Example: \(\varphi_0 : \Diamond p \)

Tableau \(T_{\varphi_0} \):

\[
\begin{array}{c}
A_1 : \{ p, \Diamond p, \Diamond p \} \\
A_2 : \{ \neg p, \Diamond p, \Diamond p \} \\
A_3 : \{ p, \neg \Diamond p, \Diamond p \} \\
A_4 : \{ \neg p, \neg \Diamond p, \neg \Diamond p \}
\end{array}
\]

Promising Formula

In \(T \Diamond p \), a path can start and stay forever in atom \(A_2 \).
But \(A_2 \) includes \(\Diamond p \), i.e., \(A_2 \) promises that \(p \) will eventually happen, but it is never fulfilled in the path.
We want to exclude these paths.

The idea is that if a path contains an atom that includes a promising formula, then the path should fulfill the promise.

A formula \(\psi \in \Phi_{\varphi} \) is said to promise the formula \(r \)
if \(\psi \) is one of the forms:

\[
\begin{align*}
\Diamond r & \quad \Box \ Diamond r & \quad \neg \Box r & \quad \neg((\neg r) \lor p) \\
\approx \Diamond r \wedge \ldots & \approx \Diamond r & \approx \Diamond r \wedge \ldots
\end{align*}
\]

Example:

\(\varphi_1 : \Box p \land \Diamond \neg p \)

\(\Phi_{\varphi_1} : \{ \varphi_1, \Box p, \Diamond \neg p, \Box \neg p, \Box \Diamond p, \Diamond p, p \} \)

Only 2 promising formulas in \(\Phi_{\varphi} \)

\(\psi_1 : \neg \Box p \) promises \(r_1 : \neg p \)
\(\psi_2 : \Diamond \neg p \) promotes \(r_2 : \neg p \)
Promise Fulfillment

Property:
Let \(\sigma \) be an arbitrary model of \(\varphi \),
and \(\psi \in \Phi_\varphi \) a formula that promises \(r \).
If \((\sigma, j) \vdash \psi \) then \((\sigma, k) \vdash r \) for some \(k \geq j \)

Proof: Follows from the semantics of temporal formulas.

Claim: (promise fulfillment by models)
Let \(\sigma \) be an arbitrary model of \(\varphi \),
and \(\psi \in \Phi_\varphi \) a formula that promises \(r \).
Then \(\sigma \) contains infinitely many positions \(j \geq 0 \)
such that
\[
(\sigma, j) \models \neg \psi \text{ or } (\sigma, j) \models r
\]

Proof:
1. Assume \(\sigma \) contains infinitely many \(\psi \)-positions.
 Then \(\sigma \) must contain infinitely many \(r \)-positions,
since \(\psi \) promises \(r \).
2. Assume \(\sigma \) contains finitely many \(\psi \)-positions.
 Then it contains infinitely many \(\neg \psi \)-positions.

Tableau \(T \Diamond p \)

- \(A_1^+ : \{p, \Diamond \Diamond p, \Diamond p\} \)
- \(A_2^- : \{\neg p, \Diamond \Diamond p, \Diamond p\} \)
- \(A_3^+ : \{p, \neg \Diamond \Diamond p, \Diamond p\} \)
- \(A_4^- : \{\neg p, \neg \Diamond \Diamond p, \neg \Diamond p\} \)
- \(A_2^- : \{\neg p, \Diamond \Diamond p, \Diamond p\} \)

Fulfilling Atoms

Definition: Atom \(A \) fulfills \(\psi \in \Phi_\varphi \)
(which promises \(r \))
if \(\neg \psi \in A \) or \(r \in A \).

Example: In \(T \Diamond p \):
Only one promising formula:
\(\psi : \Diamond p \) promises \(r : p \)
\(A_1^+ : \{p, \Diamond \Diamond p, \Diamond p\} \)
fulfills \(\Diamond p \) since \(p \in A_1 \)
\(A_3^+ : \{p, \neg \Diamond \Diamond p, \Diamond p\} \)
fulfills \(\Diamond p \) since \(p \in A_3 \)
\(A_4^- : \{\neg p, \neg \Diamond \Diamond p, \neg \Diamond p\} \)
fulfills \(\Diamond p \) since \(\neg \Diamond p \in A_4 \)
But
\(A_2^- : \{\neg p, \Diamond \Diamond p, \Diamond p\} \)
does not fulfill \(\Diamond p \) since \(\Diamond p, \neg p \in A_2 \)

Fulfilling Paths

Definition: A path \(\pi : A_0, A_1, \ldots \) is fulfilling if
for every promising formula \(\psi \in \Phi_\varphi \)
it contains infinitely many \(A_j \) that fulfill \(\psi \).

Example: In \(T \Diamond p \):
\(A_2^- \), \(A_2^- \), \(A_2^+ \), \(A_3^+ \), \(A_4^+ \), \ldots
\(A_2^-, A_3^-, A_1^+, A_1^+, A_1^+, A_1^+, \ldots \)
are fulfilling paths, but
\(A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, A_2^-, \ldots \)
is not a fulfilling path.
Example: (Cont’d)

- path $(A^{-}_{7})^{\omega}$ not fulfilling.
- path $(A^{++}_{2})^{\omega}$ is fulfilling.
- path $(A^{++}_{2}, A^{-}_{3})^{\omega}$ is fulfilling.
- path $A^{++}_{4}, (A^{++}_{5})^{\omega}$ is fulfilling.
- For arbitrary m, path
 \[\pi: (A^{++}_{2}, A^{-}_{3})^{m}, A^{++}_{4}, (A^{++}_{5})^{\omega} \]
 is fulfilling.

Example:

\[\varphi_{1}: \square p \land \Diamond \neg p \]

$T_{\varphi_{1}}$ in Fig 5.3

There are two promising formulas in Φ:

- $\psi_{1} : \neg \square p$ promises $r_{1} : \neg p$
- $\psi_{2} : \Diamond \neg p$ promises $r_{2} : \neg p$

- $A^{++}_{0} : \{ \neg p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{++}_{1} : \{ p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{++}_{2} : \{ \neg p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{-}_{3} : \{ p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{++}_{4} : \{ \neg p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{++}_{5} : \{ p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{++}_{6} : \{ \neg p, \neg \square p, \Diamond \neg p, \ldots \}$
- $A^{++}_{7} : \{ p, \neg \square p, \Diamond \neg p, \ldots \}$

Models vs. fulfilling paths

Claim 2 (model \rightarrow fulfilling path):
If
\[\pi_{\sigma} : A_{0}, A_{1}, \ldots \]

is a path induced by a model σ of φ,
then π_{σ} is fulfilling.

Claim 3 (fulfilling path \rightarrow model):

If
\[\pi_{\sigma} : A_{0}, A_{1}, \ldots \]

is a fulfilling path in T_{φ},
then there exists a model σ of φ that induces π_{σ}.
Proposition 1 (satisfiability by path)

Formula φ is satisfiable

iff

the tableau T_φ contains a fulfilling path

$\pi : A_0, A_1, A_2, \ldots$ such that $\varphi \in A_0$

Proof:

(\Leftarrow) $\pi : A_0, A_1, \ldots$ is a fulfilling path in T_φ with

$\varphi \in A_0$

Then, by Claim 3, there exists model σ such that

$\forall j \geq 0, \forall p \in \Phi_\varphi : (\sigma, j) \models p$ if $p \in A_j$

Since $\varphi \in A_0$, $(\sigma, 0) \models \varphi$ and thus $\sigma \models \varphi$.

(\Rightarrow) $\sigma \models \varphi$. Then by Claims 1, 2, there exists a fulfilling

path π_σ in T_φ that is induced by σ.

Since $(\sigma, 0) \models \varphi$, by the definition of induced, $\varphi \in A_0$.

Examples

In the examples below we use the following optimization:

A path starting in A can only visit nodes that are reachable from A in T_φ. So we only need to consider nodes that are reachable from nodes labeled by atoms A such that $\varphi \in A$.

Example:

$\varphi_1 : \Box p \land \neg \Box p$

$\Phi_{\varphi_1} = \{ \varphi_1, \Box p, \neg \Box p, \neg p, \Box \neg p, \neg \Box \neg p \}$

$\neg \Box p$ and $\neg \Box \neg p$ promise $\neg p$.

Basic formulas:

$\{ p, \Box p, \neg \Box p \} \rightarrow 8$ atoms

There is only one atom s.t. $\varphi_1 \in A$:

$A_7 : \{ p, \Box p, \neg \Box p, \neg p, \varphi_1 \}$

Any successor of A_7 requires $\Box p$, $\neg \Box p$, and therefore φ_1.

So the only successor is A_7 itself, and the part of T_{φ_1} reachable from A_7 is

which has the infinite path A_7^+.

However, A_7^+ does not fulfill the promising formula $\Box \neg p$, and thus A_7^+ is not a fulfilling path. Hence, φ_1 is not satisfiable.
Strongly Connected Subgraphs (scs’s)

Definitions

• A subgraph $S \subseteq T_\varphi$ is called strongly connected subgraph (scs) if for every 2 distinct atoms $A, B \in S$
 which there exists a path from A to B

Note: a single-node subgraph is an scs

• A single-node scs is called transient ("bad") if it is not connected to itself

• A non-transient ("good") scs S is fulfilling if every promising formula $\psi \in \Phi_\varphi$ is fulfilled by some atom $A \in S$, i.e.
 $\neg \psi \in A$ or $r \in A$

• scs S is φ-reachable if there exist a path and $k \geq 0$
 $B_0, B_1, \ldots, B_k, \ldots$
 such that $\varphi \in B_0$ and $B_k \in S$.

Example: In $T_\square p$,

$\{A_1^+, \{A_2^+, A_5^-\}, \{A_4^+\}\}$ are fulfilling
$\{A_2^-\}$ is not fulfilling
All scss are $(\square p)$-reachable.
A_3 is a transient scs. All others are good scss.

Example: In T_φ_1 (Fig. 5.3),

$\{A_4\}$ transient scs
$\{A_5\}$ good scs
$\{A_7\}$ is the only φ_1-reachable scs

$\{A_2^{++,}A_3^--\} ~ \{A_5^{++}\}$ fulfilling scs’s
$\{A_1^{++,}\} ~ \{A_7^+\}$ scs’s but not fulfilling

Why scs’s?

In general a tableau may have infinitely many paths, so we cannot directly determine whether there are any fulfilling paths.

What needs to hold?

• When does a graph have an infinite path?
 \rightarrow it must have a non-transient scs.

• When is such an infinite path induced by a model of φ?
 \rightarrow scs must be φ-reachable,
 i.e., reachable from a node labeled by A, s.t. $\varphi \in A$
 \rightarrow scs must be fulfilling,
 i.e., for every promising formula $\psi \in \Phi_\varphi$ the scs must have at least one atom that fulfills ψ.
Proposition (satisfiability by scs)

Formula ϕ is satisfiable

iff

the tableau T_{ϕ} contains a ϕ-reachable fulfilling scs

The number of scs’s in a graph is finite, but may be exponential in the size of the graph!

Example: $\varphi_0 : \Box p$

In T_{φ_0}, the fulfilling SCS’s

$\{A_1^+ \} \{A_1^+, A_2^- \} \{A_4^+ \}$

are reachable from an initial node.

Thus, $\varphi_0 : \Box p$ is satisfiable.

Satisfying models:

$p^\omega (p, \neg p)^\omega p, (\neg p)^\omega$.

Maximal Strongly Connected Subgraphs (mscs’s)

Definition: An scs is maximal (mscs) if it is not properly contained in any larger scs

Example: In T_{φ_1} (Fig. 5.3),

$\{A_2, A_3\}$ not MSCS

$\{A_2\}$ MSCS

In fact, it is sufficient to determine whether there exists a fulfilling reachable MSCS in T_{ϕ}. The number of MSCS in T_{ϕ} is bounded by $|T_{\phi}|$.

Decomposition into mscs’s

There exists an efficient algorithm [Hopcroft&Tarjan] to decompose T_{ϕ} into subgraphs G_1, \ldots, G_N such that

- each G_i is an mscs (and therefore disjoint)

- $G_1 \cup \ldots \cup G_N = T_{\phi}$

- whenever there is an edge from a node in G_i to a node in G_j then $i \leq j$.

Algorithm SAT

(check satisfiability of arbitrary temporal formula φ)

- construct T_{φ}

- construct T^-_{φ} by removing all atoms that are not reachable from φ-atom

- decompose T^-_{φ} into mscs’s U_1, \ldots, U_k

- check whether U_1, \ldots, U_k is fulfilling:

 - if some U_i is fulfilling: φ is satisfiable.
 A model is defined by the path leading from a φ-atom to U_i and staying in U_i forever from then on.

 - if no U_i is fulfilling: φ is not satisfiable.
Proposition (satisfiability and mscs)

Formula φ is satisfiable iff

The tableau $T_{\neg \varphi}$ contains a φ-reachable fulfilling mscs

Check validity of φ

Apply algorithm SAT to $\neg \varphi$

Algorithm reports success:

$\neg \varphi$ is satisfiable \Rightarrow φ is not valid

(the produced σ is a counterexample)

Algorithm reports failure:

$\neg \varphi$ is unsatisfiable \Rightarrow φ is valid

Example: Check satisfiability of φ_1: $\Box p \land \Diamond \neg p$

$T_{\varphi_1} (\text{Fig 5.3})$

$T_{\neg \varphi_1} = \{A_7^+, A_7^-\}$ mscs of $T_{\neg \varphi_1} = \{A_7^+, A_7^-\}$

Corresponding nonfulfilling

Example:

$\psi_1 = \neg \varphi_1$: $\neg (\Box p \land \Diamond \neg p)$

$T_{\psi_1} (\text{Fig 5.3})$

$T_{\neg \psi_1}$: all atoms

mscs's:

- $\{A_0\}, \{A_4\}, \{A_6\}$ transient
- $\{A_1^+, A_7^-\}$ non-fulfilling
- $\{A_2^+, A_3^-\}, \{A_5^+\}$ fulfilling

For A_5^+:

A_5^+ model $(p; T)^\omega$

For $\{A_2^+, A_3^-\}$:

$(A_2, A_3)^\omega$ model $(p; F)(p; T)^\omega$

each satisfies ψ_1

Example: Check satisfiability of φ_2: $\Box (\neg at_{\ell_2} \lor \Diamond at_{\ell_3})$

$\varphi_2^+: \{ \Box p_2, \quad \Box \Box p_2, \quad p_2, \at_{\ell_2}, \at_{\ell_3}, \Box \at_{\ell_3}, \quad \Box \at_{\ell_3}, \at_{\ell_3} \}$

φ_2-reachable atoms

$\{ \Box p_2, \quad \Box \Box p_2, \quad p_2, \at_{\ell_2}, \at_{\ell_3}, \Box \at_{\ell_3}, \quad \Box \at_{\ell_3}, \at_{\ell_3} \}$

8 possibilities

Fixed:

One promising formula in Φ: $\Diamond at_{\ell_3}$ (and $\neg \Box p_2$)

A_5^+:

A_5^+:

A_1^+:

A_1^+:

A_2^+:

A_2^+:

A_3^+:

A_3^+:

A_4^+:

A_4^+:
Example: (Cont’d)

Atom #8
{ □p2, ◇p2, ◇ at−ℓ2, ¬ at−ℓ3, ¬ ◇ at−ℓ3, \ldots }

is not considered since
¬ at−ℓ2 ∨ ◇ at−ℓ3 and at−ℓ2 → ◇ at−ℓ3

Tableau $T\varphi_2$ (Fig 5.4) = $T_{\neg\varphi_2}$

formula ◇ at−ℓ3 promising at−ℓ3

Decomposition to mscs’s

$\{A_1^-, A_3^+, A_4^-, A_6^+\} \{A_2^+\} \{A_5^+\}$

fulfilling mscs’s: $\{A_0^+\}, \{A_1^-, A_3^+, A_4^-, A_6^+\}$

(\{A_2\} and \{A_5\} are transient)

φ_2 is satisfiable

model (by A_0^ω)

$\langle at−ℓ2: f, at−ℓ3: f \rangle^\omega$

Pruning the tableau

Definition: mscs S is terminal if
there are no edges leading from
atoms of S to atoms outside S

Example: Consider $\psi_1 = \neg\varphi_1 : \neg (\Box p \land \neg p)$
In T_{ψ_1} (same as T_{φ_1}, Fig 5.3, except for initial nodes)

{A_1} {A_5} {A_7} are terminal mscs’s

{A_6} {A_2, A_3} are not

After constructing T_{φ}, remove useless atoms:

- Remove an mscs that is not φ-reachable.
- Remove a terminal mscs that is not fulfilling.

Iterate until no further atoms can be removed.
Fig. 5.3: Tableau T_{ψ_1} for formula

$\psi_1: \neg(\Box p \land \lozenge \neg p)$.

A++

2: \{ ¬p, ¬/BE/BCp, /BE/BD¬p, ¬/BCp, /BD¬p, ¬ϕ₁ \}

A+-

7: \{ p, /BE/BCp, /BE/BD¬p, /BCp, /BD¬p, ϕ₁ \}

13-34

Example:

ϕ₃: /BC/BD(x = 3)

Φ⁺

ϕ₃: { ϕ₃, /BD(x = 3), x = 3, /BE/BD(x = 3), /BEϕ₃ }

Fulfilling msc's: \{ A⁺⁺₂, A⁺⁺₃ \}, \{ A⁺⁺₅ \}

$\psi_1: \neg(\Box p \land \lozenge \neg p)$ is satisfiable.

Pruned Tableau T_{ψ_1} for

$\psi_1: \neg(\Box p \land \lozenge \neg p)$

A++

1: \{ x ≠ 3, ¬/BE/BD(x = 3), ¬/BEϕ₃, ¬/BD(x = 3), ¬ϕ₃ \}

13-35

Fig. 5.6. Pruned tableau $T_{ψ₃}$

ϕ₃: /BC/BD(x = 3)

A⁺⁺₁: x = 3

ϕ₃, /BC/BD(x = 3), /BCϕ₃, /BDϕ₃

A⁻⁻₁: x ≠ 3

The $ϕ₃$-reachable msc's: \{ A⁺⁺₀, A⁺⁺₁ \}

\{ A⁺⁺₀, A⁻⁻₁ \} is fulfilling.

Therefore, $ϕ₃$ is satisfiable.

Model (by $(A₀, A₁)ω$): $(⟨x: 3⟩, ⟨x: 0⟩)ω$

arbitrary $x ≠ 3$