Problem Set 5

This problem set is due in class on Tuesday, Nov 23, except for CVN student who should mail it by Thursday, Nov 25.

When a problem asks to give an algorithm, in your solution: (i) describe shortly and informally the main ideas in your solution; (ii) give a detailed description of the algorithm, using a style similar to (but possibly more concise than) the pseudo-code of CLR; (iii) prove the correctness of the algorithm; (iv) prove a bound on the time complexity of the algorithm.

Problem 1. [Edge-cover]

Given a bipartite undirected graph \(G = (L, R, E) \), we want to find a smallest set of edges \(E' \subseteq E \) such that every vertex of \(L \) is covered by at least one edge of \(E' \) and every vertex of \(R \) is “covered” by at least one edge of \(E' \). (We say that an edge \((u, v)\) “covers” the vertices \(u \) and \(v \).) We assume that every vertex in \(G \) has degree at least one.

(a) Show that if \(M \) is a matching in \(G \), then there is a edge cover for \(G \) that uses \(\leq |V| - |M| \) edges.

(b) Show that if \(E' \) is a edge cover in \(G \), then there is a matching in \(G \) that has \(\geq |V| - |E'| \) edges.

(c) Show how to compute a minimum edge cover by doing one max matching computation on \(G \) and some simple post-processing.

Problem 2. [A Scheduling Problem]

A set of tasks \(t_1, \ldots, t_n \) is to be executed on either of two machines \(A \) and \(B \). The time taken by task \(t_i \) to be executed on machine \(A \) (respectively, \(B \)) is \(a_i \) (respectively, \(b_i \)). The times \(a_i \) and \(b_i \) are measured in seconds and are integers ranging in the interval \(1, \ldots, M \).

A solution to this scheduling problem is a partition of \(\{t_1, \ldots, t_n\} \) into sets \(TA \) and \(TB \), where \(TA \) is the set of tasks assigned to machine \(A \) and \(TB \) is the set of tasks assigned to machine \(B \). The time needed to complete all the tasks is then max(\(\sum_{i \in TA} a_i, \sum_{i \in TB} b_i \)).

Describe an algorithm having running time polynomial in \(M \) and \(n \) that partitions the tasks between the two machines so that max(\(\sum_{i \in TA} a_i, \sum_{i \in TB} b_i \)) is minimized.

[Hint: use dynamic programming.]
Problem 3. [Hamiltonian paths]

A Hamiltonian path in a graph is a simple path that visits every vertex of the graph exactly once.

Present a polynomial time algorithm that, on input a directed acyclic graph $G = (V,E)$ and a start vertex $s \in V$, decides whether there is a Hamiltonian path in G that starts at s.

[Hint: first do a topological sort, then use dynamic programming.]