Practice Midterm Solutions

Problem 1. Master Theorem

Here is a table of logarithms. In the row \(i\) and column \(j\) you find the value of \(\log_i j\).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\log_2 1 = 0)</td>
<td>(\log_2 2 = 1)</td>
<td>(\log_2 3 = 1.5849)</td>
<td>(\log_2 4 = 2)</td>
</tr>
<tr>
<td>3</td>
<td>(\log_3 1 = 0)</td>
<td>(\log_3 2 = .6309)</td>
<td>(\log_3 3 = 1)</td>
<td>(\log_3 4 = 1.2618)</td>
</tr>
<tr>
<td>4</td>
<td>(\log_4 1 = 0)</td>
<td>(\log_4 2 = .5)</td>
<td>(\log_4 3 = .7924)</td>
<td>(\log_4 4 = 1)</td>
</tr>
<tr>
<td>5</td>
<td>(\log_5 1 = 0)</td>
<td>(\log_5 2 = .4306)</td>
<td>(\log_5 3 = .6826)</td>
<td>(\log_5 4 = .8613)</td>
</tr>
</tbody>
</table>

Solve the following recursions (\(c\) is always a constant). Give only the final results.

(a) \(T(n) = T(n/3) + c\).
(b) \(T(n) = 4T(n/2) + cn^3\).
(c) \(T(n) = 4T(n/4) + cn\).
(d) \(T(n) = 3T(n/5) + c\sqrt{n}\).

Solution

(a) \(a = 1, b = 3, \text{ and } n^{\log_b a} = n^0 = 1\).
\[f(n) = c. \]
Therefore, \(f(n) = \Theta(n^{\log_b a})\) and \(T(n) = \Theta(n^{\log_b a} \log n) = \Theta(\log n)\).

(b) \(a = 4, b = 2, \text{ and } n^{\log_b a} = n^2\).
\[f(n) = cn^3. \]
Therefore, \(f(n) = \Omega(n^{\log_b a + 1})\) and \(T(n) = \Theta(f(n)) = \Theta(n^3)\).

(c) \(a = 4, b = 4, \text{ and } n^{\log_b a} = n^1 = n\).
\[f(n) = cn. \]
Therefore, \(f(n) = \Theta(n^{\log_b a})\) and \(T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)\).

(d) \(a = 3, b = 5, \text{ and } n^{\log_b a} = n^{.6826}\).
\[f(n) = c\sqrt{n} = cn^{.5}. \]
Therefore, \(f(n) = O(n^{\log_b a - .1826})\) and \(T(n) = \Theta(n^{.6826})\).
Problem 2. Divide and Conquer

You are given a (not necessarily sorted) array \(a_1, a_2, \ldots, a_n \) of \(n \) integers. You can assume that the numbers are all different, but you cannot assume that they come from a small range. Consider the collection \(C \) of \(n^2 \) numbers of the form: \(\min\{a_i, a_j\} \), for \(1 \leq i, j \leq n \). Present an \(O(n) \)-time algorithm to find the median of \(C \) (note that the elements of \(C \) are not all different, even if \(a_1, \ldots, a_n \) were all different).

Solution

The basic difficulty of the problem is in establishing which element of the original array can be the median of the collection \(C \).

One can observe that if \(a_k \) is the minimum element of the given \(n \) integers it has to appear \(2n - 1 \) times in the collection \(C \) (this is because \(\min\{a_k, a_j\} = a_k \forall j = 1 \ldots n \) and \(\min\{a_j, a_k\} = a_k \forall j = 1 \ldots n \). The -1 comes from the fact that in both the above equations the comparison \(\min\{a_k, a_k\} \) is performed). By a similar argument the “second” minimum has to be repeated \(2(n - 1) - 1 \) times. As a matter of fact the total number of element, in \(C \), is given by

\[
\sum_{i=0}^{n-1} 2(n - i) - 1 = n^2
\]

Now all we have to establish is the value \(k \) such that

1. \(\sum_{i=0}^{k-1} 2(n - i) - 1 \leq n^2/2 \)
2. \(\sum_{i=0}^{k} 2(n - i) - 1 \geq n^2/2 \)

The algorithm that solves the problem is thus (where \(A \) is supposed to be the original array)

Find Median\((A, n)\)

\[
\begin{align*}
 k &= 0; \\
 position &= 0; \\
 \text{WHILE (position }&\leq n^2/2) \text{ DO} \\
 \text{ position} &= \sum_{i=0}^{k} 2(n - i) - 1 \\
 k &= + \\
\text{END WHILE} \\
 m &= \text{Select}(A, k + 1, n) \\
\text{return } m
\end{align*}
\]

Correctness

The above argument justifies the correctness of the algorithm

Analysis

Note that the sum \(\sum_{i=0}^{k} 2(n - i) - 1 \), can be calculated in time \(O(c) \) where \(c \) is a constant, being it rewritable as:

\[
\sum_{i=0}^{k} 2(n - i) - 1 = (k + 1)(2n - 1) - k(k + 1)
\]
Thus the while loop takes at most $O(n)$ time. The procedure of $\text{Select}(A, k + 1, n)$ has also running time $O(n)$. So the total complexity of the algorithm Find Median is $O(n)$.

With some more analytical work, we can avoid doing the search for the right value of k, and we can rather compute it directly. If v is a value that is the k-th order statistics in \(a_1, \ldots, a_n\), then we can verify that C contains \((2kn - 2n - k^2 + 2k - 1)\) elements that are smaller than v, \(2n - 2k + 1\) elements that are equal to v, and \(n^2 - kn + k^2\) elements that are bigger than v. If $k = \lfloor n(1 - 1/\sqrt{2}) \rfloor$ then v is the median of C. A more efficient solution is then just to invoke $\text{Select}(A, \lfloor n(1 - 1/\sqrt{2}) \rfloor, n)$.

Problem 3. A data structure problem

Consider the problem of implementing a variation of a stack where there is also a min operation. Formally, you have to implement the operations:

- CreateStack() that returns an empty stack;
- $\text{Push}(x, S)$ that puts the integer x in the stack S;
- $\text{Pop}(S)$ that returns the most-recently-pushed element of S and deletes it from S;
- $\text{Min}(S)$ that returns the value of the minimum element of S (but does not remove it from the stack).

Describe and analyse an implementation of such a data structure such that all operations take worst-case $O(1)$ time. You cannot assume that the integers are in a small range (in particular, it is impossible to implement in constant time a DeleteMin operation, since otherwise you could sort in linear time).

Solution

The basic idea is to implement the stack as a linked list. Each item of the list simply contains an element of the stack and a pointer to the local minimum (i.e. the minimum of the elements up to that moment inserted).

Clearly $\text{CreateStack}(), \text{Push}(x, S), \text{Pop}(S)$ and $\text{Min}(S)$ require $O(1)$ time.