
Soundness and its Role in Bug Detection Systems

Yichen Xie Mayur Naik Brian Hackett Alex Aiken

Computer Science Department
Stanford University
Stanford, CA 94305

The term soundness originated in mathematical logic: a
deductive system is sound with respect to a semantics if it
only proves valid arguments. This concept naturally extends
to the context of optimizing compilers, where static analysis
techniques were first employed. There, soundness means the
preservation of program semantics, which is the principal
requirement of a correct compiler.

In bug detection systems, soundness means the ability to
detect all possible errors of a certain class. Soundness is
a primary focus of many proposals for bug detection tools.
Tools that do not offer such guarantees are sometimes sum-
marily dismissed as being, well, unsound, without regard to
the tool’s effectiveness.

However, soundness has costs. Beyond the simplest prop-
erties, analysis problems are often statically undecidable and
must be approximated conservatively. These approxima-
tions may be expensive to compute or so coarse that a sub-
stantial burden is imposed on the user in analyzing spurious
warnings (so-called false positives) from the tool.

In our view, successful approaches to bug detection (and
program analysis in general) balance three desirable, but of-
ten competing, costs: soundness, or rather, the cost of false
negatives that result from being unsound; computational
cost; and usability, as measured in the total time invest-
ment imposed on a user. The question “Is soundness good
or bad?” does not make sense by itself. Rather, it can be dis-
cussed only in the context of particular applications where
these costs can be estimated.

This simple, “three cost” model allows us to make a few
observations and predictions about the future of bug detec-
tion tools.

First, we can expect in almost every application area that
widely used unsound tools will precede sound ones, because
imposing soundness as a requirement constrains the design
space sufficiently that it is simply more difficult and time
consuming to find design points that give acceptable usabil-
ity and computational cost. A good historical example is
static type systems, which can be regarded as the canonical
example of an analysis where soundness is very desirable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

The most widely used languages of the 1980’s (C and C++)
deliberately had unsound type systems because of perceived
usability and performance problems with completely sound
type systems. The first widely used language with a static
type system intended to be sound (Java) did not appear un-
til the mid-1990’s. As another example, the first successful
checkers for concurrency problems used dynamic analysis
techniques. Because they are dependent on test case cov-
erage, dynamic analyses are unsound almost by definition.
Today there is still no completely satisfactory static checker
for concurrency errors for any mainstream programming lan-
guage. We also note that sound systems are sometimes used
in an unsound way in practice by, for example, turning off
global alias analysis to reduce false positives.

Second, while sound systems will be slower to appear, they
will appear. One can expect widely used sound analyses in
two different classes of applications. In situations where the
extra cost of soundness is minimal there will be no reason
not to be sound. In applications where the cost of a single
missed bug is potentially catastrophic, users will be more
willing to sacrifice usability and performance for soundness.
Areas such as security critical, safety critical, and mission
critical applications are all likely targets for sound analyses.
In general, however, unless a sound analysis can approach
the performance and usability of unsound bug finding tools,
the sound analysis will be used mainly in applications where
the potential cost of unsoundness is highest.

Third, we expect most sound systems will assume at least
some user annotations. As mentioned above, most of the
analysis problems of practical interest are undecidable, and
it is usually impossible to compute both a sound and reason-
ably precise (i.e., nearly complete) analysis for such prob-
lems. However, it is a striking property of many analysis
applications that a small amount of additional information
dramatically lowers the cost from undecidable to, say, lin-
ear time. This phenomenon has been studied extensively in
the area of type theory, where the enormous difference in
many type systems between the computational complexity
of type inference (i.e., analysis with no annotations) and of
type checking (i.e., analysis with user annotations) is well
known. A little extra information can make many very hard
analysis problems quite straightforward. Despite the under-
standable reluctance to impose any extra work, no matter
how small, on users, we expect in most cases adding anno-
tations will be the best path to a practical sound system.

