Verifying the Safety of User Pointer Dereferences

Suhabe Bugrara Alex Aiken
Department of Computer Science Department of Computer Science

Stanford University Stanford University

Stanford, CA 94305 Stanford, CA 94305

suhabe@stanford.edu aiken@stanford.edu

Abstract 1: void syscall (int** u) {

2: int aok; int* cnd;

. Operating systems divide virtual memory addressesii aok : = access_ok(u):
into kernel spaceand user space The interface of a . -
modern operating system consists of a set of system cal. if (aok != 0)
procedures that may take pointer arguments calledr 7 cnd @ = get(u);
pointers. It issafeto dereference a user pointer if and 8: el se
only if it points into user space. If the operating system 9: cmd ;= 0;

dereferences a user pointer that does not point into user10: '}
space, then a malicious user application could gain con- _ _
trol of the operating system, reveal sensitive data from 11: int+ get(intxxy) {

kernel space, or crash the machine. Because the oper-lg intx x;
. . N = N
ating system cannot trust user processes, the operating->: ;(ei . ny;(-

system must check that the user pointer points to userlsg }
space before dereferencing it. In this paper, we present a
scalable and precise static analysis capable of verifying Figure 1. Example 1
the absence of unchecked user pointer dereferences. We

evaluate an implementation of our analysis on the en-

tire Linux operating system with over 6.2 million lines of

code with false alarms reported on only 0.05% of deref- yser space before dereferencing it.

erence sites. Figure 1 gives an example of how a user pointer is

checked before being dereferenced. The example con-
sists of two proceduresyscal | andget. The proce-

1 Introduction dureaccess_ok, whose definition is not provided in the
figure, returns a non-zero value if and only if its pointer

Operating systems divide virtual memory addressesParameter points into user space. Procedysal |
into kernel spaceand user space The interface of a is a system call available to user applications. Conse-
modern operating system consists of a set of system callduently, its pointer parameteris a user pointer. Line
procedures that may take pointer arguments calkt 4 appliesaccess_ok to u to check whetheu points
pointers. It issafeto dereference a user pointer if and INto user space. Subsequently, line 7 cglis with u
Only |f |t points into user Space_ |f the Operating System under the condition that the return value of the call to
dereferences a user pointer that does not point into useccess-ok is non-zero which implies that the check on
space, then a malicious user application could gain con-line 4 succeeded. On line 13, procedgee derefer-
trol of the operating system, reveal sensitive data from €NCeS Its pointer parameter.
kernel space, or crash the machine [12]. Because the In this paper, we present a scalable and precise static
operating system cannot trust user processes, the operanalysis capable of automatically verifying the absence
ating system must check that the user pointer points toof unchecked user pointer dereferences. That is, the

analysis provides a formal guarantee that these secu-analysis results suggests that the alias analysis neverthe
rity vulnerabilities do not exist given some standard as- less conservatively overapproximates the set of concrete
sumptions, which are discussed later. The uncheckedaliases for every procedure. Aside from these caveats,
user pointer dereferences property is an example of aour system fully verifies the absence of unchecked user
finite state safety propertyn important class of speci- pointer dereferences in the Linux kernel.

fications extensively studied in previous work [2, 4,6-8,

10-13, 15]. Intuitively, a finite-state property assodate 1.1 Contributions

one of a finite set of states with a value at each point
in a program. In particular, the finite-state characteriza-
tion of the unchecked user pointer dereferences property
uses the set of statgsiser, unchecked, unsafe} e We verify the absence of unchecked user pointer
described in Section 5. dereferences given some standard assumptions.

We have implemented our analysis and evaluated its
precision and scalability on the entire Linux 2.6.17.1 op-
erating system. Our implementation reports false alarms
on only 0.05% of dereference sites and uses only 2 an-
notations for scalability. We believe our static analysis o We detail a general framework for summary-based,
is the first automatic verifier to demonstrate this level of path-sensitive static analyses of finite-state safety
scalability while maintaining soundness and precision. properties.

This paper makes the following contributions.

e We present experimental results that evaluate the
scalability and precision of our analysis on a large,
complex, and important program.

The key to scalability in our system is the compo-
sitional manner in which a program is analyzed. Each
procedureP is analyzed independently and only infor-

mation aboutP’s summary which captures”’s behav- .) .
ior with respect to the finite-state property, is commu- br_lefl_y explaln_s themem(_)ry modethat han(_jles PO_'”ter
aliasing. Section 5 details tleafety analysisor finite-

nicated to other procedures that call Analyzing a i) i .
procedure independently makes it possible to scale theState properties. Finally, Section 6 presents our experi-

analysis to millions of lines of code and still use expen- €NCe and experimental results.
sive techniques to maintain necessary precision. In par-

ticular, our analysis is context-sensitive, flow-sensitiv. 2 Related Work
field-sensitive, and intraprocedurally path-sensitivar O

experience suggests that this level of precision is needed e priefly describe closely related work on scalable
to keep the number of false alarms low. Procedure sum-yerification of finite-state properties in general and the

maries abstract the intraprocedural analysis but causenchecked user pointer dereferences property in partic-
relatively little loss of information in practice, as pro- jjar.

grammers already naturally abstract at procedure bound- \ECA [16] is a path-insensitive bug finding tool that
aries. Our combination of precision and scalability giatically finds operating system security vulnerabiitie
makgs near verification of interesting safety properties g;,ch as unchecked user pointer dereferences. MECA is
feasible on large, complex systems. not sound, which means that it does not provide a formal
Our soundness claim makes several standard assumpguarantee that vulnerabilities of this kind do not exist.
tions about the program being analyzed. In particular, In particular, it does not handle aliasing conservatively
our analysis is not guaranteed to find errors that may and breaks recursive call chains arbitrarily. Using about
arise from unsafe memory operations in C such as buffer45 manual annotations to suppress false alarms, MECA
overruns, concurrency, and inline assembly. In addition, found 44 unchecked user pointer dereferences and re-
our system fails to converge completely on a few proce- ported 8 false alarms on Linux 2.5.63.
dures, which means that any errors that depend on those Sparse [14] is a bug finding tool developed by the
procedures may not be reported. In our experiment, ourLinux community that statically finds unchecked user
system failed to converge completely on 0.17% of all pointer dereferences. Linux 2.6.17.1 has more than
procedures in Linux as described in Section 6. Further- 9,000 annotations on variables and other constructs be-
more, our system builds upon an existing alias analy- lieved to be user pointers. Sparse is not sound and
sis [9] that fails to converge completely on 10% of all does not check the correctness of these thousands of
procedures. However, manual inspection of the alias programmer-supplied annotations.

The rest of this paper is organized as follows. Sec-
tion 2 covers related work. Section 3 defines the lan-
guage used in our examples and algorithms. Section 4

CQual [8] is a type-qualifier inference system that critical software in a restricted subset of C. A notable
has been used to verify the absence of unchecked useaspect of Astree is that it performs full verification of
pointer dereferences of individual modules in earlier the absence of any undefined runtime behavior without
versions of Linux [12]. Solving the monolithic set making any assumptions about the analyzed program.
of constraints that CQual produces degenerates into a
whole program analysis that requires keeping the entire 3 L anguage
program in main memory, thus limiting its scalability to
abou_t 300,000 lines of code. The experimen_ts in[12] are We briefly define a simple imperative language used
not directly comparable to ours because their report_s arey, present our analysis in this paper. This language is
clustered to avoid redundancy. For example, the single oqyictive, which enables us to present our techniques
source causing 111 sink warnings in our system would \ i minimal extraneous detail. However, our imple-

count as one report by their methodology. Even so, their o yiation handles the entire C language. A program is
analysis of Linux 2.2.23 produced 227 raw warnings, or a set ofprocedures.

one warning for every 1300 lines of code. We achieve an
order of magnitude improvementin warning density due procedure ::= type P (type v) {statement}
to the fact that our system is flow-sensitive and intrapro-

S . statement ::= type v |return v|v 1= Z
cedurally path-sensitive which are features that CQual
lacks. Several sources of false alarms listed in [12] do [Vit=xva vy o= &y,
not appear in our experiments, because our analysis is |vi = Q (V3)
precise enough to handle them soundly. Interestingly, | statement ; statement
function pointers are not a major cause of false alarms lif (v !=0) statement

in [12], although they cause over 1/3 of the false alarms
in our experiments. This is actually consistent with our
experience that accuracy in analyzing function pointers type m=void |int [intx |intxx
is not particularly important until one analyzes the entire
operating system including all device drivers.

el se statement

A procedure has a return type, formal parameters, and
a statement. The statement forms are self explanatory.
ESP [4] is a path-sensitive dataflow analysis sys- Our analysis always takes place in some procedure, thus
tem used to verifyprobing the Windows version of we superscript variables, sets, and functions with the
unchecked user pointer dereferences [6]. Their exper-name of the procedure with which they are associated.
iment reports warnings on 30 of the 500 user pointer The superscript is omitted when the procedure is clear
sources (6%) on a program consisting of about 1 million from context. LetProc be the set of procedures in the
lines of code, all of which were false alarms. Contrast- program. ThenRuvalue® is the set of right hand side
ingly, our experiment reports warnings on 11 of the 627 expressionsjvalue” is the set of left hand side expres-
user pointer sources (1.8%) on a program consisting ofsions, andVar’ is the set of variables of procedure
about 6.2 million lines of code. Because ESP&ue- P € Proc. Figure 1 shows the running example used in
flow analysis is path-sensitive (including interprocedu- the rest of the paper written in this language.
rally) and performsstrong updatega feature we have
not discussed, but which our underlying memory model 4 emory M odel
also handles), ESP’s expressive power is more compara-
ble to our’s than CQual’'s. One significant technical dif-
ference is that ESP encodes path sensitivity by tracking
sets of dataflow facts, one set for each path. In contrast

This section describes tibeemory modalsed by the
safety analysis. The memory model of a procedure gives
'an abstract description of the portion of the heap relevant

¥vetachSOC|_abt_e a bootle?n ct(;]nst:amt,guard, W'thte?Ch it to the procedure. Interested readers are referred to [9]
act describing a set of paths. n our representation 1LIS ¢, yeaiis of how the memory model is computed.

easy to reason about multiple paths simultaneously, as The memory model for a procedufe consists of a
the guards directly encode all paths where a fact holds. distinct set ofabstract locationsLoc” (usually called

SLAM [2] and BLAST [11] are software model justlocationg. A function varloc” € Vart — Loct
checkers based on predicate abstraction. Both systemsissigns each variable € Var® to alocation € Loc” .
are able to analyze systems with hundreds of thousandsThe set ofguards Guard”, consists of propositional
of lines of code. Astree [3] is a static analysis tool that formulas over a set of primitive predicates on locations
has been used to verify automatically-generated safety-and boolean variables.

EXAMPLE. In proceduresyscal | in Figure 1, sup-
pose the memory model assigns the locatigy the
variableaok so0 varloc®Ys¢! (aok) = laok. Then, the
conditionalaok ! = 0 that appears on line 6 is repre-
sented by the guardaok # 0) € Guard®s®®' . O

4.1 Guarded Points-to Graphs

A guarded points-to graptp € PointsTo? =
Loc” x Loc” — Guard” is a function that asso-
ciates a guard> € Guard” with each pair of loca-
tionsl;,l; € Loc”, representing the condition under
whichl, may point-td;. Thervalue evaluatioriunction
rval” € PointsTo" — (Rvalue” x Loc®) — Guard”
gives the guard under which awalue may point-to
a given location. Arrvalue is an expression that ap-

pears on the right-hand side of an assignment. Similarly, false.

the lvalue evaluatiorfunction lval” € PointsTo” —
(Lvalue” x Loc) — Guard” gives the guard under
which anlvalueis representedy a given location. An

of concrete locations. We say the callee locafiprin-
stantiatego the caller locatioril” ats if they represent
the same set of concrete locations.

ExamMPLE. In the example in Figure 1, proce-
duresyscal | calls procedurget on line 7 with ac-
tual parametewu and formal parameter. Let p11 €
PointsTo%" be the points-to graph at entry to proce-
dureget on line 11 andp; € PointsTo%YS¢®! be the
points-to graph at the call statement on line 7. Also
let Iy, Loy € Loc®*°®" andly,l., € Loc®®"', where
varloc®*° " (u) = 1, andwvarloc®' (y) = Iy. The lo-
cationsl, andl, never correspond to the same set of
concrete locations because the concrete locations rep-
resented by, are allocated on the stack ef/scal |
while the concrete locations representedpyre allo-
cated on the stack afet . Thus, 75V (p7)(1y,1y) =
However, ., and i,y may correspond to the
same set of concrete locations because of the implicit
pointer copy that occurs frorf to [/, at the call state-
ment. ThusZ5Y5 " (p7)(Ley, bw) = p7(lu, l-y) When

Ivalueis an expression that appears on the left-hand sidep11 (ly, l.y) = true. O

of an assignment.
EXAMPLE. In procedureget in Figure 1, as-
sume the guarded points-to graph; encodes the

points-to relationships at entry on line 11. Also let

Ly, Ly, Loy € Loct where varloc(y) = ly and

varloc(x) = Ix. The guard under which the Ivalue
=y is represented by the locatidn, with respect to
the points-to graptpi1 is lwal(p11)(*y, l.y), which is
equivalent torval(p11)(y, l+y), the guard under which
the rvaluey points-tol., with respect top11, which
is equivalent top11(ly,l+y). Similarly, the guard un-
der which the Ivalue-+y is represented by the loca-
tion L.y is lwal(p11)(**y, l.+y), Which is equivalent to
rval(p11)(*y, l«y), the guard under which the rvalue
*y points-tol..y, which is equivalent td/, [p11 (ly, 1) A
p11(L, l++y)], which is the disjunction of all guards under
which Iy points-to some locatiohand! points-tol..y.

O

4.2 Location Instantiation

4.3 Judgments

This paper refers to the memory model by using judg-
ments of the form

d’ap Fmem S : ¢/,P/77/)

whereg (resp. ¢’) is the guard under which execution
reaches the entry (resp. exit) point of statemenp
(resp. p’) is the points-to graph at the entry (resp. exit)
point of s, andv is the guard under which transfer of
control occurs across.

ExAMPLE. In the example in Figure 1, consider the
assignment statemert = +xy on line 13. The guards
under which execution reaches the entry and exit points
of the statement are bothrue, and the guard under
which control transfer across the statement is atse.
The points-to graphy;3 on entry to the statement has
p13(ly, ley) = true, p13(ly, livy) = true. The points-
to graphpi4 on exit to the statement hasa(ly, l.y) =
true, p1a(ley, lovy) = true, p1a(lx, levy) = true. Con-

The abstract locations of two different procedures are sequently, the judgmentrue, p13 Fmem X = *y

disjoint: Loc” N Loc® = 0 if P # Q. A separate map-

ping shows when two abstract locations from different

true, p14, true is valid. O

procedures represent the same set of concrete locationdd ~ Safety

SupposeP calls @ at a call statemend in P and let

p € PointsTo® be the points-to graph encoding the

points-to information at. The location instantiation
functionZE, . € PointsTo® — (Loc® x Loc’) —

This section describes the safety analysis. Section 5.1
definesstate environments Section 5.2 describes the
fixed point iteration over the program. Section 5.3 ex-

Guard® gives the guard under which the abstract loca- plains how the analysis generates the preliminary sum-

tions!¥ € Loc? andlf € Loc” represent the same set

mary of a procedure. Sections 5.4 to 5.6 describe the

initial state environment used on entry to procedures. under which the program is in that state. There is a nat-
Section 5.7 gives the abstraction function that the anal-ural partial order on state environmenf§; C I'; if
ysis applies to preliminary summaries to produce final Vq(I'1(q) = T'2(q)). Theleast upper boundperator is
summaries. Sections 5.8 and 5.9 detail the intraprocedu-defined by(I'y U T'2)(¢) = I'1(¢) V I'2(q), thegreatest

ral and interprocedural components of the analysis, re-lower boundperator by(T'; MT'2)(q) = T'1(¢) AT2(q),
spectively. Section 5.10 describes a path-sengitivst- bottomby L (¢) = false, andtopby T(q) = true. Two
modifyanalysis that substantially reduces the number of state environments,, I'y € StateEnv are=-equivalent
false alarms. ifand only if 'y C I's andl's C T'y.

Our analysis has many components which are de- The state instantiation function Z% ., ~— €
tailed in this section. The most important points, how- PointsTo” — (State® x State”) — Guard®
ever, are: gives the guard under which a callee stgtec State®
instantiates to caller statd” € State®.

Consider the unchecked user pointer dereference
property. The set of abstract states consists of location-
typestate pairsState” = Loc” x Typestate where

2. Our analysis is compositional. We compute a sum- Typestate = {user ,unchecked, unsaf e}. The state
mary of each procedute that succinctly describes (I, user) € State” signifies that locatiod € Loc”
the behavior ofP. The callers ofP refer only to IS @ user location. Similarly, the staté unchecked)

P’s summary. Summaries are po'ymorphic in that Signiﬁes that! has not been Checked, and the state

they are parametrized by whether particular loca- (/,unsaf e) signifies thatl is a user location that has
tions areuser or not. been the target of a dereference while unchecked. Note

o that a location may be bothser andunchecked—
The combination of (1) and (2) leads to a number of these states are not mutually exclusive. The state instan-

difficulties in scaling a precise user pointer dereference tigtion function for this property is defined by
analysis to a program the size of Linux. First, tracking

all the possibilities for whether a location canuser or Tiare (P)((I2,1), (15, 1) = TL,.(p) (17, 15).
not for every location in a procedure turns out to be very
expensive. As a result, we use an additional analysis
described in Section 5.6 that determines which locations
can never baser, which turns out to be most locations,
greatly improving the scalability of the analysis.

Second, a similar problem arises in deciding how to
make use of the path-sensitive information computed for
a procedure, which is far too expensive to use directly as
the summary of a procedure. We simplify, alvstract
this information as described in Section 5.7.

1. Our analysis is intraprocedurally path-sensitive.
We associate with each fact a guard describing the
conditions under which that fact holds.

5.2 Fixed Point Iteration

The finite-state safety analysis makes several passes
over the program. In théh pass, the analysis analyzes
each procedure in isolation generatinguanmary state
environmenthat encodes the behavior of the procedure
with respect to the finite-state property and the mem-
ory model. If a procedur@ calls a proceduré), then
the analysis uses the summary state environmeny} of
h computed in théi — 1)st pass to compute the summary

Third, having both polymorphic summaries and pat) ,)
sensitivity introduces subtleties in the mapping between Stat€ environment of” in the ith pass. Consequently,
the summary ofP depends on the summary @f In a

actual and formal parameters at procedure calls as de- : | .)
scribed in Section 5.9 program with recursive procedures, cyclic dependencies

Finally, it turns out that it is not only important to aris_e which requi_res the analysis to reanaly.z_e procedures
know what locations a pointer may point to, but also un.tllthe summaries for all proced_ures st_ab|I|ze, orreach
which pointers must be updated by a procedure. For ex-afixed point That is, the analysis terminates afj[er the
ample, it is important to know if a callee is guaranteed "th Pass when, for each procedurethe state environ-
to overwrite a user pointer with a kernel pointer. Our MeNtcomputed in then — 1)st pass is equivalent to the

solution for this problem is described in Section 5.10. State environment computed in thth pass.

5.1 State Environments 5.3 Summary Generation
This paper refers to the safety analysis by using judg-

Let State” be a set ofabstract statesf a proce-
ments of the form

dure P. A state envionment” ¢ StateEnv” = ‘
State” — Guard” associates each state with the guard G0, T Flgpery S T

where ¢ is the guard under which execution reaches not appear in the program. The most general state envi-

statemens, p is the points-to graph on entry g andI’ ronment is defined b¥;,,;:(¢) = zvar(q) for any state

(resp.T) is the state environment on entry (resp. exit) q.

to s. The superscript on the turnstile signifies that the ExAMPLE. In the example in Figure 1, con-

judgment holds in thé&h pass of the safety analysis over sider the procedurget on line 11. Suppose the

the program. analysis makes the state-to-context-variable assignment
The following judgment signifies that the summary zvar(ly,user) = w1, zvar(ly,unchecked) = wvs,

state environment of procedufein theOth pass is ini- zvar(ly,unsafe) = w3, zvar(l.y,user) = wy,

tialized to_L, which means that the analysis initially as- zvar(l.y,unchecked) = vs, zvar(ly,unsaf e) = v,
sumes none of the locations are in any of the predefinedzvar(l..y,user) = vz, zvar(li+y,unchecked) = v,

states on exit fronP. zvar(li«y,unsaf e) = vg. Then, the most general ini-
tial state environment would be defined By, (¢) =
Faery t1 P (T2 V) {s }:L zvar(q) for any statey. [J

Section 5.5 describes a special initial state environ-
The following judgment describes how the summary ment used for system call procedures. Section 5.6 de-
state environment.',,.,,, of procedureP is computed scribes a refinement of the most general initial state en-
in theith pass, where > 0. vironment crucial to scaling the analysis for unchecked
. user pointer dereferences to millions of lines of code.
(binita Pinit s Finit I_Zsafety S Fprelim

Loum = (T pretim) 5.5 System Call Initial State Environ-
Hiapery t1 P (T2 V) {'s }:Doum ment

The top antecedent says that the analysis first per- System calls are entry points of an operating sys-
forms an intraprocedural analysis of the procedure body,tem. Consequently, any system call formal parameter
s, with respect to arinitial state envionmentT';,i;, is a user pointer, and furthermore, any pointer reachable
to compute goreliminary summary state environment from a user pointer via a series of dereferences is also a
Lpretim- The bottom antecedent applies apstraction user pointer. LetSyscall be the set of system call pro-
function o to the preliminary summary state environ- cedures. The analysis uses a special initial state envi-
ment to compute the final summary state environment, ronment when analyzing a proceduPec Syscall that
I'sum, Of the procedure. The choice for initial state envi- guards eaclfl, user) state withtrue, wherel is a lo-
ronment is discussed in Section 5.4, and the abstractioncation reachable from a formal parameteof P via a
function is described in Section 5.7. The intraprocedural series of dereferences. Formally, the initial state envi-

analysis is explained in Section 5.8. ronmentl'? .. whereP € Syscall is defined by
5.4 Initial State Environment T (I user) = reaCha’ble(pﬁzit)(varlocp(u)7l)
I'2..(I,unchecked) = true

. . I'P (l,unsafe) = fal
Recall from Section 5.3 that the summary state envi- inat (1) = false

ronment of a procedure is generated with respect to anynere reqchable € PointsTo —s (Loc x Loc) —
initial state environment, which represents the contexts .4 gives the guard under which a location is reach-
in which the procedure is called. Because a procedureype via a series of dereferences from another location.
may be called in many different contexts, the analysis ;g recursively defined by

uses a fresh boolean variable, calledoatext variable

to represent the guard of a particular state in any context, _

denopting that thgguard of tphe state is unknowr): and un- reachable(p) (11, 12) = \/[macmble(p)(ll’ el L))
constrained during summary generation. The function

zvar? e State” — XVar® assigns a context variable whenl; # I,. Any location! is reachable from itself, so
in XVar” to each state. Thmost generalnitial state reachable(p)(l,1) = true.

environment does not incorporate any information about EXAMPLE. In the example in Figure 1, the sys-
the guards associated with states in contexts, thus allowtem call proceduresyscal | uses an initial state en-
ing the analysis to generate polymorphic summaries thatvironment that guards everyser state for a loca-
are applicable in any possible context, even those that dation reachable from the user pointerwith #rue, and

l

all other states withfalse: T'jpit(lu,user) true,
Tinit (losy,user) = true, andTy,;: (I, user) = false
for any otheri. [

5.6 Refining the Initial State Environ-
ment

Recall from Section 5.3 that analyzing a procedure
using the most general initial state environment gener-
ates a summary that may be used in any calling context
including those that do not appear in the program. The
cost of such a pure, compositional bottom-up analysis is
exactly that it must account for the possibility of every
possible calling environment which, depending on the
application, may be prohibitively expensive.

For unchecked user pointer dereferences it turns out
that only a fraction of pointers are actually user point-
ers, and restricting the set of pointers to track during the
analysis of a procedure to only those that could poten-
tially be user in some context substantially improves
scalability. In particular, knowing whether the guard as-
sociated with a statd, user) is unsatisfiable in all con-
texts allows the analysis to avoid trackihgs it is never
user in any calling context.

The functionstatecontext € (Proc x N) — 25tate
associates each procedupewith the set of states that
appear in some calling context with a satisfiable guard
in passi.

Formally,qu € statecontext(Q, 1) if and only if the
judgment

¢P7pP? Ffall Fiafety Vi = Q (V_ﬁ) : F/P
holds in a procedur® and

\V TEu(@d) A Zsiare (07)(af, a8) A 67
qéDGStateP

is satisfiable. The satisfiability of this condition implies
that theQ-stateq? instantiates to some,’ state whose
associated guadd ,,(¢Z’) in the calling context is satis-
fiable. Finally, we define a nesatisfiability initial state
environment,,; for procedure) in the:th pass that in-
corporates the satisfiability of guards in the calling con-

texts:

e = {
étsyscal |

EXAMPLE. In the example in Figure 1, l&t}}
be the context state environment computed on entry to
the call statement tget on line 7 in some pass Us-
ing the system call state environment, the intraprocedu-
ral analysis, described in Section 5.8, determines that

Q

1 ¢ € statecontext(Q,i — 1)

otherwise

)

zvar(q
false

I‘Sczlslcal "(ly,user) = false,

call (l*u’ user)
true andl>Y5° ! (1., user) = true. Thus, the states
(l*y,u_ser), (lssy,unchecked), and (li+y,user) ap-
pear in statecontext(get ,i) because(l.,,user) and
(lxu,user) are associated with satisfiable guards in
Ty ! andly (resp. L.y) instantiates td. (resp.
l+«y). Recall the example in Section 5.4 where the most
general initial state environment fget was given. For
purposes of scalability, we refine the initial state envi-

ronment forget to incorporate information about the

Fsyscal | _

satisfiability of the guards iT®/>°*'' . Thus, 9%,
hasT9 (Iy,user) = false, T9%, (l.y,user) = vy,
I‘?ﬁ;t(l*y,unchecked) = s, andl—‘?sit(l**y’user) =

vz. Note how the analysis can conclude thais not
user in any context and thus can avoid tracking this
pointer throughout the procedufé.

5.7 Summary Abstraction Function

Recall from Section 5.3 that the intraprocedural anal-
ysis of a procedure body generates a preliminary sum-
mary state environment, which encodes a very precise
description of the behavior of the procedure. However,
we have found that retaining this level of precision in-
terprocedurally is prohibitively expensive and, thus, in-
hibits scalability. Consequently, the analysis performs
a sound abstraction on the preliminary summary state
environment to compute the final summary state envi-
ronment using asummary abstraction functiorn €
StateEnv — StateEnv. This abstraction step reduces
the size of the summary, allowing the analysis to trade
precision for scalability without sacrificing soundness.
Formally, « is sound if and only iT" C «(T") for any
T' € StateEnv.

Our particular choice forx in the analysis of the
unchecked user pointer dereferences property isdghe
text variable abstraction xv.,-, which abstracts a state
environment by the strongest state environment whose
guards are only over context variables. Formdity—
axver(T') is characterized by C IV and(T' C T C
Iy = (I = 1') when atoms(I') C XVar and
atoms(T"") C XVar for anyT"”’. The functionatoms
gives the set of atomic predicates and boolean variables
appearing in the guards used in a given state environ-
ment. Intuitively, the context variable abstraction re-
moves any atomic predicates in the state environment
guards except for context variables. kegbeT'(¢). We
computex x v (I')(q) in the following manner:

1. Enumerate all disjunctions over the set of context
variables that appear in.

2. For each disjunctiog, check the validity of) —-

o.

3. Conjoin all the disjunctions that pass the above va-

lidity check to formaxva,-(T')(g).

The validity check on boolean constraints in step 2

requires the use a boolean satisfiability solver. This ap-
proach requires exponentially many calls to the solver,
but because the number of context variables is typically

small, it works well in practice. This choice of abstrac-
tion function makes our analysis interprocedurally path-

insensitive, that is, it cannot reason about branch condi-

tions across procedure boundaries.

EXAMPLE. Let be the guardv, A1) V (vp A h2)
where; andi, are predicates not involving context
variables. Then, the set of context variablesyins
{va,vs}. The disjunctions ovefv,,v,} are(v, V vp),
(mvg V), (Vg V), and (-, V —w). The only
disjunction that is implied by) is (v, V v3). Thus, the
context variable abstraction gfis simply (v, V vp). O

5.8 Intraprocedural Analysis

vi = 0 after the call. Nowy; = —(rval(p)(v2, 1) A ¢)

is the guard under which, does not point td, and

w2 =\ [rval(p)(vi, ') A(I" = 0)] A ¢ is the the guard
under whichv, = 0, wherep is the points-to graph at
the call statement anglis the guard under which the call
statement executes. The rule for checking statements is:

l € Loc
©1 = —(rval(p)(va,1) A @)
w2 =V (rval(p)(vi, ') A (" =0)) A ¢

P =(p1V)
IV = T'[(I,unchecked) — T'(l,unchecked) A ¢]
¢, 0,1 Flygory V1 = access_ok(vy) : I

5.8.3 Branches

The rule for branch statements is:

b1, p1 Fimem S1 1 91, P15 Y1
b2, p2 F77%’771.52 : fbé,ﬂéﬂl@
¢1,p1,1“ '_Zsafety S1: Fl
¢2,p2,F Flsafety So . FQ
I = refine(T'1, ¢1) U refine(T'a, v9)

This section describes how the intraprocedural anal- @ 2T Flgpery if (v 1= 0) {s1} else {s2}: T

ysis handles various program constructs.

5.8.1 Statement Sequences
The rule for statement sequences is:
(bvp Fmem Si1: d)/vplaw

g/i), e, I Fi@fety s : Iy
gf) , P ,Fl Féafety So FQ

(b? Ps r I_iafety S1 5

8221—‘2

whererefine € (StateEnv x Guard) — StateEnv be a

function that refines a state environmé&nwith a guard
o by conjoining the guard for each statelinwith ¢ as
follows:

refine(L', p)(q) = T'(q) A .

The purpose ofefine is to preserve the information of
the two branche$'; andI'; in the combined environ-
mentI".

The first antecedent uses the memory model to computes 84 Dereferences

the statement guakdl and points-to grapp’ after state-

ments;. The middle antecedent uses the safety analysisThe dereference of a pointes is unsaf e whenv, is an

to compute the resulting state environmEntafter ex-
ecutings;. Similarly, the last antecedent computes the
final state environmerits.

5.8.2 Checking

Let access_ok be a procedure that returns a nonzero
value if and only ifaccess_ok’s user pointer argu-
ment points into user space. Consider the statement
.= access_ok(vz). Alocation! is unchecked after
the call if [is unchecked before the call and the call
does not check. Thus, if " is the state environment
before the call, therd is unchecked after the call if
I'(I,unchecked) and eitherv, does not point td or

unchecked, user pointer. Consider the statement

: = *v, that dereferences,. The locatior/ is unsaf e
after the dereference when eithieis unsaf e before

the dereference ar, points tol and! is user andl is
unchecked. The location is unsaf e before the deref-
erence under the gualdl, unsaf e) wherel is the state
environment before the dereferencing statement. Now,
v1 = rval(p)(ve,l) A ¢ is the guard under which.
points-tol, andyps = T'(I,user) A T'(I,unchecked) is

the guard under whichisuser andunchecked, where

p is the points-to graph at the dereferencing statement
and¢ is the guard under which the dereferencing state-
ment executes. The following inference rule describes
how the analysis updates the state environment with the

1: void syscall(int c¢) {
2: int x;

3: int vy;

4: int *p;

5:

6: if (c!=0)

7: p = &;
8: el se

9: p = &;
10:

11: process(p, p);
12: }

13: void process(int* q, int *r) {
14

15: }

Figure 2. Example 2

guard under whichis unsaf e:

l € Loc
p1 = rval(p)(va, [) A ¢
w2 =T'(I,user) AT(l,unchecked)
I" =T[(I,unsaf e) — T'(I,unsaf e) V (1 A ©2)]

¢7 pvr Fiafety Vi o= *¥Va! I

5.9 Interprocedural Analysis

At a call statement, the analysis looks up the sum-
mary state environment of the callee generated in the
previous pass and instantiates it with respect to the call-
ing context:

Fob,ti Q2 V) (s }:T%,
I = Tstatemm (07, T, (T,

1—‘Ioput = T@ﬁne(l—‘im, (bp)

P P P] - P
d) P 7Fcall Flsafety vi 1= Q (\/—2>) :Fout

The first antecedent binds?, to the summary state

environment of procedur@ generated in th¢; — 1)st

several steps. First, note that the instantiation of aealle

state environment is complicated by the possibility that
a callee location may instantiate to many caller loca-

tions, and many callee locations may instantiate to one
caller location. The following example demonstrates

how this many-many instantiation relation between

callee-caller locations may arise.

ExamMpPLE. Consider the program in Figure 2. The
proceduresyscal | calls the procedurerocess. In
syscal | the stack locations for variables x, y, and
p are represented by the abstract locatins,, Iy, and
Ip, respectively. Ipr ocess the stack locations for vari-
ablesqg andr are represented by the abstract locations
lq andl;, respectively. The locations that represent the
points-to targets of these variables on entry to the proce-
dure ard.q andl., respectively.

Let p11 be the points-to graph computed by the mem-
ory model on line 11 at the call tprocess. Then,
p11(lp,Ix) = (Ic # 0) andp11(lp,ly) = (lc = 0) be-
cause of the guarded assignments on lines 7 and 9. Sim-
ilarly, let p13 be the points-to graph computed by the
memory model on line 14 on entry fo ocess. Then,
Pls(lqal*q) = b, Pls(qu*r) =0, andpls(lr,l*r) =
true, whereb is an unconstrained boolean variable. Ob-
serve that the memory model captures the entry aliasing
among the parameters jmocess induced by the call
statement on line 11 by introducing an edge frno
l.r under the guard.

Now, at the call statement on line 11, the location
instantiation function introduced in Section 4.2 has

Zroc(p11)(leg, Ix) = (lc # 0)
Zroc(p11)(lxq;ly) = (Ic = 0)
ILoc(pll)(l*r 3 lx) — (ZC 7& 0)
ILoc(pll)(l*r7ly) - (ZC =)

Observe that.; may instantiate to eithdy or Iy, and
thatl, may instantiate from eithérq or L., . O

Suppose procedut calls proceduré) at a particu-
lar call statement ang¥ is a guard that appears in the
summary state environment ¢ LetI'” be the state

call

environment computed at the call statemenPirwhich

pass. The second antecedent binds the state environmerfifaps eactP-state to theP-guard under which the pro-

to thestate environmentinstantiatiaiI'%,,,, and

to the refinement af £

sum

Ff:um
the last antecedent bindg,,
with ¢,

The state environment instantiation
TstateEny € (PointsToP X StateEnvP)

StateEnv® — StateEnv®” instantiates a callee

function
—

gram is in that state at the call statement.

The guard instantiation function Z£ .. €
(PointsTo” x StateEnv”) — Guard® — Guard”
instantiates &)-guard to the corresponding-guard by
individually instantiating each of the context variables
that appear in th&)-guard. Recall from Section 5.7

state environment with respect to the points-to graph that the only atoms appearing in a summary state
and state environment at the call statement in the caller.environment guard are context variables. Also recall
The remainder of this section presents its definition in from Section 5.4 that each state has a corresponding

context variable according tovar that represents the Now, we define the guard instantiation function
guard under which the program is in that state on entry Z..4 that considers all possible substitutions €

to the procedure. sub(State®, State®):
In order to describe guard instantation, we introduce
additional notation. The functiomvar—! € XVar — Tuara(p”, Tl (19) =
State is the inverse function ofvar. The function
sub takes two setss; and S, and constructs all possi- ~ \ (Zsubappiy (Tt T)(%9) A Tsuprefine(07)(7))
ble substitutions fron$; to Sy such that the domain of T
o € sub(S1,S2) is S1 and the range is a subset 8. Finally, we define of the state environment instan-
The expressiom[o] is the guard produced by substitut- tiation function Zs;temn,. Let T, be the sum-
ing each atom in ¢ with o(v). mary state environment af, and letI';, = be its in-

Guard instantation entails constructing a substitution stantiation toP at the call statement. Sd;%,,, =
o that maps eaclp-context variable to @-guard and ~ Zstaternw (p7,TL,)(T9,,,). The P-guard associated

then applyings to 4% to construct theP-guardy?[o]. with a P-stateq) in 'L is formed by disjoining,
Finding the P-guardo(c?) that corresponds to - for eachQ-statequ € State®, the guard under which
context variable® consists of the following three steps: qu instantiates tog!’, and the guard instantiation of
e, (¢9):
1. Look up theR-stateq® that corresponds td? us- fum (417)
Ing "IJUU/TQ- IStateEnv (pP7 Flcjall)(rgum)(qéj) =
iater @ - p
2 lnStantlateh toar Stateq2 ' \/ (IStateEan(pP7 Flcjall)(rgum)(q1Q7 q;))
. Q
3. Look up theP-guard that corresponds ¢§’ using gl
I where
The first and third steps are straightforward because Istatemmwo (07, TE) (T2,)02, ¢5) =
zvar andl' , are injective functions. However, the sec-

cal

ond step requires more care because Qrgtate may Tstate (0702, 65) A Tauara(p” TE)T, (¢9))
instantiate to many’-states and mang-states may in-
stantiate to oné>-state as demonstrated by the example 5.10 Path-Sensitive Must Modify Anal-

presented earlier in this section. ysis
We handle the second step by considering all pos-
sible substitutions fromtate® to State” denoted by The underlying alias analysis described in [9] is an in-
sub(State?, State”). Consider a substitution € terprocedurally pattinsensitive may-alias analysis. Un-
sub(State®, State”). We define an substitution guard fortunately, this level of precision is not sufficient to
instantiation functionZgy, 4,1, that instantiates)? reduce the false alarms in our study to a reasonable
with respect tor: number. Initially, more than four hundred false alarms
were reported because the alias analysis was not precise
Tsubappty (Choyys T)(W9) = @[T Ly 0 7 0 (zvar™)9] enough to compute path-sensitiveist-modifyinforma-
tion from callees. A location ismust-modifiedf, under
The series of function composition§.,, o 7 o some guard, the location must be updated with a value

(zvar—1)¥ carries out the three steps enumerated abovegifferent than the one it contained on entry to the proce-
but considers only one way to instantiafg-states dure.

to P-states, namelyr. Observe that each substi- Consider the proceduressys.recvnsg and

tution € sub(State?, State”) induces a guard verify.iovec reproduced in Figure 3. Now,
Zsubrefine(p")(1) formed by conjoining, for each gsysrecvnsg copies a user pointer into the
q? — ¢4 € 7, the guard under whicb\? instantiates nsg_sys. nsg.nane stack location, and then up-

to gl dates that location with a kernel pointer by in-
voking verify.iovec. Then, the procedure
subsequently passes nmsg_sys. nsg_nane into

ZsubRefine(p) (1) = /\ Tstare (7)) (0%, ¢5) sock_recvnsg. Here, verify_iovec condition-

@qPer ally must-modifies m >nsg_nane under the guard

;. I{ong sys_recvnsg(..., struct nmsghdr __user *nsg) 6 Evaluation

3 struct msghdr nsg_sys;

4: int err; X . . .

5: char addr [MAX_SOCK_ADDR] ; This section evaluates an implementation of the

&: unchecked user pointer dereferences analysis. The im-

7

8 if (copy_from user(&rsg_sys, nsg, plementation uses the Saturn program analysis frame-

9: si zeof (struct nsghdr)))

10: return - EFAULT; work [1]

11: S

12: err = verify_iovec(&msg_sys, ...,

13: Y- (add?,_ iI/ERI FY_WRI TE) ; 6.1 Setup

14: if (err <0)

15: goto out_freeioyv;

16: We ran our implementation over the entire Linux

17 err = sock_recvmeg(..., &msgsys, ...); 2.6.17.1 distribution built for the x86 architecture. The

19: out _freeiov: distribution contains over 6.2 million lines of code

29) return err; with 91,543 procedures, 40,760 global variables, 14,794
_ o composite types, and 35,317 initializers. Our implemen-

22: int verify iovec(struct msghdr «m ..., tation transforms the 33,886 loops into tail recursive pro-

23: char *address, int node) i

24: { cedures. The abstract syntax trees are stored in several

o Inmterr; databases totaling 1.7 GB in size.

27: if (m>msg_nanel en) { We ran the Saturn alias analysis over the abstract

28: if (node == VERI FY_READ) {

9. err = move. addr. to_kernel (m >msg_nare, syntax trees to corr_1pute_ the memory model for each

30: m>msg_nanel en, procedure as described in Section 4, and then we ran

g; it (err < 0) return err: address) ; our unchecked user pointer dereferences analysis over

33: } the abstract syntax trees and memory models. The

34: . . .

a5 m >msg_name = addr ess: unchecked user p0|_nter dereferences_analy5|§ consists of

36: } else { two phases. The first phase determines which expres-

4 y momenam = RULL; sions in a procedure may evaluate to a user location, and

39: o the second phase determines which of those expressions

40: }

identified in the first phase are not guarded by a check.
Decomposing the analysis into two phases aids scalabil-
ity by allowing the first phase to identify the minimum
set of expressions that need to tracked by the second
phase.

Because our analysis is compositional and each pro-
Y = —~(nmode = VERI FY.READ A err < 0). Because cedure is analyzed independently, we parallelized our
the original underlying alias analysis was not interpro- implementation by distributing the analyses of individ-
cedurally path-sensitive, it reported that>msg_name ual procedures over a cluster consisting of 25 nodes
was only may-modified under the guaid = false. where each node consists of 4 cores and 6 GB of
While 9" is a sound choice for the must-modify guard, memory. The implementation allotted 3 minutes to
as it underapproximates the exact guardusing the each procedure before timing out and moving on to
more precise guarg is important because it prevents the next procedure. The implementation times out on
the analysis from concluding thatg_sys. meg_nane 154 procedures, or 0.17%. The total running time of
is a user pointer on entry &ock.r ecvisg. the unchecked user pointer dereferences analysis is 3.5

Consequently, we augment the alias analysis with a hours.
must-modify analysis that tracks a guapdas the con-
dition under which a location is must-modified by the 6.2 Results
procedure. Then, to keep the guard small in the interest
of scalability, we use a special abstraction function (see A user pointelsourceis a pointer parameter to a sys-
Section 5.7) called theorrelation abstractiorfunction, tem call. A user pointesink is a pointer dereference
a0y 10 COMpute a conservative underapproximation of site. The Linux distribution we analyzed has 627 sources
1 described in [5]. Tracking these more precise must- and 867,544 sinks. Our analysis discharges 616 out
modify conditions in the alias analysis substantially re- of the 627 user pointer sources (or 98.2% of sources)
duces the number of false alarms. and 851,686 of the 852,092 user pointer sinks that do

Figure 3. From net/sys.c, net/core/iovec.c

1: int sound_ioctl (..., uint cnd, 1: struct { char *nane; ...} map[] = ...,
2: ulong /*user*/ arg) { 2: {[NFSCTL_GETFD] = {.name = ".getfd", ...},
3: if (_SIOC_ DIR(cnd) != _SI OC_NONE && 3: [NFSCTL_GETFS] = {.nanme = ".getfs", ...},};
4: “SsioC DIR(cmd) = 0) { 4:
5: 5: long sys_nfsservctl(int cnd, ..., void *res) {
6: if(_SIOC_DIR(cnd) & _SIOC WRITE) { 6:
7: if (laccess_ok(..., arg,...)) { 7: struct file *file = do_open(map[cnd] . nane);
8: return - EFAULT; 8: -
9: } 9: int err = file->f_op->read(file, res, ...);
10: } 10:
11: } 11: }
12: S
13: t d_ni ioctl (..., cnd, ; .
14y | nsounemxer_toe (crd, arg) Figure 5. From fs/nfsctl.c
15: int sound_m xer_ioctl (uint cnd,
16: void /xuserx/ =*arg) {
17: . i)
18: return aci_nmixer_ioctl(...,cnd, arg); Consider the procedure sound.ioctl of
;g: } sound/ oss/ soundcard.c from Linux 2.6.17.1
21: int aci_mixer_ioctl (..., uint cnd, (see Figure 4) where the formal parametarg
22: void /xuserx/ =*arg) { ; :
23 swi t ch(crd) is Q user pomter passed from the system call
24: case SOUND_M XER WRI TE_| GAI N: sys.ioctl. Line 7 performs a check on the
gg: cerarg. user pointer using the special checking primitive
27: } access_ok under the conditiong = ¢1 A ¢o
) where ¢ = _SIOCDI R(cnd) != _SI OC_NONE
Figure 4. From sound/oss/soundcard.c & SIOCDIR(cnd) !'= 0 is the con-

ditional on lines 3 and 4, andg¢. =
SIOCDIR(cnd) & SIOCCMWRITE) =0 is the

not appear in procedures that time out (or 99.95% of conditional on line 6. Thus, before the call to
sinks). There were 11 warnings on user pointer sourcessound-ni xer_i oct! on line 13, arg is checked
(1 source warning for approximately 560,000 lines of under the conditios. Consequently, any subsequent
code) and 406 warnings on user pointer sinks (1 sink dereference oir g must be guarded by a condition that
warning for approximately 15,000 lines of code) all of implies ¢. Line 18 in procedureci ni xer .i oct |
which can be discharged by 22 additional, simple anno- dereferences the user pointerg under the condition
tations. Almost all false alarms can be classified into two ¢ == SOUND-M XERWRI TE_| GAIN which implies
categories: lack of interprocedural path sensitivity and ¢. and thus the user pointer is checked before it is
imprecision in analyzing function pointers. The annota- dereferenced and therefore safe. Adding relevant guards
tions discharging the false alarms due to interproceduralto Procedure summaries to express interprocedural
path-insensitivity refine the guard associated with a statePath sensitivity would enable the analysis to prove this
in a summary state environmentwith additional program dereference safe.
predicates, while those discharging the false alarms due
to function pointer imprecision refine the set of possible 6.4 Function Pointers
targets computed for function pointer call statements.
Four user pointer sources and 130 user pointer sinks
6.3 Interprocedural Path Insensitivity could not be discharged because the set of targets for
some function pointers inferred by the alias analysis
The analysis presented in this paper is fully is too coarse. Consider the function pointer invoca-
intraprocedurally path-sensitive buhterprocedurally tion in proceduresys_nf sservct!| of fs/nfsctl.c,
pathinsensitive. Within a procedure the analysis rea- shown in Figure 5. This single site is responsible for
sons about all branch correlations, however, the contextthe analysis failing to discharge 1 user pointer source
variable abstraction performed on the preliminary sum- and 111 user pointer sinks. On line 1, the global ar-
mary eliminates all path information in the final sum- ray map maps integer constants to file names. On line
mary of the procedure, which prevents the analysis from 7, sys_nf sservct | performs a lookup interap for a
correlating branches and return values across procedurdile name and uses the file name to open a file repre-
boundaries. Interprocedural path sensitivity is used in asented by a&truct file object. Thestruct file
few places in Linux, causing the analysis to fail to dis- object has a field calleéi_op which points to a func-
charge 5 user pointer sources and 265 user pointer sinkstion pointer table of typest ruct fil e_operations

int notifier_call_chain(struct notifier_block **nl,
unsigned long val, void *v) {
int ret = NOTI FY_DONE;
struct notifier_block *nb;

We placed one of these scalability annotations in
notifier_call _chain, a generic procedure shown in
Figure 6 whose first parametar is a linked list of func-

CENOORONE

nb = *nl; tion pointers and whose third parameters avoi d*
while (nb) { pointer. The procedure iterates owdr and invokes
. ret = nb->notifier_call(nb, val, v); each of its function pointers on. The pointerv is
ﬂ); nb = nb- snext : a user pointer in some calling contexts but not oth-
120} ers. Because our analysis does not track the correla-
ii; return ret: tion between the possible targets of the function point-

15: } ers innl and whethewr is a user pointer, it concludes
thatnoti fi er cal | .chai n passes a user pointer to
all possible targets of function pointers . We
placed the other scalability annotation in procedure
H Sax_command. This annotation refines the guard un-
one of whose entries is a fieldead. The mem- der which a particular location is tracked as beisgr

ory model imprecisely reports that the targets of the vyith additional interprocedural, path-sensitive informa
function pointerf i | e- >f _op- >r ead points to the tar- tlon.

gets of anyr ead field from any instance ot ruct

file.operations rather than only the instances that 7 Conclusion

can actually be pointed to by thié | e returned by this
call todo_open.

Figure 6. From fs/nfsctl.c

We have presented a scalable and precise analysis for
finite-state safety properties and reported on our expe-
rience in attempting to verify the absence of unchecked
user pointer dereferences in the Linux operating system.

We manually summarized several commonly used We believe that our analysis can be adapted to verify
assembly statements. In particular, we summarizedother important security properties as well.
each inline assembly statement to specify that the state-
ment dereferences each of its operands. These derefg8 Acknowledgment
erence summaries allow the analysis to handle more
conservatively some inline assembly statements such The authors would like to thank Isil Dillig, Thomas
as _mencpy and _copy-touser which dereference pjjig, Brian Hackett, and Peter Hawkins for their com-
some of their operands but do not check whether thesements on earlier drafts of this paper. This work was sup-
operands point into user space. ported by NSF grants CCF-0430378 and NSF SA4899-

We also summarized several inline assembly state-10808PG-1 with additional support from DARPA.
ments and procedures designated by Linux developers

as primitives that check whether a user pointer points

into user space. These checker inline assembly state-ReferenceS
ments include _r ange_ok, get _user, andput _user,

and the checker procedures incluckepy _f r omuser
andcopy_t o_user.

6.5 Manual Summaries

[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett,
and P. Hawkins. An Overview of the Saturn Project.
In Proceeding of the 7th ACM Workshop on Program
Analysis for Software Tools and Engineeribgew York,
NY, USA, 2007. ACM Press.

[2] T.Balland S. K. Rajamani. The SLAM Project: Debug-
ging System Software via Static Analysis. Proceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on

6.6 Manual Annotations

We used two annotations that soundly restrict which
locations are tracked asser at particular program Principles of Programming Languagesages 1-3, New
points. These two annotations increase the precision of York. NY, USA. 2002. ACM Press.

the analysis which prevents theer state from prop- [3] B. Blanchet, P. Cousot, R. Cousot, J. Feret

agating to many times more locations than necessary.
Without these two annotations, the analysis fails to ter-

minate in a reasonable amount of time because an ex-
cessive number of locations are tracked.

L. Mauborgne, A. Mine, D. Monniaux, and X. Ri-
val. Design and Implementation of a Special-Purpose
Static Program Analyzer for Safety-Critical Real-Time
Embedded Software. pages 85-108, 2002.

(4]

5

—_

(6]

[7

—

(8]

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
Program Verification in Polynomial Time. IRroceed-
ings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementatioiges
57-68, New York, NY, USA, 2002. ACM Press.

1. Dillig, T. Dillig, and A. Aiken. Static Error Detectin
Using Semantic Inconsistency InferencePhoceedings

of the ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementativolume 42,
pages 435-445, New York, NY, USA, 2007. ACM Press.
N. Dor, S. Adams, M. Das, and Z. Yang. Software Vali-
dation via Scalable Path-sensitive Value Flow Analysis.
In Proceedings of the ACM SIGSOFT 2004 International
Symposium on Software Testing and Analysges 12—
22, New York, NY, USA, 2004. ACM Press.

S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective Typestate Verification in the Presence of Alias-
ing. In Proceedings of the 2006 International Sympo-
sium on Software Testing and Analygpsges 133-144,
New York, NY, USA, 2006. ACM Press.

J. Foster, M. Fahndrich, and A. Aiken. A Theory of Type
Qualifiers. InProceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Im-
plementation pages 192-203, New York, NY, USA,
1999. ACM Press.

B. Hackett and A. Aiken. How is Aliasing Used in Sys-
tems Software? IfProceedings of the 14th ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineeringpages 69-80, New York, NY, USA,
2006. ACM Press.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A Sys-
tem and Language for Building System-Specific, Static
Analyses. InProceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Im-
plementationpages 69-82, New York, NY, USA, 2002.
ACM Press.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. InProceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guagespages 58-70, New York, NY, USA, 2002. ACM
Press.

R. Johnson and D. Wagner. Finding User/Kernel Pointer
Bugs with Type Inference. IRroceedings of the 13th
USENIX Security Symposiupages 119-134, 2004.

R. E. Strom and S. Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability.

volume 12, pages 157-171, Piscataway, NJ, USA, 1986.

IEEE Press.

L. Torvalds. Sparse.

Y. Xie and A. Aiken. Scalable Error Detection us-
ing Boolean Satisfiability. IrfProceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languagesgpages 351-363, New York,
NY, USA, 2005. ACM Press.

J. Yang, T. Kremenek, Y. Xie, and D. Engler. MECA: An
Extensible, Expressive System and Language for Stati-
cally Checking Security Properties. Rroceedings of

the 10th ACM Conference on Computer and Communi-
cations Securitypages 321-334, New York, NY, USA,
2003. ACM Press.

