

1 Hitting set algorithms

Given a collection \(\Sigma \) of subsets of \(V \), the hitting set problem is to find the smallest subset \(S \subseteq V \) which intersects (hits) every set in \(\Sigma \). If we regard \(\Sigma \) as defining a hypergraph on \(V \) (where each set in \(\Sigma \) constituting a hyperedge) then we see that the hitting set problem is equivalent to the vertex cover problem on hypergraphs; this problem is NP-hard. Here we will show two simple algorithms for finding reasonably small hitting sets.

Theorem 1.1. Let \(\Sigma = (S_1, \ldots, S_n) \) where \(S_i \) is a subset of \(\{1, \ldots, n\} \) of size \(|S_i| \geq R \). There is a deterministic algorithm which runs in \(O(nR) \) time and finds a subset \(S \subseteq V \) with \(|S| \leq (n/R) \ln n \) and \(S \cap S_i \neq \emptyset \) for all \(i \).

Proof. Assume without loss of generality that \(|S_i| = R \) for all \(i \); otherwise drop all but the first \(R \) elements from every \(S_i \) before searching for \(S \). Run the natural greedy algorithm: start with \(S = \emptyset \), and for each \(1 \leq j \leq n \), keep a counter \(c(j) = |\{S_i \in \Sigma : j \in S_i\}| \). While \(\Sigma \neq \emptyset \), let \(v \) be a maximizer of \(c(v) \): update \(S \leftarrow S \cup \{v\} \) and remove any subsets \(S_i \ni v \) from \(\Sigma \), decrementing all the appropriate counters \(c(x) \) (\(x \in V \)) whenever a subset containing \(x \) is removed from \(\Sigma \) (so in particular \(c(v) \) will decrease to zero).

To obtain the runtime, we store the counts \(c(j) \) in a data structure (e.g., a binary search tree) that can support the following operations in \(O(\log n) \) time where \(n \) is the number of entries stored:

- (a) insert an element
- (b) return the element \(j \) of maximum value \(c(j) \)
- (c) decrement a given count \(c(j) \).

The total number of decrements done by the algorithm to reach \(\Sigma = \emptyset \) is \(nR \) which explains the runtime.

We still need to upper bound \(|S| \). To this end, let \(T_j \) denote the number of sets remaining in \(\Sigma \) after \(j \) passes through the while loop, i.e. after \(j \) elements have been added to \(S \). Then, \(T_0 = |\Sigma| = n \), and \(|S| = \min\{s \geq 0 : T_s = 0\} \).

Let \(u_j \) be the \(j \)-th element added to \(S \), so \(T_j = T_{j-1} - c(u_j) \). Just before we add \(u_j \), the sum of counts \(c(v) \) over \(v \in V \setminus \{u_1, \ldots, u_{j-1}\} \) must be precisely \(T_{j-1}R \), so \(c(u_j) \) must be at least the average count, which is \(T_{j-1}R/(n-j+1) \) since there are \(n-j+1 \) elements with nonzero counts. Therefore

\[
T_j \leq \left(1 - \frac{R}{n-j+1}\right)T_{j-1} \leq n \prod_{\ell=0}^{j-1} \left(1 - \frac{R}{n-\ell}\right) < n \left(1 - \frac{R}{n}\right)^j \leq ne^{-Rj/n},
\]

and taking \(j = (n/R) \ln n \) gives \(T_j < 1 \), therefore \(T_j = 0 \). Hence, \(|S| \leq n/R \ln n \).

Theorem 1.2. Let \(\Sigma = (S_1, \ldots, S_n) \) with each \(S_i \) a subset of \(\{1, \ldots, n\} \) of size \(|S_i| \geq R \). For any constant \(c > 0 \), there is a randomized algorithm which runs in \(O(n) \) time and finds a subset \(S \subseteq V \) with \(|S| \leq (n(1+c)/R) \ln n \), such that \(S \cap S_i \neq \emptyset \) for all \(i \) holds with probability \(\geq 1 - n^{-c} \). The algorithm does not need to know \(\Sigma \).

Proof. Let \(C \equiv 1 + c, s \equiv (nC/R) \ln n \). To return a hitting set having the correct size \(s \) in expectation, randomly add each element \(v \in V \) to \(S \) with probability \(s/n \). The probability for \(S \) to miss a particular set \(S_i \in \Sigma \) is \(\prod_{v \in S_i} \Pr(v \notin S) = (1 - s/n)^{|S_i|} \leq (1 - (C/R) \ln n)^R \leq n^{-C} = n^{1-c} \), and taking the union bound over \(\Sigma \) proves that \(S \) fails to be a hitting set with probability at most \(n^{-c} \).
To return a hitting set of exactly the correct size, choose a random subset of V of size s (that is, sample s elements without replacement). The probability for S to miss a particular subset $S_i \in \Sigma$ is

$$\prod_{j=1}^{s} \frac{n - R - (j - 1)}{n - (j - 1)} \leq (1 - R/n)^s \leq n^{-C} \leq n^{-1-c}$$

where the j-th factor in the product is the probability for the j-th element added to S to avoid S_i. Taking a union bound over Σ as before proves that S fails to be a hitting set with probability at most n^{-c}. \qed

In the previous lecture, we showed that if we use the deterministic way of obtaining a small hitting set, we can obtain a deterministic $\tilde{O}(m\sqrt{n} + n^2)$ time algorithm that approximates the diameter of a graph. On the other hand, if we use the randomized way to obtain a hitting set, then the $O(n^2)$ time step of the algorithm that essentially produces the sets in Σ above can be avoided, since the randomized algorithm does not need to know Σ. Hence we would obtain an $\tilde{O}(m\sqrt{n})$ time algorithm which is faster for sparse graphs. The disadvantage is, of course, that the algorithm may fail to obtain a good estimate, albeit with very small probability.

2 Approximate APSP

Another application of hitting sets is given in the following combinatorial (“without matrix multiplication”) algorithms devised by Aingworth et al. [1] and Dor et al. [2], giving $+2$-approximations to the all-pairs-shortest-paths (APSP) problem. Throughout the following, d denotes graph distance on the input graph.

2.1 Runtime $O(n^{5/2} \log n)$

Theorem 2.1 ([1]). There is an algorithm which, given an n-vertex undirected unweighted graph, G, runs in time $O(n^{5/2} \log n)$ and computes estimates $d'(u,v)$ satisfying $d(u,v) \leq d'(u,v) \leq d(u,v) + 2$ for all $u,v \in V$.

The rough idea is as follows: Computing exact APSP (by running Dijkstra/BFS from all sources) is affordable only on a fairly sparse graph. The high-degree vertices are the computational bottleneck. To circumvent this, we use the low-degree high-degree technique. We partition the vertex set into low-degree (L) and high-degree vertices (H). High-degree vertices have large neighborhoods, and we can hit all their neighbors with a small hitting set S. A path in G either goes only through low-degree vertices, or passes within distance one of S. Thus, to estimate distances in G, it suffices to compute distances within L and distances from S, which can be done quickly since L has low-degree nodes and S is small.

To explicitly describe the algorithm, fix a parameter R (we will later set $R \approx n^{1/2}$ to optimize runtime). Let $N(v) \equiv \{v' \in V : d(v,v') \leq 1\}$; the depth-one neighborhood of vertex v.

Proof of Thm. 2.1. We first show that Algorithm 1 with general R returns the desired approximation, that is, $d(u,v) \leq d_K(u,v) \leq d(u,v) + 2$ for all pairs $u,v \in V$. The lower bound is trivial: every path in K corresponds to a path in G of equal weight, so $d_K(u,v) \geq d(u,v)$. For the upper bound, let γ be the shortest path in G joining vertices u,v. If all vertices in γ are in L then γ is a path in K as well, so $d_K(u,v) = d(u,v)$. If not, we can find a high-degree vertex $h \in \gamma \setminus L$. Then, by construction, some $s \in S$ lies in $N(h)$, and $(s,u), (s,v) \in E_K$, therefore $d_K(u,v) \leq d_K(u,s) + d_K(s,v) = d(u,s) + d(s,v) \leq d(u,h) + d(h,v) + 2 = d(u,v) + 2$, where the $+2$ term arises because $s \in N(h)$ and the triangle inequality.

The runtime of Algorithm 1 is as follows: Computation of S takes time $O(nR \log n)$. Running BFS from all $s \in S$ takes time $O(|S|n^2)$. Forming the graph K has two steps: adding the L-incident edges takes time $O(|L|\log n) = O(nR)$, and adding the edges $(s,v) : s \in S,v \in V$ takes time $O(|S|n)$. Recall that Dijkstra’s algorithm on an n-vertex, m-edge graph runs in time $O((m + n \log n)$ using a Fibonacci heap. The graph K has $|E_K| = O(n(R + |S|))$, so solving APSP on K via Dijkstra from all sources takes time $O(n(|E_K| + n \log n)) = O(n^2(R + |S| + \log n))$. Summing these gives overall runtime $O(n^2(R + |S| + \log n))$ which is minimized by taking $R \approx n^{1/2}$, for runtime $O(n^{5/2} \log n)$ as claimed. \qed
Algorithm 1: AAPSP-ACIM(\(G = (V, E)\))

\[L \leftarrow \{v \in V : |N(v)| \leq R\}; \quad H \leftarrow V \setminus L; \]
\[S \leftarrow \text{hitting set for } (N(v) : v \in H), \quad |S| = O((n/R) \log n); \]

\begin{enumerate}
 \item \textbf{foreach } \(s \in S \) \textbf{do}
 \begin{enumerate}
 \item \textbf{BFS}(s) to compute \(d(s, v) \) for each \(v \in V \);
 \end{enumerate}
\end{enumerate}

form new graph \(K = (V, E_K) \) with edge weights \(w \):

\begin{enumerate}
 \item \textbf{foreach } \(u \in L \) \textbf{do}
 \begin{enumerate}
 \item add to \(E_K \) all edges \((u, v) \in E \), setting \(w(u, v) = 1 \);
 \item /* in fact it suffices here to add \((u, v) \) with both \(u, v \in L \) */
 \end{enumerate}
\end{enumerate}

\begin{enumerate}
 \item \textbf{foreach } \(s \in S \) \textbf{do}
 \begin{enumerate}
 \item \textbf{foreach } \(v \in V \) \textbf{do}
 \begin{enumerate}
 \item add edge \((s, v) \to E_K \) and set \(w(s, v) = d(s, v) \)
 \end{enumerate}
 \end{enumerate}
\end{enumerate}

\begin{enumerate}
 \item compute (exact) APSP on \(K \) (Dijkstra) to output \((d_K(u, v) : u, v \in V) \)
\end{enumerate}

Next time we will improve the algorithm obtaining the following theorem:

Theorem 2.2 ([2]). There is an algorithm which, given an \(n \)-vertex undirected unweighted graph, runs in time \(\tilde{O}(n^{7/3}) \) and computes estimates \(d'(u, v) \) satisfying \(d(u, v) \leq d'(u, v) \leq d(u, v) + 2 \) for all \(u, v \in V \).

References
