Satisfiability over a finite-state program

\(P \)-validity problem (of \(\varphi \))

Given a finite-state program \(P \) and formula \(\varphi \),

is \(\varphi \) \(P \)-valid?
i.e. do all \(P \)-computations satisfy \(\varphi \)?

\(P \)-satisfiability problem (of \(\varphi \))

Given a finite-state program \(P \) and formula \(\varphi \)

is \(\varphi \) \(P \)-satisfiable?
i.e., does there exist a \(P \)-computation which satisfies \(\varphi \)?

To determine whether \(\varphi \) is \(P \)-valid, it suffices to apply an algorithm for deciding if there is a \(P \)-computation that satisfies \(\neg \varphi \).
The Idea

To check P-satisfiability of φ, we combine the tableau T_φ and the transition graph G_P into one product graph, called the behavior graph $B(\{P,\varphi\})$, and search for paths

$$(s_0, A_0), (s_1, A_1), (s_2, A_2), \ldots$$

that satisfy the two requirements:

- $\sigma \models \varphi$: there exists a fulfilling path $\pi: A_0, A_1, \ldots$ in the tableau T_φ such that $\varphi \in A_0$.

- σ is a P-computation: there exists a fair path $\sigma: s_0, s_1, \ldots$ in the transition graph G_P.
State transition graph G_P: Construction

- Place as nodes in G_P all initial states s ($s \models \Theta$)

- Repeat

 for some $s \in G_P$, $\tau \in T$,
 add all its τ-successors s' to G_P
 if not already there,
 and add edges between s and s'.

 Until no new states or edges can be added.

If this procedure terminates, the system is finite-state.
Example: Program mux-pet1 (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local \(y_1, y_2 \): boolean where \(y_1 = F, y_2 = F \)
s : integer where \(s = 1 \)

\[P_1 :: \]
\[\ell_0 : \text{loop forever do} \]
\[\begin{align*}
\ell_1 : & \text{noncritical} \\
\ell_2 : & (y_1, s) := (T, 1) \\
\ell_3 : & \text{await } (\neg y_2) \lor (s \neq 1) \\
\ell_4 : & \text{critical} \\
\ell_5 : & y_1 := F
\end{align*} \]

\[m_0 : \text{loop forever do} \]
\[\begin{align*}
m_1 : & \text{noncritical} \\
m_2 : & (y_2, s) := (T, 2) \\
m_3 : & \text{await } (\neg y_1) \lor (s \neq 2) \\
m_4 : & \text{critical} \\
m_5 : & y_2 := F
\end{align*} \]
Abstract state-transition graph for MUX-PET1

We use $y_1 \Leftrightarrow at_{-\ell_{3..5}}$

$y_2 \Leftrightarrow at_{-m_{3..5}}$
Some states have been lumped together:
a super-state labeled by i represents i states

MUX-PETL has 42 reachable states.

Based on this graph it is straightforward to check the properties

$$\psi_1 : \Box \neg (at_{-l_4} \land at_{-m_4})$$

$$\psi_2 : \Box (at_{-l_3} \land \neg at_{-m_3} \rightarrow s = 1)$$

$$\psi_3 : \Box (at_{-m_3} \land \neg at_{-l_3} \rightarrow s = 2)$$
MUX-PET1 Full state-transition graph (l_i, m_j, s)
Definitions

- For atom A, $\text{state}(A)$ is the conjunction of all state formulas in A
 (by R_{sat}, $\text{state}(A)$ must be satisfiable)

- For $A \in T_\varphi$,
 $\delta(A)$ denotes the set of successors of A
 in T_φ

- atom A is consistent with state s
 if $s \models \text{state}(A)$,
 i.e. s satisfies all state formulas in A.

- ϑ: A_0, A_1, \ldots path in T_φ
 σ: s_0, s_1, \ldots computation of P

 ϑ is a trail of T_φ over σ if
 A_j is consistent with s_j, for all $j \geq 0$
For finite-state program P and formula φ, we construct the (P, φ)-behavior graph

$$\mathcal{B}_{(P, \varphi)} \approx G_P \times T_{\varphi}^- \text{ (pruned)}$$

such that

- **nodes** are labeled by (s, A)
 where s is a state from G_P and A is an atom from T_{φ} consistent with s.

- **edges**
 There is an edge $s, A \xrightarrow{\tau} s', A'$ if and only if $s' \in \tau(s)$ and $A' \in \delta(A)$

 $$
 \begin{array}{c}
 \text{in } G_P \\
 \text{in } T_{\varphi}
 \end{array}
 $$

- **initial φ-node** (s, A)
 if s is an initial state ($s \models \Theta$) and A is an initial φ-atom ($\varphi \in A$)

 It is marked $\text{marked}(s, A)$
Algorithm behavior-graph
(constructing $B_{(P,\varphi)}$)

- Place in B all initial φ-nodes (s, A)
 (s initial state of P,
 A initial φ-atom in T_{φ}^-
 A consistent with s)

- Repeat until no new nodes or new edges can be added:
 Let (s, A) be a node in B
 $\tau \in T$ a transition
 (s', A') a pair s.t.
 s' is a τ-successor of s
 $A' \in \delta(A)$ in pruned T_{φ}^-
 A' consistent with s'

 - Add (s', A') to B, if not already there
 - Draw a τ-edge from (s, A) to (s', A'), if not already there
Example: Given FTS LOOP

\[\Theta : x = 0 \]
\[\mathcal{T} = \{ \tau, \tau_I \} \]
with \(\tau_I \) (idling)
\[\tau \text{ where } \rho_\tau : x' = (x + 1) \text{mod} 4 \]
\[\mathcal{J} : \{ \tau \} \]

Check \(P \)-satisfiability of \(\psi_3 : \Diamond \Box (x \neq 3) \)

state-transition graph \(G_{\text{LOOP}} \) (Fig 5.9)
pruned \(T_{\psi_3}^- \) (Fig 5.8)
Behavior graph \(B_{(\text{LOOP}, \psi_3)} \) (Fig 5.10)
Fig. 5.9. State-transition graph G_{LOOP}
Pruned tableau $T_{\psi_3}^{-}$ (Fig. 5.8)

Eliminating

- MSCS’s not reachable from an initial ψ_3-atom and
- non-fulfilling terminal MSCS’s

Promising formulas:

\[\Diamond \Box (x \neq 3) \text{ promising } \Box (x \neq 3) \]
\[\neg \Box (x \neq 3) \text{ promising } (x = 3) \]

Two non-transient MSCS’s:

\[\{ A_4^{-+}, A_5^{-+} \} \text{ not fulfilling} \]
\[\{ A_7^{++} \} \text{ fulfilling} \]
Behavior graph $\mathcal{B}_{(\text{LOOP}, \psi_3)}$ (Fig 5.10)
Example: Given FTS ONE:

\[\Theta: \quad x = 0 \]

\[\mathcal{T}: \quad \{\tau_1, \tau_2, \tau_3, \tau_4, \tau_I\} \]

with \[\rho_{\tau_1}: \quad x = 0 \land x' = 1 \]

\[\rho_{\tau_2}: \quad x = 1 \land x' = 0 \]

\[\rho_{\tau_3}: \quad x = 0 \land x' = -1 \]

\[\rho_{\tau_4}: \quad x = -1 \land x' = 0 \]

\[J: \quad \emptyset \]

\[C: \quad \{\tau_1, \tau_3\} \]

Transition graph \(G_{\text{ONE}} \)
We want to know whether
\[\varphi : \Box \Diamond (x = 1) \]
is valid over ONE.

Check \(P \)-satisfiability of
\[\neg \varphi : \underbrace{\Diamond \Box (x \neq 1)}_{\psi} \]

\(\Phi^+_\psi : \{ \psi, \lozenge \psi, \Box (x \neq 1), \lozenge \Box (x \neq 1), x = 1 \} \)

basic formulas: \{ \lozenge \psi, \lozenge \Box (x \neq 1), x = 1 \}

Promising formulas:
\[\psi_1 : \psi = \Diamond \Box (x \neq 1) \text{ promising} \quad r_1 : \Box (x \neq 1) \]
\[\psi_2 : \neg \Box (x \neq 1) \text{ promising} \quad r_2 : x = 1 \]
Pruned tableau T_{ψ}

ψ, ¬□(x ≠ 1), ○ψ, ¬□(x ≠ 1)

$A_{4}^{-+}: x = 1$ $A_{5}^{--}: x ≠ 1$

$A_{6}^{-+}: x = 1, ○□(x ≠ 1), ○ψ, □(x ≠ 1), ψ$

$A_{7}^{++}: x ≠ 1, ○□(x ≠ 1), ○ψ, □(x ≠ 1), ψ$
Behavior graph $\mathcal{B}_{\text{ONE}, \Diamond \Box (x \neq 1)}$

Two non-transient MSCS’s:

\{(s_2, A_4^{-+}), (s_1, A_5^{--}), (s_3, A_5^{--})\}: not fulfilling,

\{(s_1, A_7^{++}), (s_3, A_7^{++})\}: fulfilling
Claim 5.9 (paths of $\mathcal{B}_{(P,\varphi)}$)

The infinite sequence

$$\pi: \left((s_0, A_0), (s_1, A_1), \ldots \right)$$

is a path in $\mathcal{B}_{(P,\varphi)}$

iff

$$\sigma_\pi: s_0, s_1, \ldots \text{ is a run of } P$$

(i.e. computation of P less fairness)

$$\vartheta_\pi: A_0, A_1, \ldots \text{ is a trail of } T_\varphi \text{ over } \sigma_\pi$$

(i.e. A_j consistent with s_j, for all $j \geq 0$)

Example: In $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig. 5.10)

$$\pi: \left((s_0, A_5), (s_1, A_5), (s_2, A_5), (s_3, A_4) \right)^\omega$$

induces

$$\sigma_\pi: (s_0, s_1, s_2, s_3)^\omega \text{ run of LOOP}$$

$$\vartheta_\pi: (A_5, A_5, A_5, A_4)^\omega \text{ trail of } T_{\psi_3} \text{ over } \sigma_\pi$$
Proposition 5.10 (*P*-satisfiability by path)

P has a computation satisfying *ϕ*

iff

there is an infinite \(\varphi \)-initialized path \(\pi \)
in \(\mathcal{B}_{(P,\varphi)} \) s.t.

\[\sigma_\pi \] is a *P*-computation (fair run of *P*)

\[\vartheta \] is a fulfilling trail over \(\sigma_\pi \)

Searching for “good” paths in \(\mathcal{B}_{(P,\varphi)} \)

— not practical.
Definitions

For behavior graph $\mathcal{B}_{(P,\varphi)}$

- node (s', A') is a τ-successor of (s, A) if $\mathcal{B}_{(P,\varphi)}$ contains τ-edge connecting (s, A) to (s', A')

- transition τ is enabled on node (s, A) if τ is enabled on state s
Definitions (Con’t)

For scs $S \subseteq \mathcal{B}_{(P, \varphi)}$:

- Transition τ is taken in S if there exists two nodes $(s, A), (s', A') \in S$ s.t. (s', A') is a τ-successor of (s, A)

- S is \underbrace{\text{just compassionate}}_{\text{compassionate}}\) if every \{just compassionate\} transition $\tau \underbrace{\in \mathcal{J}}_{\in \mathcal{C}}$ is either taken in S or is disabled on \underbrace{\text{some node}}_{\text{all nodes}} in S

- S is \underline{fair} if it is both just and compassionate

- S is \underline{fulfilling} if every promising formula $\psi \in \Phi_\psi$ is fulfilled by some atom A, s.t. $(s, A) \in S$ for some state s

- S is \underline{adequate} if it is fair and fulfilling
Adequate SCS’s

Proposition 5.11 (adequate SCS and satisfiability)

Given a finite-state program P and temporal formula φ. φ is P-satisfiable

iff

$B_{(P,\varphi)}$ has an adequate SCS

Example: Consider LOOP and

\[
\psi_3: \Diamond \Box (x \neq 3)
\]

Is ψ_3 LOOP-satisfiable?

Check the SCS’s in $B_{(\text{LOOP},\psi_3)}$ (Fig. 5.10)
Behavior graph $\mathcal{B}_{(\text{LOOP}, \psi_3)}$ (Fig 5.10)
Example (Con’t)

- \{ (s_0, A_{5^-}), (s_1, A_{5^-}), (s_2, A_{5^-}), (s_3, A_{4^+}) \} is fair but not fulfilling

- \{ (s_0, A_{7^+}), (s_1, A_{7^+}), (s_2, A_{7^+}) \}
 each is fulfilling but not fair
 Not just with respect to transition \(\tau \)

- \{ (s_3, A_{6^-}) \}
 is neither fair (unjust toward \(\tau \)) nor fulfilling (being transient)

No adequate subgraphs in \(\mathcal{B}_{(\text{LOOP}, \psi_3)} \)

Therefore, by proposition 5.11, \text{LOOP} has no computation that satisfies \(\psi_3: \Diamond \Box (x \neq 3) \)
Example: Consider LOOP and

\[\varphi_3: \square \Diamond (x = 3) \]

Is \(\varphi_3 \) LOOP-satisfiable?

Promising formulas:

\[\Diamond (x = 3) \text{ promising } (x = 3) \]
\[\neg \square \Diamond (x = 3) \text{ promising } \neg \Diamond (x = 3) \]

Pruned tableau \(T_{\varphi_3} \) (Fig. 5.6)
Behavior graph $\mathcal{B}_{(\text{LOOP}, \varphi_3)}$ (Fig. 5.11)
\[S = \{ (s_0, A_1^-), (s_1, A_1^-), (s_2, A_1^-), (s_3, A_0^+) \} \]

is an adequate subgraph:

fair \(\tau \) taken in \(S \)
fulfilling

Therefore, by proposition 5.11, program LOOP has a computation satisfying \(\varphi_3: \Box \Diamond (x = 3) \)

The periodic computation \(\sigma: (x: 0, x: 1, x: 2, x: 3)^\omega \) satisfies \(\varphi_3 \)
From Atom Tableau T_φ

to ω-Automaton A_φ

For temporal formula φ, construct the ω-automaton

$$A_\varphi : \langle N, N_0, E, \mu, F \rangle$$

where

- **Node labeling μ:**

 For node $n \in N$ labeled by atom A in T_φ,
 $$\mu(n) = \text{state}(A).$$

- **Acceptance condition F:**

 Muller:
 $$F = \{ \text{SCS } S \mid S \text{ is fulfilling } \}$$

 Street:
 $$F = \{ (P_\psi, R_\psi) \mid \psi \in \Phi_\varphi \text{ promises } r \},$$
 where
 $$P_\psi = \{ A \mid \neg\psi \in A \}$$
 $$R_\psi = \{ A \mid r \in A \}$$
Example: $\varphi: \Diamond p$

Tableau T_{φ}:

$$A_1^+: \{p, \Box \Diamond p, \Diamond p\} \quad A_2^-: \{\neg p, \Box \Diamond p, \Diamond p\}$$

$$A_3^+: \{p, \neg \Box \Diamond p, \Diamond p\}$$

$$A_4^+: \{\neg p, \neg \Box \Diamond p, \neg \Diamond p\}$$
Example: $A \square p$ from $T \square p$

\[
\begin{align*}
F_M &= \{\{n_1\}, \{n_1, n_2\}, \{n_4\}\} \\
F_S &= \{(P \square p, R \square p)\} \\
&= \{(\{n_4\}, \{n_1, n_3\})\} \\
&\approx \{(\{n_4\}, \{n_1\})\}
\end{align*}
\]

since no path can visit n_3 infinitely often.
Abstraction

Abstraction = a method to verify infinite-state systems.

Idea:

<table>
<thead>
<tr>
<th>abstraction</th>
<th>→</th>
<th>Abstract program P^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program P (infinite state)</td>
<td>→</td>
<td>Abstract property φ^A</td>
</tr>
<tr>
<td>Property φ</td>
<td>→</td>
<td>$P^A \models \varphi^A$</td>
</tr>
</tbody>
</table>

We want to ensure that if $P^A \models \varphi^A$ then $P \models \varphi$.
Abstraction (Cont’d)

How do we obtain such an abstraction function?

- 1) Abstract the domain to a finite-state one (*data abstraction*):
 For variables \vec{x} ranging over domain D, find an abstract domain D^A and an abstraction function $\alpha : D \rightarrow D^A$.

- 2) From the data abstraction it is possible to compute an abstraction for the program and for the property such that if $P^A \models \varphi^A$ then $P \models \varphi$.
Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

\[
\begin{align*}
P_1 &::= \begin{cases}
\text{loop forever do} \\
\ell_0 : \text{noncritical} \\
\ell_1 : y_1 \coloneqq y_2 + 1 \\
\ell_2 : \text{await } y_2 = 0 \lor y_1 \leq y_2 \\
\ell_3 : \text{critical} \\
\ell_4 : y_1 \coloneqq 0 \\
\end{cases} \\
\| \\
P_2 &::= \begin{cases}
\text{loop forever do} \\
m_0 : \text{noncritical} \\
m_1 : y_2 \coloneqq y_1 + 1 \\
m_2 : \text{await } y_1 = 0 \lor y_2 < y_1 \\
m_3 : \text{critical} \\
m_4 : y_2 \coloneqq 0 \\
\end{cases}
\end{align*}
\]

Abstract domain: the boolean algebra over \(B = \{b_1, b_2, b_3 : \text{boolean}\} \), with
\[
\begin{align*}
b_1 &\iff y_1 = 0 \\
b_2 &\iff y_2 = 0 \\
b_3 &\iff y_1 \leq y_2
\end{align*}
\]
Example: Abstracting Bakery (Cont’d)

Program MUX-BAK-ABSTR (finite-state program)

\[P_1 ::\]
\[
\begin{align*}
\text{loop forever do} \\
\ell_0 : & \text{noncritical} \\
\ell_1 : & (b_1, b_3) := (\text{false, false}) \\
\ell_2 : & \text{await } b_2 \lor b_3 \\
\ell_3 : & \text{critical} \\
\ell_4 : & (b_1, b_3) := (\text{true, true})
\end{align*}
\]

\[P_2 ::\]
\[
\begin{align*}
\text{loop forever do} \\
m_0 : & \text{noncritical} \\
m_1 : & (b_2, b_3) := (\text{false, true}) \\
m_2 : & \text{await } b_1 \lor \neg b_3 \\
m_3 : & \text{critical} \\
m_4 : & (b_2, b_3) := (\text{true, } b_1)
\end{align*}
\]

This program can now be checked for mutual exclusion, bounded overtaking, response.

Show MUX-BAK-ABSTR \(\models \square \neg (at_\ell_3 \land at_m_3) \). Then it follows that MUX-BAK \(\models \square \neg (at_\ell_3 \land at_m_3) \).