{+\infty}. \\ \text{ If } v = \alpha_I[t] \text{ for some } t \in S, \text{ then } I \models F_{[\frac{t+t}{2}]}. \\ \text{Otherwise choose largest } s \in S \text{ with } \alpha_I[s] < v \text{ and smallest} \\ t \in S \text{ with } \alpha_I[t] > v. \\ \text{Since no atom of } F_3 \text{ can distinguish between values in interval} \\ (s,t), \\ I \models F_3[v] \text{ iff } I \models F_3\left[\frac{s+t}{2}\right]. \\ \text{Hence, } I \models F\left[\frac{s+t}{2}\right]. \text{ In all cases } I \models F_4. \\ \end{cases}$	Ferrante & Rackoff's Method: Example I $\Sigma_{\mathbb{Q}}\text{-formula} \qquad \exists x. \ \underbrace{3x+1<10 \ \land \ 7x-6>7}_{F[x]}$ Solving for x $\exists x. \ \underbrace{x<3 \ \land \ x>\frac{13}{7}}_{F_3[x]}$ Step 4: $x>\frac{13}{7}$ in (B) $\Rightarrow F_{-\infty}=\bot$ $x<3$ in (A) $\Rightarrow F_{+\infty}=\bot$ $F_4: \bigvee_{s,r\in S}\underbrace{\left(\frac{s+t}{2}<3 \ \land \ \frac{s+t}{2}>\frac{13}{7}\right)}_{F_3[\frac{s+t}{2}]}$
েচ ক্টে হেচ ই প্রও Page 37 of 40	্ল ক্রেন্ট্র ই প্রক্ Page 38 of 40
Ferrante & Rackoff's Method: Example II $S = \{3, \frac{13}{7}\} \Rightarrow$	Example
$F_3\left[\frac{3+3}{2}\right] = \bot \qquad F_3\left[\frac{13}{7} + \frac{19}{7}\right] = \bot$ $F_3\left[\frac{13}{7} + \frac{3}{2}\right] : \frac{13}{7} + \frac{3}{2} < 3 \land \frac{13}{7} + \frac{3}{7} > \frac{13}{7} = \top$ $F_4 : \ \bot \lor \cdots \lor \bot \lor \top = \top$ Thus, $F_4 : \top$ is $T_{\mathbb{Q}}$ -requivalent to $\exists x. \ F[x]$, so $\exists x. \ F[x]$ is $T_{\mathbb{Q}}$ -valid.	Solving for x $\exists x. \ \underbrace{x > y \land 3x < z}_{F[x]}$ Solving for x $\exists x. \ \underbrace{x > \frac{y}{2} \land x < \frac{z}{3}}_{F_{3}[x]}$ $Step 4: \ F_{-\infty} = \bot, \ F_{+\infty} = \bot, \ F_{3}[\frac{y}{2}] = \bot \ \text{and} \ F_{3}[\frac{z}{3}] = \bot.$ $F_{4}: \ \frac{\frac{y}{2} + \frac{z}{3}}{2} > \frac{y}{2} \land \frac{\frac{y}{2} + \frac{z}{3}}{2} < \frac{z}{3}$ which simplifies to: $F_{4}: \ 2z > 3y$ $F_{4} \text{ is } T_{\mathbb{Q}}\text{-equivalent to } \exists x. \ F[x].$
Page 39 of 40	্ল ক্ষেত্ৰ হৈ প্ৰত্তি Page 40 of 40