
Verifying the Safety of User Pointer Dereferences

Suhabe Bugrara
Department of Computer Science

Stanford University
Stanford, CA 94305

suhabe@stanford.edu

Alex Aiken
Department of Computer Science

Stanford University
Stanford, CA 94305
aiken@stanford.edu

Abstract

Operating systems divide virtual memory addresses
into kernel spaceand user space. The interface of a
modern operating system consists of a set of system call
procedures that may take pointer arguments calleduser
pointers. It issafeto dereference a user pointer if and
only if it points into user space. If the operating system
dereferences a user pointer that does not point into user
space, then a malicious user application could gain con-
trol of the operating system, reveal sensitive data from
kernel space, or crash the machine. Because the oper-
ating system cannot trust user processes, the operating
system must check that the user pointer points to user
space before dereferencing it. In this paper, we present a
scalable and precise static analysis capable of verifying
the absence of unchecked user pointer dereferences. We
evaluate an implementation of our analysis on the en-
tire Linux operating system with over 6.2 million lines of
code with false alarms reported on only 0.05% of deref-
erence sites.

1 Introduction

Operating systems divide virtual memory addresses
into kernel spaceand user space. The interface of a
modern operating system consists of a set of system call
procedures that may take pointer arguments calleduser
pointers. It issafeto dereference a user pointer if and
only if it points into user space. If the operating system
dereferences a user pointer that does not point into user
space, then a malicious user application could gain con-
trol of the operating system, reveal sensitive data from
kernel space, or crash the machine [12]. Because the
operating system cannot trust user processes, the oper-
ating system must check that the user pointer points to

1: void syscall(int** u) {
2: int aok; int* cmd;
3:
4: aok := access_ok(u);
5:
6: if (aok != 0)
7: cmd := get(u);
8: else
9: cmd := 0;
10: }

11: int* get(int** y) {
12: int* x;
13: x := *y;
14: return x;
15: }

Figure 1. Example 1

user space before dereferencing it.

Figure 1 gives an example of how a user pointer is
checked before being dereferenced. The example con-
sists of two procedures:syscall andget. The proce-
dureaccess ok, whose definition is not provided in the
figure, returns a non-zero value if and only if its pointer
parameter points into user space. Proceduresyscall

is a system call available to user applications. Conse-
quently, its pointer parameteru is a user pointer. Line
4 appliesaccess ok to u to check whetheru points
into user space. Subsequently, line 7 callsget with u

under the condition that the return value of the call to
access ok is non-zero which implies that the check on
line 4 succeeded. On line 13, procedureget derefer-
ences its pointer parameter.

In this paper, we present a scalable and precise static
analysis capable of automatically verifying the absence
of unchecked user pointer dereferences. That is, the

analysis provides a formal guarantee that these secu-
rity vulnerabilities do not exist given some standard as-
sumptions, which are discussed later. The unchecked
user pointer dereferences property is an example of a
finite state safety property, an important class of speci-
fications extensively studied in previous work [2,4,6–8,
10–13, 15]. Intuitively, a finite-state property associates
one of a finite set of states with a value at each point
in a program. In particular, the finite-state characteriza-
tion of the unchecked user pointer dereferences property
uses the set of states{user, unchecked, unsafe}

described in Section 5.

We have implemented our analysis and evaluated its
precision and scalability on the entire Linux 2.6.17.1 op-
erating system. Our implementation reports false alarms
on only 0.05% of dereference sites and uses only 2 an-
notations for scalability. We believe our static analysis
is the first automatic verifier to demonstrate this level of
scalability while maintaining soundness and precision.

The key to scalability in our system is the compo-
sitional manner in which a program is analyzed. Each
procedureP is analyzed independently and only infor-
mation aboutP ’s summary, which capturesP ’s behav-
ior with respect to the finite-state property, is commu-
nicated to other procedures that callP . Analyzing a
procedure independently makes it possible to scale the
analysis to millions of lines of code and still use expen-
sive techniques to maintain necessary precision. In par-
ticular, our analysis is context-sensitive, flow-sensitive,
field-sensitive, and intraprocedurally path-sensitive. Our
experience suggests that this level of precision is needed
to keep the number of false alarms low. Procedure sum-
maries abstract the intraprocedural analysis but cause
relatively little loss of information in practice, as pro-
grammers already naturally abstract at procedure bound-
aries. Our combination of precision and scalability
makes near verification of interesting safety properties
feasible on large, complex systems.

Our soundness claim makes several standard assump-
tions about the program being analyzed. In particular,
our analysis is not guaranteed to find errors that may
arise from unsafe memory operations in C such as buffer
overruns, concurrency, and inline assembly. In addition,
our system fails to converge completely on a few proce-
dures, which means that any errors that depend on those
procedures may not be reported. In our experiment, our
system failed to converge completely on 0.17% of all
procedures in Linux as described in Section 6. Further-
more, our system builds upon an existing alias analy-
sis [9] that fails to converge completely on 10% of all
procedures. However, manual inspection of the alias

analysis results suggests that the alias analysis neverthe-
less conservatively overapproximates the set of concrete
aliases for every procedure. Aside from these caveats,
our system fully verifies the absence of unchecked user
pointer dereferences in the Linux kernel.

1.1 Contributions

This paper makes the following contributions.

• We verify the absence of unchecked user pointer
dereferences given some standard assumptions.

• We present experimental results that evaluate the
scalability and precision of our analysis on a large,
complex, and important program.

• We detail a general framework for summary-based,
path-sensitive static analyses of finite-state safety
properties.

The rest of this paper is organized as follows. Sec-
tion 2 covers related work. Section 3 defines the lan-
guage used in our examples and algorithms. Section 4
briefly explains thememory modelthat handles pointer
aliasing. Section 5 details thesafety analysisfor finite-
state properties. Finally, Section 6 presents our experi-
ence and experimental results.

2 Related Work

We briefly describe closely related work on scalable
verification of finite-state properties in general and the
unchecked user pointer dereferences property in partic-
ular.

MECA [16] is a path-insensitive bug finding tool that
statically finds operating system security vulnerabilities
such as unchecked user pointer dereferences. MECA is
not sound, which means that it does not provide a formal
guarantee that vulnerabilities of this kind do not exist.
In particular, it does not handle aliasing conservatively
and breaks recursive call chains arbitrarily. Using about
45 manual annotations to suppress false alarms, MECA
found 44 unchecked user pointer dereferences and re-
ported 8 false alarms on Linux 2.5.63.

Sparse [14] is a bug finding tool developed by the
Linux community that statically finds unchecked user
pointer dereferences. Linux 2.6.17.1 has more than
9,000 annotations on variables and other constructs be-
lieved to be user pointers. Sparse is not sound and
does not check the correctness of these thousands of
programmer-supplied annotations.

CQual [8] is a type-qualifier inference system that
has been used to verify the absence of unchecked user
pointer dereferences of individual modules in earlier
versions of Linux [12]. Solving the monolithic set
of constraints that CQual produces degenerates into a
whole program analysis that requires keeping the entire
program in main memory, thus limiting its scalability to
about 300,000 lines of code. The experiments in [12] are
not directly comparable to ours because their reports are
clustered to avoid redundancy. For example, the single
source causing 111 sink warnings in our system would
count as one report by their methodology. Even so, their
analysis of Linux 2.2.23 produced 227 raw warnings, or
one warning for every 1300 lines of code. We achieve an
order of magnitude improvement in warning density due
to the fact that our system is flow-sensitive and intrapro-
cedurally path-sensitive which are features that CQual
lacks. Several sources of false alarms listed in [12] do
not appear in our experiments, because our analysis is
precise enough to handle them soundly. Interestingly,
function pointers are not a major cause of false alarms
in [12], although they cause over 1/3 of the false alarms
in our experiments. This is actually consistent with our
experience that accuracy in analyzing function pointers
is not particularly important until one analyzes the entire
operating system including all device drivers.

ESP [4] is a path-sensitive dataflow analysis sys-
tem used to verifyprobing, the Windows version of
unchecked user pointer dereferences [6]. Their exper-
iment reports warnings on 30 of the 500 user pointer
sources (6%) on a program consisting of about 1 million
lines of code, all of which were false alarms. Contrast-
ingly, our experiment reports warnings on 11 of the 627
user pointer sources (1.8%) on a program consisting of
about 6.2 million lines of code. Because ESP’svalue-
flow analysis is path-sensitive (including interprocedu-
rally) and performsstrong updates(a feature we have
not discussed, but which our underlying memory model
also handles), ESP’s expressive power is more compara-
ble to our’s than CQual’s. One significant technical dif-
ference is that ESP encodes path sensitivity by tracking
sets of dataflow facts, one set for each path. In contrast,
we associate a boolean constraint, orguard, with each
fact describing a set of paths. In our representation it is
easy to reason about multiple paths simultaneously, as
the guards directly encode all paths where a fact holds.

SLAM [2] and BLAST [11] are software model
checkers based on predicate abstraction. Both systems
are able to analyze systems with hundreds of thousands
of lines of code. Astree [3] is a static analysis tool that
has been used to verify automatically-generated safety-

critical software in a restricted subset of C. A notable
aspect of Astree is that it performs full verification of
the absence of any undefined runtime behavior without
making any assumptions about the analyzed program.

3 Language

We briefly define a simple imperative language used
to present our analysis in this paper. This language is
restrictive, which enables us to present our techniques
with minimal extraneous detail. However, our imple-
mentation handles the entire C language. A program is
a set ofprocedures .

procedure ::= type P (
−−−−→
type v) {statement}

statement ::= type v | return v | v := Z

| v1 := *v2 | v1 := &v2

| v1 := Q (−→v2)

| statement ; statement

| if (v != 0) statement

else statement

type ::= void | int | int* | int**

A procedure has a return type, formal parameters, and
a statement. The statement forms are self explanatory.
Our analysis always takes place in some procedure, thus
we superscript variables, sets, and functions with the
name of the procedure with which they are associated.
The superscript is omitted when the procedure is clear
from context. LetProc be the set of procedures in the
program. Then,RvalueP is the set of right hand side
expressions,LvalueP is the set of left hand side expres-
sions, andVarP is the set of variablesv of procedure
P ∈ Proc. Figure 1 shows the running example used in
the rest of the paper written in this language.

4 Memory Model

This section describes thememory modelused by the
safety analysis. The memory model of a procedure gives
an abstract description of the portion of the heap relevant
to the procedure. Interested readers are referred to [9]
for details of how the memory model is computed.

The memory model for a procedureP consists of a
distinct set ofabstract locationsLocP (usually called
just locations). A function varlocP ∈ VarP → LocP

assigns each variablev ∈ VarP to a locationl ∈ LocP .
The set ofguards, GuardP , consists of propositional
formulas over a set of primitive predicates on locations
and boolean variables.

EXAMPLE . In proceduresyscall in Figure 1, sup-
pose the memory model assigns the locationlaok the
variableaok so varlocsyscall(aok) = laok. Then, the
conditionalaok != 0 that appears on line 6 is repre-
sented by the guard(laok 6= 0) ∈ Guard

syscall. �

4.1 Guarded Points-to Graphs

A guarded points-to graphρ ∈ PointsToP =
LocP × LocP → Guard

P is a function that asso-
ciates a guardϕ ∈ GuardP with each pair of loca-
tions li , lj ∈ LocP , representing the condition under
whichli may point-tolj . Thervalue evaluationfunction
rvalP ∈ PointsToP → (RvalueP×LocP) → GuardP

gives the guard under which anrvalue may point-to
a given location. Anrvalue is an expression that ap-
pears on the right-hand side of an assignment. Similarly,
the lvalue evaluationfunction lvalP ∈ PointsToP →
(LvalueP × LocP) → GuardP gives the guard under
which anlvalue is representedby a given location. An
lvalueis an expression that appears on the left-hand side
of an assignment.

EXAMPLE . In procedureget in Figure 1, as-
sume the guarded points-to graphρ11 encodes the
points-to relationships at entry on line 11. Also let
l, ly, l*y, l**y ∈ LocP where varloc(y) = ly and
varloc(x) = lx. The guard under which the lvalue
*y is represented by the locationl*y with respect to
the points-to graphρ11 is lval(ρ11)(*y, l*y), which is
equivalent torval(ρ11)(y, l*y), the guard under which
the rvaluey points-to l*y with respect toρ11, which
is equivalent toρ11(ly, l*y). Similarly, the guard un-
der which the lvalue**y is represented by the loca-
tion l**y is lval(ρ11)(**y, l**y), which is equivalent to
rval(ρ11)(*y, l**y), the guard under which the rvalue
*y points-tol**y, which is equivalent to

∨

l[ρ11(ly, l) ∧
ρ11(l, l**y)], which is the disjunction of all guards under
which ly points-to some locationl andl points-tol**y.
�

4.2 Location Instantiation

The abstract locations of two different procedures are
disjoint: LocP ∩ LocQ = ∅ if P 6= Q. A separate map-
ping shows when two abstract locations from different
procedures represent the same set of concrete locations.
SupposeP callsQ at a call statements in P and let
ρ ∈ PointsToP be the points-to graph encoding the
points-to information ats. The location instantiation
function IP

Loc ∈ PointsToP → (LocQ × LocP) →
GuardP gives the guard under which the abstract loca-
tions lQ

1
∈ LocQ andlP

2
∈ LocP represent the same set

of concrete locations. We say the callee locationl
Q
1

in-
stantiatesto the caller locationlP2 at s if they represent
the same set of concrete locations.

EXAMPLE . In the example in Figure 1, proce-
duresyscall calls procedureget on line 7 with ac-
tual parameteru and formal parametery. Let ρ11 ∈
PointsToget be the points-to graph at entry to proce-
dureget on line 11 andρ7 ∈ PointsTosyscall be the
points-to graph at the call statement on line 7. Also
let lu, l*u ∈ Locsyscall and ly, l*y ∈ Locget, where
varlocsyscall(u) = lu andvarlocget(y) = ly. The lo-
cationslu and ly never correspond to the same set of
concrete locations because the concrete locations rep-
resented bylu are allocated on the stack ofsyscall
while the concrete locations represented byly are allo-
cated on the stack ofget. Thus,IsyscallLoc (ρ7)(ly, lu) =
false. However, l*u and l*y may correspond to the
same set of concrete locations because of the implicit
pointer copy that occurs fromlu to ly at the call state-
ment. Thus,IsyscallLoc (ρ7)(l*y, l*u) = ρ7(lu, l*u) when
ρ11(ly, l*y) = true. �

4.3 Judgments

This paper refers to the memory model by using judg-
ments of the form

φ, ρ ⊢mem s : φ′, ρ′, ψ

whereφ (resp. φ′) is the guard under which execution
reaches the entry (resp. exit) point of statements, ρ
(resp.ρ′) is the points-to graph at the entry (resp. exit)
point of s, andψ is the guard under which transfer of
control occurs acrosss.

EXAMPLE . In the example in Figure 1, consider the
assignment statementx = *y on line 13. The guards
under which execution reaches the entry and exit points
of the statement are bothtrue, and the guard under
which control transfer across the statement is alsotrue.
The points-to graphρ13 on entry to the statement has
ρ13(ly, l*y) = true, ρ13(l*y, l**y) = true. The points-
to graphρ14 on exit to the statement hasρ14(ly, l*y) =
true, ρ14(l*y, l**y) = true, ρ14(lx, l**y) = true. Con-
sequently, the judgmenttrue, ρ13 ⊢mem x = *y :
true, ρ14, true is valid. �

5 Safety

This section describes the safety analysis. Section 5.1
definesstate environments. Section 5.2 describes the
fixed point iteration over the program. Section 5.3 ex-
plains how the analysis generates the preliminary sum-
mary of a procedure. Sections 5.4 to 5.6 describe the

initial state environment used on entry to procedures.
Section 5.7 gives the abstraction function that the anal-
ysis applies to preliminary summaries to produce final
summaries. Sections 5.8 and 5.9 detail the intraprocedu-
ral and interprocedural components of the analysis, re-
spectively. Section 5.10 describes a path-sensitivemust-
modifyanalysis that substantially reduces the number of
false alarms.

Our analysis has many components which are de-
tailed in this section. The most important points, how-
ever, are:

1. Our analysis is intraprocedurally path-sensitive.
We associate with each fact a guard describing the
conditions under which that fact holds.

2. Our analysis is compositional. We compute a sum-
mary of each procedureP that succinctly describes
the behavior ofP . The callers ofP refer only to
P ’s summary. Summaries are polymorphic in that
they are parametrized by whether particular loca-
tions areuser or not.

The combination of (1) and (2) leads to a number of
difficulties in scaling a precise user pointer dereference
analysis to a program the size of Linux. First, tracking
all the possibilities for whether a location can beuser or
not for every location in a procedure turns out to be very
expensive. As a result, we use an additional analysis
described in Section 5.6 that determines which locations
can never beuser, which turns out to be most locations,
greatly improving the scalability of the analysis.

Second, a similar problem arises in deciding how to
make use of the path-sensitive information computed for
a procedure, which is far too expensive to use directly as
the summary of a procedure. We simplify, orabstract,
this information as described in Section 5.7.

Third, having both polymorphic summaries and path
sensitivity introduces subtleties in the mapping between
actual and formal parameters at procedure calls as de-
scribed in Section 5.9.

Finally, it turns out that it is not only important to
know what locations a pointer may point to, but also
which pointers must be updated by a procedure. For ex-
ample, it is important to know if a callee is guaranteed
to overwrite a user pointer with a kernel pointer. Our
solution for this problem is described in Section 5.10.

5.1 State Environments

Let StateP be a set ofabstract statesof a proce-
dure P . A state environmentΓP ∈ StateEnvP =
StateP → GuardP associates each state with the guard

under which the program is in that state. There is a nat-
ural partial order on state environments:Γ1 ⊑ Γ2 if
∀q(Γ1(q) ⇒ Γ2(q)). Theleast upper boundoperator is
defined by(Γ1 ⊔ Γ2)(q) = Γ1(q) ∨ Γ2(q), thegreatest
lower boundoperator by(Γ1⊓Γ2)(q) = Γ1(q)∧Γ2(q),
bottomby ⊥(q) = false , andtop by ⊤(q) = true. Two
state environmentsΓ1, Γ2 ∈ StateEnv are∼=-equivalent
if and only if Γ1 ⊑ Γ2 andΓ2 ⊑ Γ1.

The state instantiation function IP
State ∈

PointsToP → (StateQ × StateP) → GuardP

gives the guard under which a callee stateqQ ∈ StateQ

instantiates to caller stateqP ∈ StateP .
Consider the unchecked user pointer dereference

property. The set of abstract states consists of location-
typestate pairsStateP = LocP × Typestate where
Typestate = {user, unchecked, unsafe}. The state
(l, user) ∈ StateP signifies that locationl ∈ LocP

is a user location. Similarly, the state(l, unchecked)
signifies thatl has not been checked, and the state
(l, unsafe) signifies thatl is a user location that has
been the target of a dereference while unchecked. Note
that a location may be bothuser and unchecked—
these states are not mutually exclusive. The state instan-
tiation function for this property is defined by

IP
State(ρ)((lQ

1
, t), (lP2 , t)) = IP

Loc(ρ)(l
Q
1
, lP2).

5.2 Fixed Point Iteration

The finite-state safety analysis makes several passes
over the program. In theith pass, the analysis analyzes
each procedure in isolation generating asummary state
environmentthat encodes the behavior of the procedure
with respect to the finite-state property and the mem-
ory model. If a procedureP calls a procedureQ, then
the analysis uses the summary state environment ofQ

computed in the(i− 1)st pass to compute the summary
state environment ofP in the ith pass. Consequently,
the summary ofP depends on the summary ofQ. In a
program with recursive procedures, cyclic dependencies
arise which requires the analysis to reanalyze procedures
until the summaries for all procedures stabilize, or reach
a fixed point. That is, the analysis terminates after the
nth pass when, for each procedureP , the state environ-
ment computed in the(n− 1)st pass is equivalent to the
state environment computed in thenth pass.

5.3 Summary Generation

This paper refers to the safety analysis by using judg-
ments of the form

φ, ρ,Γ ⊢i
safety s : Γ′

whereφ is the guard under which execution reaches
statements, ρ is the points-to graph on entry tos, andΓ
(resp.Γ′) is the state environment on entry (resp. exit)
to s. The superscripti on the turnstile signifies that the
judgment holds in theith pass of the safety analysis over
the program.

The following judgment signifies that the summary
state environment of procedureP in the0th pass is ini-
tialized to⊥, which means that the analysis initially as-
sumes none of the locations are in any of the predefined
states on exit fromP .

⊢0

safety t1 P (
−−−→
t2 v) { s } : ⊥

The following judgment describes how the summary
state environment,Γsum , of procedureP is computed
in theith pass, wherei > 0.

φinit , ρinit ,Γinit ⊢i
safety s : Γprelim

Γsum = α(Γprelim)

⊢i
safety t1 P (

−−−→
t2 v) { s } : Γsum

The top antecedent says that the analysis first per-
forms an intraprocedural analysis of the procedure body,
s, with respect to aninitial state environment, Γinit ,
to compute apreliminary summary state environment,
Γprelim . The bottom antecedent applies anabstraction
functionα to the preliminary summary state environ-
ment to compute the final summary state environment,
Γsum , of the procedure. The choice for initial state envi-
ronment is discussed in Section 5.4, and the abstraction
function is described in Section 5.7. The intraprocedural
analysis is explained in Section 5.8.

5.4 Initial State Environment

Recall from Section 5.3 that the summary state envi-
ronment of a procedure is generated with respect to an
initial state environment, which represents the contexts
in which the procedure is called. Because a procedure
may be called in many different contexts, the analysis
uses a fresh boolean variable, called acontext variable,
to represent the guard of a particular state in any context,
denoting that the guard of the state is unknown and un-
constrained during summary generation. The function
xvarP ∈ StateP → XVarP assigns a context variable
in XVarP to each state. Themost generalinitial state
environment does not incorporate any information about
the guards associated with states in contexts, thus allow-
ing the analysis to generate polymorphic summaries that
are applicable in any possible context, even those that do

not appear in the program. The most general state envi-
ronment is defined byΓinit (q) = xvar(q) for any state
q.

EXAMPLE . In the example in Figure 1, con-
sider the procedureget on line 11. Suppose the
analysis makes the state-to-context-variable assignment
xvar(ly, user) = v1, xvar(ly, unchecked) = v2,
xvar(ly, unsafe) = v3, xvar(l*y, user) = v4,
xvar(l*y, unchecked) = v5, xvar(l*y, unsafe) = v6,
xvar(l**y, user) = v7, xvar(l**y, unchecked) = v8,
xvar(l**y, unsafe) = v9. Then, the most general ini-
tial state environment would be defined byΓinit (q) =
xvar(q) for any stateq. �

Section 5.5 describes a special initial state environ-
ment used for system call procedures. Section 5.6 de-
scribes a refinement of the most general initial state en-
vironment crucial to scaling the analysis for unchecked
user pointer dereferences to millions of lines of code.

5.5 System Call Initial State Environ-
ment

System calls are entry points of an operating sys-
tem. Consequently, any system call formal parameter
is a user pointer, and furthermore, any pointer reachable
from a user pointer via a series of dereferences is also a
user pointer. LetSyscall be the set of system call pro-
cedures. The analysis uses a special initial state envi-
ronment when analyzing a procedureP ∈ Syscall that
guards each(l, user) state withtrue, wherel is a lo-
cation reachable from a formal parameteru of P via a
series of dereferences. Formally, the initial state envi-
ronmentΓP

init whereP ∈ Syscall is defined by

ΓP
init (l, user) = reachable(ρP

init)(varloc
P (u), l)

ΓP
init (l, unchecked) = true

ΓP
init (l, unsafe) = false

where reachable ∈ PointsTo → (Loc × Loc) →
Guard gives the guard under which a location is reach-
able via a series of dereferences from another location.
It is recursively defined by

reachable(ρ)(l1, l2) =
∨

l

[reachable(ρ)(l1, l)∧ρ(l, l2)]

whenl1 6= l2. Any locationl is reachable from itself, so
reachable(ρ)(l, l) = true.

EXAMPLE . In the example in Figure 1, the sys-
tem call proceduresyscall uses an initial state en-
vironment that guards everyuser state for a loca-
tion reachable from the user pointeru with true, and

all other states withfalse: Γinit (l*u, user) = true,
Γinit (l**u, user) = true, andΓinit (l, user) = false

for any otherl. �

5.6 Refining the Initial State Environ-
ment

Recall from Section 5.3 that analyzing a procedure
using the most general initial state environment gener-
ates a summary that may be used in any calling context
including those that do not appear in the program. The
cost of such a pure, compositional bottom-up analysis is
exactly that it must account for the possibility of every
possible calling environment which, depending on the
application, may be prohibitively expensive.

For unchecked user pointer dereferences it turns out
that only a fraction of pointers are actually user point-
ers, and restricting the set of pointers to track during the
analysis of a procedure to only those that could poten-
tially be user in some context substantially improves
scalability. In particular, knowing whether the guard as-
sociated with a state(l, user) is unsatisfiable in all con-
texts allows the analysis to avoid trackingl as it is never
user in any calling context.

The functionstatecontext ∈ (Proc × N) → 2State

associates each procedureQ with the set of states that
appear in some calling context with a satisfiable guard
in passi.

Formally,qQ
1

∈ statecontext(Q, i) if and only if the
judgment

φP , ρP ,ΓP
call ⊢

i
safety v1 := Q (−→v2) : Γ′P

holds in a procedureP and
∨

qP
2
∈StateP

ΓP
call(q

P
2

) ∧ IState(ρP)(qQ
1
, qP

2
) ∧ φP

is satisfiable. The satisfiability of this condition implies
that theQ-stateqQ

1
instantiates to someqP

2
state whose

associated guardΓP
call(q

P
2

) in the calling context is satis-
fiable. Finally, we define a newsatisfiability initial state
environmentιsat for procedureQ in theith pass that in-
corporates the satisfiability of guards in the calling con-
texts:

ιisat (q
Q
1

) =

{

xvar(qQ
1

) q
Q
1
∈ statecontext(Q, i− 1)

false otherwise

EXAMPLE . In the example in Figure 1, letΓsyscall
call

be the context state environment computed on entry to
the call statement toget on line 7 in some passi. Us-
ing the system call state environment, the intraprocedu-
ral analysis, described in Section 5.8, determines that

Γsyscall
call (lu, user) = false, Γsyscall

call (l*u, user) =
true andΓsyscall

call (l**u, user) = true. Thus, the states
(l*y, user), (l**y, unchecked), and (l**y, user) ap-
pear in statecontext(get, i) because(l*u, user) and
(l**u, user) are associated with satisfiable guards in
Γsyscall

call and l*y (resp. l**y) instantiates tol*u (resp.
l**u). Recall the example in Section 5.4 where the most
general initial state environment forget was given. For
purposes of scalability, we refine the initial state envi-
ronment forget to incorporate information about the
satisfiability of the guards inΓsyscall

call . Thus, Γget
init

hasΓget
init (ly, user) = false, Γget

init (l*y, user) = v4,
Γget

init (l*y, unchecked) = v5, andΓget
init (l**y, user) =

v7. Note how the analysis can conclude thatly is not
user in any context and thus can avoid tracking this
pointer throughout the procedure.�

5.7 Summary Abstraction Function

Recall from Section 5.3 that the intraprocedural anal-
ysis of a procedure body generates a preliminary sum-
mary state environment, which encodes a very precise
description of the behavior of the procedure. However,
we have found that retaining this level of precision in-
terprocedurally is prohibitively expensive and, thus, in-
hibits scalability. Consequently, the analysis performs
a sound abstraction on the preliminary summary state
environment to compute the final summary state envi-
ronment using asummary abstraction function, α ∈
StateEnv → StateEnv . This abstraction step reduces
the size of the summary, allowing the analysis to trade
precision for scalability without sacrificing soundness.
Formally,α is sound if and only ifΓ ⊑ α(Γ) for any
Γ ∈ StateEnv .

Our particular choice forα in the analysis of the
unchecked user pointer dereferences property is thecon-
text variable abstraction,αXVar , which abstracts a state
environment by the strongest state environment whose
guards are only over context variables. Formally,Γ′ =
αXVar (Γ) is characterized byΓ ⊑ Γ′ and(Γ ⊑ Γ′′ ⊑
Γ′) ⇒ (Γ′′ ∼= Γ′) when atoms(Γ′) ⊆ XVar and
atoms(Γ′′) ⊆ XVar for anyΓ′′. The functionatoms

gives the set of atomic predicates and boolean variables
appearing in the guards used in a given state environ-
ment. Intuitively, the context variable abstraction re-
moves any atomic predicates in the state environment
guards except for context variables. Letψ beΓ(q). We
computeαXVar (Γ)(q) in the following manner:

1. Enumerate all disjunctions over the set of context
variables that appear inψ.

2. For each disjunctionφ, check the validity ofψ =⇒
φ.

3. Conjoin all the disjunctions that pass the above va-
lidity check to formαXVar (Γ)(q).

The validity check on boolean constraints in step 2
requires the use a boolean satisfiability solver. This ap-
proach requires exponentially many calls to the solver,
but because the number of context variables is typically
small, it works well in practice. This choice of abstrac-
tion function makes our analysis interprocedurally path-
insensitive, that is, it cannot reason about branch condi-
tions across procedure boundaries.

EXAMPLE . Letψ be the guard(va ∧ψ1)∨ (vb ∧ψ2)
whereψ1 andψ2 are predicates not involving context
variables. Then, the set of context variables inψ is
{va, vb}. The disjunctions over{va, vb} are(va ∨ vb),
(¬va ∨ vb), (va ∨ ¬vb), and (¬va ∨ ¬vb). The only
disjunction that is implied byψ is (va ∨ vb). Thus, the
context variable abstraction ofψ is simply(va ∨ vb). �

5.8 Intraprocedural Analysis

This section describes how the intraprocedural anal-
ysis handles various program constructs.

5.8.1 Statement Sequences

The rule for statement sequences is:

φ, ρ ⊢mem s1 : φ′, ρ′, ψ
φ, ρ,Γ ⊢i

safety s1 : Γ1

φ′, ρ′,Γ1 ⊢i
safety s2 : Γ2

φ, ρ,Γ ⊢i
safety s1 ; s2 : Γ2

The first antecedent uses the memory model to compute
the statement guardφ′ and points-to graphρ′ after state-
ments1. The middle antecedent uses the safety analysis
to compute the resulting state environmentΓ1 after ex-
ecutings1. Similarly, the last antecedent computes the
final state environmentΓ2.

5.8.2 Checking

Let access ok be a procedure that returns a nonzero
value if and only if access ok’s user pointer argu-
ment points into user space. Consider the statementv1

:= access ok(v2). A location l is unchecked after
the call if l is unchecked before the call and the call
does not checkl. Thus, if Γ is the state environment
before the call, thenl is unchecked after the call if
Γ(l, unchecked) and eitherv2 does not point tol or

v1 = 0 after the call. Now,ϕ1 ≡ ¬(rval (ρ)(v2, l) ∧ φ)
is the guard under whichv2 does not point tol, and
ϕ2 ≡

∨

l′ [rval (ρ)(v1, l′)∧ (l′ = 0)]∧φ is the the guard
under whichv1 = 0, whereρ is the points-to graph at
the call statement andφ is the guard under which the call
statement executes. The rule for checking statements is:

l ∈ Loc

ϕ1 ≡ ¬(rval (ρ)(v2, l) ∧ φ)
ϕ2 ≡

∨

l′ (rval(ρ)(v1, l′) ∧ (l′ = 0)) ∧ φ
ϕ ≡ (ϕ1 ∨ ϕ2)

Γ′ = Γ[(l, unchecked) 7→ Γ(l, unchecked) ∧ ϕ]

φ, ρ,Γ ⊢i
safety v1 := access ok(v2) : Γ′

5.8.3 Branches

The rule for branch statements is:

φ1, ρ1 ⊢mem s1 : φ′
1
, ρ′

1
, ψ1

φ2, ρ2 ⊢mem s2 : φ′2, ρ
′

2, ψ2

φ1, ρ1,Γ ⊢i
safety s1 : Γ1

φ2, ρ2,Γ ⊢i
safety s2 : Γ2

Γ′ = refine(Γ1, ψ1) ⊔ refine(Γ2, ψ2)

φ, ρ,Γ ⊢i
safety if (v != 0) {s1} else {s2} : Γ′

whererefine ∈ (StateEnv ×Guard) → StateEnv be a
function that refines a state environmentΓ with a guard
ϕ by conjoining the guard for each state inΓ with ϕ as
follows:

refine(Γ, ϕ)(q) = Γ(q) ∧ ϕ.

The purpose ofrefine is to preserve the information of
the two branchesΓ1 andΓ2 in the combined environ-
mentΓ′.

5.8.4 Dereferences

The dereference of a pointerv2 is unsafe whenv2 is an
unchecked, user pointer. Consider the statementv1

:= *v2 that dereferencesv2. The locationl is unsafe
after the dereference when eitherl is unsafe before
the dereference orv2 points tol and l is user andl is
unchecked. The locationl is unsafe before the deref-
erence under the guardΓ(l, unsafe) whereΓ is the state
environment before the dereferencing statement. Now,
ϕ1 ≡ rval(ρ)(v2, l) ∧ φ is the guard under whichv2

points-tol, andϕ2 ≡ Γ(l, user) ∧ Γ(l, unchecked) is
the guard under whichl is user andunchecked, where
ρ is the points-to graph at the dereferencing statement
andφ is the guard under which the dereferencing state-
ment executes. The following inference rule describes
how the analysis updates the state environment with the

1: void syscall(int c) {
2: int x;
3: int y;
4: int *p;
5:
6: if (c != 0)
7: p := &x;
8: else
9: p := &y;
10:
11: process(p, p);
12: }

13: void process(int* q, int *r) {
14: ...
15: }

Figure 2. Example 2

guard under whichl is unsafe:

l ∈ Loc

ϕ1 ≡ rval (ρ)(v2, l) ∧ φ
ϕ2 ≡ Γ(l, user) ∧ Γ(l, unchecked)

Γ′ = Γ[(l, unsafe) 7→ Γ(l, unsafe) ∨ (ϕ1 ∧ ϕ2)]

φ, ρ,Γ ⊢i
safety v1 := *v2 : Γ′

5.9 Interprocedural Analysis

At a call statement, the analysis looks up the sum-
mary state environment of the callee generated in the
previous pass and instantiates it with respect to the call-
ing context:

⊢i−1

safety t1 Q (
−−−→
t2 v) { s } : ΓQ

sum

ΓP
sum = IStateEnv (ρP ,ΓP

call)(Γ
Q
sum)

ΓP
out = refine(ΓP

sum , φ
P)

φP , ρP ,ΓP
call ⊢

i
safety v1 := Q (−→v2) : ΓP

out

The first antecedent bindsΓQ
sum to the summary state

environment of procedureQ generated in the(i − 1)st
pass. The second antecedent binds the state environment
ΓP

sum to thestate environment instantiationof ΓQ
sum , and

the last antecedent bindsΓP
out to the refinement ofΓP

sum

with φP .
The state environment instantiation function

IStateEnv ∈ (PointsToP × StateEnvP) →
StateEnvQ → StateEnvP instantiates a callee
state environment with respect to the points-to graph
and state environment at the call statement in the caller.
The remainder of this section presents its definition in

several steps. First, note that the instantiation of a callee
state environment is complicated by the possibility that
a callee location may instantiate to many caller loca-
tions, and many callee locations may instantiate to one
caller location. The following example demonstrates
how this many-many instantiation relation between
callee-caller locations may arise.

EXAMPLE . Consider the program in Figure 2. The
proceduresyscall calls the procedureprocess. In
syscall the stack locations for variablesc, x, y, and
p are represented by the abstract locationslc, lx, ly, and
lp, respectively. Inprocess the stack locations for vari-
ablesq andr are represented by the abstract locations
lq andlr, respectively. The locations that represent the
points-to targets of these variables on entry to the proce-
dure arel*q andl*r, respectively.

Let ρ11 be the points-to graph computed by the mem-
ory model on line 11 at the call toprocess. Then,
ρ11(lp, lx) = (lc 6= 0) andρ11(lp, ly) = (lc = 0) be-
cause of the guarded assignments on lines 7 and 9. Sim-
ilarly, let ρ13 be the points-to graph computed by the
memory model on line 14 on entry toprocess. Then,
ρ13(lq, l*q) = ¬b, ρ13(lq, l*r) = b, andρ13(lr, l*r) =
true, whereb is an unconstrained boolean variable. Ob-
serve that the memory model captures the entry aliasing
among the parameters inprocess induced by the call
statement on line 11 by introducing an edge fromlq to
l*r under the guardb.

Now, at the call statement on line 11, the location
instantiation function introduced in Section 4.2 has

ILoc(ρ11)(l*q, lx) = (lc 6= 0)
ILoc(ρ11)(l*q, ly) = (lc = 0)
ILoc(ρ11)(l*r, lx) = (lc 6= 0)
ILoc(ρ11)(l*r, ly) = (lc = 0)

Observe thatl*q may instantiate to eitherlx or ly, and
thatlx may instantiate from eitherl*q or l*r. �

Suppose procedureP calls procedureQ at a particu-
lar call statement andψQ is a guard that appears in the
summary state environment ofQ. Let ΓP

call be the state
environment computed at the call statement inP , which
maps eachP -state to theP -guard under which the pro-
gram is in that state at the call statement.

The guard instantiation function IP
Guard ∈

(PointsToP × StateEnvP) → GuardQ → GuardP

instantiates aQ-guard to the correspondingP -guard by
individually instantiating each of the context variables
that appear in theQ-guard. Recall from Section 5.7
that the only atoms appearing in a summary state
environment guard are context variables. Also recall
from Section 5.4 that each state has a corresponding

context variable according toxvar that represents the
guard under which the program is in that state on entry
to the procedure.

In order to describe guard instantation, we introduce
additional notation. The functionxvar−1 ∈ XVar →
State is the inverse function ofxvar . The function
sub takes two setsS1 andS2 and constructs all possi-
ble substitutions fromS1 to S2 such that the domain of
σ ∈ sub(S1, S2) is S1 and the range is a subset ofS2.
The expressionψ[σ] is the guard produced by substitut-
ing each atomv in ψ with σ(v).

Guard instantation entails constructing a substitution
σ that maps eachQ-context variable to aP -guard and
then applyingσ to ψQ to construct theP -guardψQ[σ].
Finding theP -guardσ(cQ) that corresponds to aQ-
context variablecQ consists of the following three steps:

1. Look up theQ-stateqQ
1

that corresponds tocQ us-
ing xvarQ.

2. InstantiateqQ
1

to aP -stateqP
2

.

3. Look up theP -guard that corresponds toqP
2 using

ΓP
call .

The first and third steps are straightforward because
xvar andΓP

call are injective functions. However, the sec-
ond step requires more care because oneQ-state may
instantiate to manyP -states and manyQ-states may in-
stantiate to oneP -state as demonstrated by the example
presented earlier in this section.

We handle the second step by considering all pos-
sible substitutions fromStateQ to StateP denoted by
sub(StateQ,StateP). Consider a substitutionτ ∈
sub(StateQ,StateP). We define an substitution guard
instantiation functionISubApply that instantiatesψQ

with respect toτ :

ISubApply(ΓP
call , τ)(ψ

Q) = ψQ[ΓP
call ◦ τ ◦ (xvar−1)Q]

The series of function compositionsΓP
call ◦ τ ◦

(xvar−1)Q carries out the three steps enumerated above
but considers only one way to instantiateQ-states
to P -states, namelyτ . Observe that each substi-
tution τ ∈ sub(StateQ,StateP) induces a guard
ISubRefine(ρ

P)(τ) formed by conjoining, for each
q

Q
1

7→ qP
2

∈ τ , the guard under whichqQ
1

instantiates
to qP

2 :

ISubRefine(ρ
P)(τ) =

∧

q
Q

1
7→qP

2
∈τ

IState(ρP)(qQ
1
, qP

2
)

Now, we define the guard instantiation function
IGuard that considers all possible substitutionsτ ∈
sub(StateQ,StateP):

IGuard(ρP ,ΓP
call)(ψ

Q) =

∨

τ

(

ISubApply(ΓP
call , τ)(ψ

Q) ∧ ISubRefine(ρ
P)(τ)

)

Finally, we define of the state environment instan-
tiation function IStateEnv . Let ΓQ

sum be the sum-
mary state environment ofQ, and letΓP

sum be its in-
stantiation toP at the call statement. So,ΓP

sum =
IStateEnv (ρP ,ΓP

call)(Γ
Q
sum). The P -guard associated

with a P -state qP
2

in ΓP
sum is formed by disjoining,

for eachQ-stateqQ
1

∈ StateQ, the guard under which
q

Q
1

instantiates toqP
2 , and the guard instantiation of

ΓQ
sum(qQ

1
):

IStateEnv (ρP ,ΓP
call)(Γ

Q
sum)(qP

2) =

∨

q
Q

1

(

IStateEnvQ (ρP ,ΓP
call)(Γ

Q
sum)(qQ

1
, qP

2
)
)

where

IStateEnvQ (ρP ,ΓP
call)(Γ

Q
sum)(qQ

1
, qP

2
) =

IState(ρP)(qQ
1
, qP

2) ∧ IGuard(ρP ,ΓP
call)(Γ

Q
sum(qQ

1
))

5.10 Path-Sensitive Must Modify Anal-
ysis

The underlying alias analysis described in [9] is an in-
terprocedurally path-insensitive may-alias analysis. Un-
fortunately, this level of precision is not sufficient to
reduce the false alarms in our study to a reasonable
number. Initially, more than four hundred false alarms
were reported because the alias analysis was not precise
enough to compute path-sensitivemust-modifyinforma-
tion from callees. A location ismust-modifiedif, under
some guard, the location must be updated with a value
different than the one it contained on entry to the proce-
dure.

Consider the proceduressys recvmsg and
verify iovec reproduced in Figure 3. Now,
sys recvmsg copies a user pointer into the
msg sys.msg name stack location, and then up-
dates that location with a kernel pointer by in-
voking verify iovec. Then, the procedure
subsequently passes msg sys.msg name into
sock recvmsg. Here, verify iovec condition-
ally must-modifies m->msg name under the guard

1: long sys_recvmsg(..., struct msghdr __user *msg)
2: {
3: struct msghdr msg_sys;
4: int err;
5: char addr[MAX_SOCK_ADDR];
6: ...
7:
8: if (copy_from_user(&msg_sys,msg,
9: sizeof(struct msghdr)))
10: return -EFAULT;
11: ...
12: err = verify_iovec(&msg_sys, ...,
13: addr, VERIFY_WRITE);
14: if (err < 0)
15: goto out_freeiov;
16: ...
17: err = sock_recvmsg(..., &msg_sys, ...);
18: ...
19: out_freeiov:
20: return err;
21: }

22: int verify_iovec(struct msghdr *m, ...,
23: char *address, int mode)
24: {
25: int err;
26:
27: if (m->msg_namelen) {
28: if (mode == VERIFY_READ) {
29: err = move_addr_to_kernel(m->msg_name,
30: m->msg_namelen,
31: address);
32: if (err < 0) return err;
33: }
34:
35: m->msg_name = address;
36: } else {
37: m->msg_name = NULL;
38: }
39: ...
40: }

Figure 3. From net/sys.c, net/core/iovec.c

ψ ≡ ¬(mode = VERIFY READ ∧ err < 0). Because
the original underlying alias analysis was not interpro-
cedurally path-sensitive, it reported thatm->msg name

was only may-modified under the guardψ′ ≡ false.
While ψ′ is a sound choice for the must-modify guard,
as it underapproximates the exact guardψ, using the
more precise guardψ is important because it prevents
the analysis from concluding thatmsg sys.msg name

is a user pointer on entry tosock recvmsg.

Consequently, we augment the alias analysis with a
must-modify analysis that tracks a guardψ as the con-
dition under which a location is must-modified by the
procedure. Then, to keep the guard small in the interest
of scalability, we use a special abstraction function (see
Section 5.7) called thecorrelation abstractionfunction,
αcorr , to compute a conservative underapproximation of
ψ described in [5]. Tracking these more precise must-
modify conditions in the alias analysis substantially re-
duces the number of false alarms.

6 Evaluation

This section evaluates an implementation of the
unchecked user pointer dereferences analysis. The im-
plementation uses the Saturn program analysis frame-
work [1].

6.1 Setup

We ran our implementation over the entire Linux
2.6.17.1 distribution built for the x86 architecture. The
distribution contains over 6.2 million lines of code
with 91,543 procedures, 40,760 global variables, 14,794
composite types, and 35,317 initializers. Our implemen-
tation transforms the 33,886 loops into tail recursive pro-
cedures. The abstract syntax trees are stored in several
databases totaling 1.7 GB in size.

We ran the Saturn alias analysis over the abstract
syntax trees to compute the memory model for each
procedure as described in Section 4, and then we ran
our unchecked user pointer dereferences analysis over
the abstract syntax trees and memory models. The
unchecked user pointer dereferences analysis consists of
two phases. The first phase determines which expres-
sions in a procedure may evaluate to a user location, and
the second phase determines which of those expressions
identified in the first phase are not guarded by a check.
Decomposing the analysis into two phases aids scalabil-
ity by allowing the first phase to identify the minimum
set of expressions that need to tracked by the second
phase.

Because our analysis is compositional and each pro-
cedure is analyzed independently, we parallelized our
implementation by distributing the analyses of individ-
ual procedures over a cluster consisting of 25 nodes
where each node consists of 4 cores and 6 GB of
memory. The implementation allotted 3 minutes to
each procedure before timing out and moving on to
the next procedure. The implementation times out on
154 procedures, or 0.17%. The total running time of
the unchecked user pointer dereferences analysis is 3.5
hours.

6.2 Results

A user pointersourceis a pointer parameter to a sys-
tem call. A user pointersink is a pointer dereference
site. The Linux distribution we analyzed has 627 sources
and 867,544 sinks. Our analysis discharges 616 out
of the 627 user pointer sources (or 98.2% of sources)
and 851,686 of the 852,092 user pointer sinks that do

1: int sound_ioctl(..., uint cmd,
2: ulong /*user*/ arg) {
3: if (_SIOC_DIR(cmd) != _SIOC_NONE &&
4: _SIOC_DIR(cmd) != 0) {
5:
6: if(_SIOC_DIR(cmd) & _SIOC_WRITE) {
7: if (!access_ok(..., arg,...)) {
8: return -EFAULT;
9: }
10: }
11: }
12: ...
13: return sound_mixer_ioctl(..., cmd, arg);
14: }

15: int sound_mixer_ioctl(uint cmd,
16: void /*user*/ *arg) {
17: ...
18: return aci_mixer_ioctl(...,cmd, arg);
19: }
20:
21: int aci_mixer_ioctl(..., uint cmd,
22: void /*user*/ *arg) {
23: switch(cmd)
24: case SOUND_MIXER_WRITE_IGAIN:
25: ...*arg...;
26: ...
27: }

Figure 4. From sound/oss/soundcard.c

not appear in procedures that time out (or 99.95% of
sinks). There were 11 warnings on user pointer sources
(1 source warning for approximately 560,000 lines of
code) and 406 warnings on user pointer sinks (1 sink
warning for approximately 15,000 lines of code) all of
which can be discharged by 22 additional, simple anno-
tations. Almost all false alarms can be classified into two
categories: lack of interprocedural path sensitivity and
imprecision in analyzing function pointers. The annota-
tions discharging the false alarms due to interprocedural
path-insensitivity refine the guard associated with a state
in a summary state environment with additional program
predicates, while those discharging the false alarms due
to function pointer imprecision refine the set of possible
targets computed for function pointer call statements.

6.3 Interprocedural Path Insensitivity

The analysis presented in this paper is fully
intraprocedurally path-sensitive butinterprocedurally
path-insensitive. Within a procedure the analysis rea-
sons about all branch correlations, however, the context
variable abstraction performed on the preliminary sum-
mary eliminates all path information in the final sum-
mary of the procedure, which prevents the analysis from
correlating branches and return values across procedure
boundaries. Interprocedural path sensitivity is used in a
few places in Linux, causing the analysis to fail to dis-
charge 5 user pointer sources and 265 user pointer sinks.

1: struct { char *name; ...} map[] = ...,
2: {[NFSCTL_GETFD] = {.name = ".getfd", ...},
3: [NFSCTL_GETFS] = {.name = ".getfs", ...},};
4:
5: long sys_nfsservctl(int cmd, ..., void *res) {
6: ...
7: struct file *file = do_open(map[cmd].name);
8: ...
9: int err = file->f_op->read(file, res, ...);
10: ...
11: }

Figure 5. From fs/nfsctl.c

Consider the procedure sound ioctl of
sound/oss/soundcard.c from Linux 2.6.17.1
(see Figure 4) where the formal parameterarg
is a user pointer passed from the system call
sys ioctl. Line 7 performs a check on the
user pointer using the special checking primitive
access ok under the conditionφ ≡ φ1 ∧ φ2

where φ1 ≡ SIOC DIR(cmd) != SIOC NONE

&& SIOC DIR(cmd) != 0 is the con-
ditional on lines 3 and 4, and φ2 ≡
SIOC DIR(cmd) & SIOC WRITE) != 0 is the

conditional on line 6. Thus, before the call to
sound mixer ioctl on line 13, arg is checked
under the conditionφ. Consequently, any subsequent
dereference ofarg must be guarded by a condition that
implies φ. Line 18 in procedureaci mixer ioctl

dereferences the user pointerarg under the condition
cmd == SOUND MIXER WRITE IGAIN which implies
φ, and thus the user pointer is checked before it is
dereferenced and therefore safe. Adding relevant guards
to procedure summaries to express interprocedural
path sensitivity would enable the analysis to prove this
dereference safe.

6.4 Function Pointers

Four user pointer sources and 130 user pointer sinks
could not be discharged because the set of targets for
some function pointers inferred by the alias analysis
is too coarse. Consider the function pointer invoca-
tion in proceduresys nfsservctl of fs/nfsctl.c,
shown in Figure 5. This single site is responsible for
the analysis failing to discharge 1 user pointer source
and 111 user pointer sinks. On line 1, the global ar-
ray map maps integer constants to file names. On line
7, sys nfsservctl performs a lookup intomap for a
file name and uses the file name to open a file repre-
sented by astruct file object. Thestruct file

object has a field calledf op which points to a func-
tion pointer table of typestruct file operations

1: int notifier_call_chain(struct notifier_block **nl,
2: unsigned long val, void *v) {
3: int ret = NOTIFY_DONE;
4: struct notifier_block *nb;
5:
6: nb = *nl;
7:
8: while (nb) {
9: ret = nb->notifier_call(nb, val, v);
10: ...
11: nb = nb->next;
12: }
13:
14: return ret;
15: }

Figure 6. From fs/nfsctl.c

one of whose entries is a fieldread. The mem-
ory model imprecisely reports that the targets of the
function pointerfile->f op->read points to the tar-
gets of anyread field from any instance ofstruct
file operations rather than only the instances that
can actually be pointed to by thefile returned by this
call todo open.

6.5 Manual Summaries

We manually summarized several commonly used
assembly statements. In particular, we summarized
each inline assembly statement to specify that the state-
ment dereferences each of its operands. These deref-
erence summaries allow the analysis to handle more
conservatively some inline assembly statements such
as memcpy and copy to user which dereference
some of their operands but do not check whether these
operands point into user space.

We also summarized several inline assembly state-
ments and procedures designated by Linux developers
as primitives that check whether a user pointer points
into user space. These checker inline assembly state-
ments include range ok, get user, andput user,
and the checker procedures includecopy from user

andcopy to user.

6.6 Manual Annotations

We used two annotations that soundly restrict which
locations are tracked asuser at particular program
points. These two annotations increase the precision of
the analysis which prevents theuser state from prop-
agating to many times more locations than necessary.
Without these two annotations, the analysis fails to ter-
minate in a reasonable amount of time because an ex-
cessive number of locations are tracked.

We placed one of these scalability annotations in
notifier call chain, a generic procedure shown in
Figure 6 whose first parameternl is a linked list of func-
tion pointers and whose third parameterv is a void*
pointer. The procedure iterates overnl and invokes
each of its function pointers onv. The pointerv is
a user pointer in some calling contexts but not oth-
ers. Because our analysis does not track the correla-
tion between the possible targets of the function point-
ers innl and whetherv is a user pointer, it concludes
that notifier call chain passes a user pointer to
all possible targets of function pointers innl. We
placed the other scalability annotation in procedure
HiSax command. This annotation refines the guard un-
der which a particular location is tracked as beinguser

with additional interprocedural, path-sensitive informa-
tion.

7 Conclusion

We have presented a scalable and precise analysis for
finite-state safety properties and reported on our expe-
rience in attempting to verify the absence of unchecked
user pointer dereferences in the Linux operating system.
We believe that our analysis can be adapted to verify
other important security properties as well.

8 Acknowledgment

The authors would like to thank Isil Dillig, Thomas
Dillig, Brian Hackett, and Peter Hawkins for their com-
ments on earlier drafts of this paper. This work was sup-
ported by NSF grants CCF-0430378 and NSF SA4899-
10808PG-1 with additional support from DARPA.

References

[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett,
and P. Hawkins. An Overview of the Saturn Project.
In Proceeding of the 7th ACM Workshop on Program
Analysis for Software Tools and Engineering, New York,
NY, USA, 2007. ACM Press.

[2] T. Ball and S. K. Rajamani. The SLAM Project: Debug-
ging System Software via Static Analysis. InProceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–3, New
York, NY, USA, 2002. ACM Press.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Mine, D. Monniaux, and X. Ri-
val. Design and Implementation of a Special-Purpose
Static Program Analyzer for Safety-Critical Real-Time
Embedded Software. pages 85–108, 2002.

[4] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
Program Verification in Polynomial Time. InProceed-
ings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, pages
57–68, New York, NY, USA, 2002. ACM Press.

[5] I. Dillig, T. Dillig, and A. Aiken. Static Error Detection
Using Semantic Inconsistency Inference. InProceedings
of the ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementation, volume 42,
pages 435–445, New York, NY, USA, 2007. ACM Press.

[6] N. Dor, S. Adams, M. Das, and Z. Yang. Software Vali-
dation via Scalable Path-sensitive Value Flow Analysis.
In Proceedings of the ACM SIGSOFT 2004 International
Symposium on Software Testing and Analysis, pages 12–
22, New York, NY, USA, 2004. ACM Press.

[7] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective Typestate Verification in the Presence of Alias-
ing. In Proceedings of the 2006 International Sympo-
sium on Software Testing and Analysis, pages 133–144,
New York, NY, USA, 2006. ACM Press.

[8] J. Foster, M. Fahndrich, and A. Aiken. A Theory of Type
Qualifiers. InProceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Im-
plementation, pages 192–203, New York, NY, USA,
1999. ACM Press.

[9] B. Hackett and A. Aiken. How is Aliasing Used in Sys-
tems Software? InProceedings of the 14th ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineering, pages 69–80, New York, NY, USA,
2006. ACM Press.

[10] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A Sys-
tem and Language for Building System-Specific, Static
Analyses. InProceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Im-
plementation, pages 69–82, New York, NY, USA, 2002.
ACM Press.

[11] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. InProceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 58–70, New York, NY, USA, 2002. ACM
Press.

[12] R. Johnson and D. Wagner. Finding User/Kernel Pointer
Bugs with Type Inference. InProceedings of the 13th
USENIX Security Symposium, pages 119–134, 2004.

[13] R. E. Strom and S. Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability.
volume 12, pages 157–171, Piscataway, NJ, USA, 1986.
IEEE Press.

[14] L. Torvalds. Sparse.
[15] Y. Xie and A. Aiken. Scalable Error Detection us-

ing Boolean Satisfiability. InProceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 351–363, New York,
NY, USA, 2005. ACM Press.

[16] J. Yang, T. Kremenek, Y. Xie, and D. Engler. MECA: An
Extensible, Expressive System and Language for Stati-
cally Checking Security Properties. InProceedings of

the 10th ACM Conference on Computer and Communi-
cations Security, pages 321–334, New York, NY, USA,
2003. ACM Press.

