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1 Introduction

Saturn is a boolean satisfiability (SAT) based framework for static bug detec-
tion. It targets software written in C and is designed to support a wide range of
property checkers.

The goal of the Saturn project is to realize SAT’s potential for precise check-
ing on very large software systems. Intraprocedurally, Saturn uses a bit-level
representation to faithfully model common program constructs. Interprocedu-
rally, it employs a summary-based modular analysis to infer and simulate func-
tion behavior. In practice, this design provides great precision where needed,
while maintaining observed linear scaling behavior to arbitrarily large software
code bases. We have demonstrated the effectiveness of our approach by building
a lock analyzer for Linux, which found hundreds of previously unknown errors
with a lower false positive rate than previous efforts [16].

The rest of the paper is organized as follows. Section 2 gives an overview of
the Saturn analysis framework. Section 3 describes the modeling of common
program constructs in Saturn. Section 4 describes the lock checker for Linux.
We discuss related work in Section 5 and our conclusions in Section 6.

2 Overview

The Saturn framework consists of four components: 1) a low-level Saturn

Intermediate Language (SIL) that models common program constructs such as
integers, pointers, records, and conditional branches, 2) a CIL-based [14] fron-

tend that parses C code and transforms it into SIL, 3) a SAT-based transformer

that translates SIL statements and expressions into boolean formulas, and 4)
property checkers that infer and check program behavior with respect to a spe-
cific property.

A Saturn analysis proceeds as follows:

– First, we use the frontend to parse C source files and transform them into
SIL. The resulting abstract syntax trees are stored in a database indexed by
file and function names.
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– Second, we construct the static call graph of the program. The call graph is
then sorted in topological order (callee first). Strongly connected components
(SCC) in the call graph are collapsed into supernodes that represent the
collection of functions in the SCC.

– Third, the property checker retrieves and analyzes each function in the code-
base in topological order. (Property checkers determine how call graph cycles
are handled; currently our analyses simply break such cycles arbitrarily.) It
infers and checks function behavior with respect to the current property
by issuing SAT-queries constructed from the boolean constraints generated
by the transformer. The inferred behavior is then summarized in a concise
representation and stored in the summary database, to be used later in the
analysis of the function’s callers.

– Finally, violations of the property discovered in the previous step are com-
piled into bug reports. The summary database is also exported as documen-
tation of the inferred behavior of each function, which is immensely helpful
during bug confirmation.

3 The Saturn Intermediate Language

In this section, we briefly highlight the program constructs supported by the
Saturn Intermediate Language (SIL). The formal definition of SIL and the
details of its translation to the boolean representation are described in [16].

Integers. Saturn models n-bit signed and unsigned integers by using bit-vector
representations. Signed integers are expressed using the 2’s complement repre-
sentation and common operations such as addition, subtraction, comparison,
negation, and bitwise operations are modeled faithfully by constructing boolean
formulas that carry out the computation (e.g., a ripple carry adder). More com-
plex operations such as division and remainder are modeled approximately.

Pointers. Saturn supports pointers in C-like languages with two operations:
load and store. We use a novel representation called guarded location sets (GLS),
defined as a set of pairs (g, l) where g is a boolean guard and l is an abstract
location. GLS track the set of locations that a pointer can point to and the
condition under which the points-to relationship holds. This approach provides a
precise and easily accessible representation for the checker to obtain information
about the shape and content of a program’s heap.

Records. Records (i.e., structs in C) in Saturn are modeled as a collection of
component objects. Supported operations include field selection (e.g. x.state),
dereference (e.g. p->data.value) and taking an address through pointers (e.g.
&curr->next).

Control flow. Saturn supports programs with reducible control flow graphs.1

Loops are modeled by unrolling a predetermined number of times and discarding

1 Non-reducible control flow are rare (0.05% in the Linux kernel), and can be trans-
formed into reducible ones by node-splitting [1].



the backedges. The rationale of our approach is based on the observation that
many errors have simple counterexamples, and therefore should surface within
the first few iterations of the loop; this approach is essentially an instance of the
small scope hypothesis [12]. Compared to abstraction based techniques, unrolling
trades off soundness for precision in modeling the initial iterations of the loop.
Our experiments have shown that for the properties we have checked, unrolling
contributes to the low false positive rate while missing few errors compared to
sound tools.

Function calls. We adopt a modular approach to modeling function calls. Sat-

urn analyzes one function at a time, inferring and summarizing function behav-
ior using SAT queries and expressing the behavior in a concise representation.
Each call site of the function is then replaced by instrumentation that simu-
lates the function’s behavior based on the summary. This approach exploits the
natural abstraction boundary at function calls and allows Saturn to scale to
arbitrarily large code bases.2 The summary definition is checker specific; we give
a concrete example in the following section.

4 Case Study: A Lock Checker for Linux

To experimentally validate our approach, we have

Fig. 1. FSM for locks.

developed a checker using the Saturn framework
that infers and checks locking behavior in Linux.
Locks are a classic example of a temporal safety
property and have been the focus of several previous
studies [8, 7, 3]. Locking behavior for a single lock in
a single thread is described by the finite state ma-

chine (FSM) shown in Figure 1. Re-locking an already locked object may result
in a system hang, and releasing an unlocked object also leads to unspecified
behavior. Our checker targets such violations.

We model locks using SIL constructs. We use integer constants to represent
the three states locked, unlocked, and error, and we attach a special state
field to each lock object to keep track of its current state. State transitions on a
lock object are modeled using conditional assignments. We show an example of
this instrumentation below:

void lock wrapper(lock t *l) {
lock(l);

}

⇒

void lock wrapper(lock t *l) {
if (l−>state == UNLOCKED)

l−>state = LOCKED;
else

l−>state = ERROR;
}

For the lock operation above, we first ensure the current state is unlocked. If
so, the new state is locked; otherwise, the new state is error. Every call to lock

is replaced by this instrumentation. The instrumentation for unlock is similar.
Using this instrumentation for locks, we infer the locking behavior of a func-

tion f by issuing SAT queries for each possible pair of start and finish states

2 The lock checker we describe in Section 4 averages 67LOC/s over nearly 5M lines of
Linux.



of each lock f uses. If the query is satisfiable, then there is a possible transi-
tion between that pair of states across the function. In the example above, the
satisfiable pairs are unlocked → locked and locked → error. We record the
set of possible transitions in the summary database and use it later when we
analyze the callers of the function. To check a function’s locking behavior, we
check that there is at least one legal transition (i.e. one that does not end in the
ERROR state) through the function.

We have run the lock checker over Linux, which contains roughly 5 million
lines of code. Our analysis finished in about 20 hours and issued 300 warnings,
179 of which are believed to be real errors by manual inspection.

5 Related Work

Jackson and Vaziri were apparently the first to consider finding bugs via reducing
program source to boolean formulas [12]. Subsequently there has been signifi-
cant work on a similar approach called bounded model checking [13, 4, 11]. While
there are algorithmic differences between Saturn and these other systems, the
primary conceptual difference is our emphasis on scalability (e.g., function sum-
maries) and focus on fully automated checking of properties without separate
programmer-written specifications.

Static analysis tools commonly rely on abstraction techniques to simplify the
analysis of program properties. SLAM [3] and BLAST [10, 9] use predicate ab-
straction techniques to transform C code into boolean programs. ESP [5] and
MC [8, 6] use the finite state machine (FSM) abstraction and employ interpro-
cedural dataflow analyses to check FSM properties. CQual [7, 2] is a type-based
checking tool that uses flow-sensitive type qualifiers to check similar properties.
In contrast, a SAT-based approach naturally adapts to a variety of abstractions,
and therefore should be more flexible in checking a wide range of properties with
precision.

Several other systems have investigated encoding C pointers using boolean
formulas. CBMC [13] uses uninterpreted functions. SpC [15] uses static points-
to sets derived from an alias analysis. There, the problem is much simplified
since the points-to relationship is concretized at runtime and integer tags (in-
stead of boolean formulas) can be used to guard the points-to relationships.
F-Soft [11] models pointers by introducing extra equivalence constraints for all
objects reachable from a pointer, which is inefficient in the presence of frequent
pointer assignments.

6 Conclusion

We have presented Saturn, a scalable and precise error detection framework
based on boolean satisfiability. Our system has a novel combination of features:
it models all values, including those in the heap, path sensitively down to the
bit level, it computes function summaries automatically, and it scales to millions
of lines of code. We demonstrate the utility of the tool with a lock checker for
Linux, finding in the process 179 unique locking errors in the Linux kernel.
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