
Regularly Annotated Set Constraints ∗

John Kodumal
UC Berkeley and Coverity, Inc.

jkodumal@coverity.com

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
A general class of program analyses are a combination of context-
free and regular language reachability. We define regularly an-
notated set constraints, a constraint formalism that captures this
class. Our results extend the class of reachability problems ex-
pressible naturally in a single constraint formalism, including such
diverse applications as interprocedural dataflow analysis, precise
type-based flow analysis, and pushdown model checking.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms Algorithms, Design, Experimentation, Languages,
Theory

Keywords Set constraints, context-free language reachability,
flow analysis, annotated inclusion constraints, pushdown model
checking

1. Introduction
Many program analyses reduce to reachability problems on labeled
graphs with requirements that certain labels match: a constructor
must be matched with a corresponding destructor, a function call
must be matched with a function return, and so on. Dynamic transi-
tive closure [20], context-free reachability [23], and the cubic-time
fragment of set constraints [10, 1] are all formalisms that describe
such analyses. These three approaches are closely related: set con-
straint solvers are implemented using optimized dynamic transitive
closure algorithms [7, 27, 11] and one efficient implementation of
context-free reachability is based on a reduction to set constraints
[15]. Representative program analysis problems solvable with these
methods include polymorphic flow analysis [21] and field-sensitive
points-to analysis [26].

There are more complex analysis problems where multiple
reachability properties must be satisfied simultaneously; e.g., one
can easily define problems that require matching of both function
calls/returns and data type constructors/destructors. Unfortunately,
analysis problems requiring satisfying two or more context-free
properties simultaneously are undecidable [22]. A general, decid-

∗ This work was supported by NSF grants CCR-0085949 and CCF-0430378
and equipment donations from Intel and Dell.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

able class of reachability properties is the combination of a context-
free language with any number of regular languages. A number of
natural analysis problems fall into this class [3, 5, 13, 12].

In this paper we extend set constraints to express program anal-
yses involving one context-free and any number of regular reach-
ability properties. Existing implementations of analyses that com-
bine context-free and regular reachability are hand optimized and
tuned to a particular analysis problem. Our constraint resolution al-
gorithm allows these analyses to be written at a higher level while
also providing an implementation that is more efficient than those
written by hand. In short, we enlarge the class of program analy-
ses that can be solved efficiently with a single constraint resolution
algorithm. Our approach builds on an idea first introduced in [25],
in which terms and constraints can be annotated with a word from
some language. We introduce regularly annotated set constraints,
where each constructor of a term and each constraint can be anno-
tated with a word from a regular language. The principal contribu-
tions of this paper are:

• We introduce regularly annotated set constraints and give a for-
mal semantics (Section 2). Previous work on annotated con-
straints has not addressed semantics, probably because the ap-
plications use only finite languages [19]. Because our annota-
tions are drawn from infinite regular languages, annotations are
not bounded in size and understanding even the termination of
a constraint solver requires formalization.

• We present algorithms for solving regularly annotated set con-
straints. Unlike the unannotated case, where all natural solving
strategies have the same asymptotic complexity, for annotated
constraints we can give algorithms for either forward or back-
ward solving that are asymptotically faster than bidirectional
solving (Section 5). If the finite state machine for the regu-
lar annotations is small, the bidirectional strategy is practical.
This complexity difference shows that for analysis problems
reducible to annotated set constraints, whole program analysis,
which can be done with forwards or backwards solutions, is ap-
parently more efficient than separate, compositional analysis,
which requires bidirectional solving.

• We solve an open problem: We combine previous results [15]
with annotations to express a type-based flow analysis support-
ing polymorphic recursion and non-structural subtyping in a la-
bel flow analysis (Section 7). We also show how to apply anno-
tated inclusion constraints to solve pushdown model checking
problems and interprocedural bit-vector dataflow problems that
operate on the program’s control flow graph (Section 6).

2. Annotated Constraints
This section introduces the syntax and semantics of regularly an-
notated set constraints, gives an algorithm for solving such con-
straints, and works through an example.

2.1 Set Constraints
Let c, d, . . . ∈ C be a set of constructors; each constructor c has
arity a(c). Constructors inductively define a domain T :

T = {c(t1, . . . , ta(c))|ti ∈ T ∧ c ∈ C} ∪ {⊥}

Constants (arity zero constructors) and ⊥ are the base cases of T .
There is a standard ordering ≤ on elements of T :

⊥≤ t

t1 ≤ t′1 ∧ . . . ∧ tn ≤ t′n ⇐ c(t1, . . . , ta(c)) ≤ c(t′1, . . . , t
′
a(c))

The value ⊥ represents, as usual, undefined (e.g., non-terminating)
terms. The reason for using a domain with⊥ instead of the simpler
set of ground terms without ⊥ is that we want constructors to be
non-strict (i.e., c(t,⊥) 6=⊥); we explain why in Section 3.

The class of set expressions we consider in this paper are set
variables, constructors applied to set variables, and projections:

se ::= X | c(X1, . . . ,Xa(c)) | c−i(X)

Set expressions denote downward-closed subsets of the domain. A
set T ′ ⊆ T is downward-closed if

∀t ∈ T. (t ∈ T ′ ∧ t′ ≤ t) ⇒ t′ ∈ T ′

Using downward-closed sets simply says that we do not attempt
to reason about whether terms are fully defined (have no non-⊥
sub-terms). An assignment ρ is a mapping from set variables to
downward-closed subsets of T . Assignments are extended to set
expressions in the natural way:

ρ(c(X1, . . . ,Xa(c))) = {c(t1, . . . , ta(c))|ti ∈ ρ(Xi)}
ρ(c−i(X)) = {ti|c(t1, . . . , ta(c)) ∈ ρ(X)}

A set constraint is an inclusion constraint se1 ⊆ se2 between any
two set expressions, except that projections may not appear on the
right-hand side of a constraint. An assignment ρ is a solution of a
constraint se1 ⊆ se2 if ρ(se1) ⊆ ρ(se2).

2.2 Regularly Annotated Set Constraints
Let M = (Σ, S, s0, δ, Saccept) be a minimized deterministic finite
state automaton (DFA), where Σ is the input alphabet, S the set
of states, s0 and Saccept the start state and set of final states
respectively, and δ(w, s) = s′ is the machine’s transition function.
We refer to L(M), the language accepted by M , whenever we need
to appeal to a language characterization. Because regular languages
are closed under products, it is sufficient to deal only with a single
machine representing the product of all the regular reachability
properties for a given application.

2.3 Annotated Terms
The first step in our extension is to define the domain of terms.
Intuitively, each term should be annotated with a word from L(M);
such a term encodes information for both the set constraint property
(the term) and the regular reachability property (the word). This
idea does not work, however, without two modifications:

• Word annotations are needed on every constructor in a term,
not just at the root; different constructors in the same term may
have different annotations.

• Because individual constraints express only part of a global so-
lution of all the constraints, it is too strong to require annota-
tions be full words in L(M). Instead, annotations may be par-
tial words in L(M). The required language of partial words
depends on the particular algorithm for computing solutions of
the constraints. A forwards (backwards) solver propagates con-
structors from lower (upper) bounds to upper (lower) bounds; it

turns out that a forwards (backwards) solver should admit pre-
fixes (suffixes) of words in L(M) (see Section 5). A bidirec-
tional solver may propagate information either forwards from
lower bounds to upper bounds or backwards from upper bounds
to lower bounds, and so a bidirectional solver should accept ar-
bitrary substrings of words in L(M). In this paper we focus
on bidirectional solving, as it is technically the most interesting
case.

The M-annotated domain over constructors c, d, . . . ∈ C and finite
automaton M is

T M = {cw(t1, . . . , ta(c))|ti ∈ T M ∧c ∈ C∧w ∈ L(M)}∪{⊥}

Let Msub be the minimal DFA accepting substrings of L(M) (the
set of all substrings of a regular language is also regular). The
domain we are interested in for bidirectional solving is T Msub

.
To define the semantics of annotated constraints we need an

operation that appends a word to all levels of an annotated term:

cw(t1, . . . , ta(c)) · w′ = cww′
(t1 · w′, . . . , ta(c) · w′)

⊥ ·w′ = ⊥

If Q is a set of terms then Q · w = {t · w|t ∈ Q}.

2.4 Annotated Set Constraints
An M-regularly annotated set constraint is an inclusion constraint
se1 ⊆x se2, where se1, se2 are set expressions and x ∈ Σ ∪
{ε}. We often abbreviate se1 ⊆ε se2 by dropping the annotation
se1 ⊆ se2. Note set expressions are not themselves annotated; we
do not need to burden the analysis designer with annotating set
expressions, because it is possible to infer the needed set expression
annotations during constraint resolution.

We next define assignments ρ mapping set expressions to sets
of annotated ground terms. We extend set expressions with word
set variables attached to each constructor:

se ::= X | cα(X1, . . . ,Xa(c)) | c−i(X)

The word set variables α, β, . . . range over subsets of L(Msub).
An assignment ρ now maps set variables to sets of annotated terms
and word variables to sets of words.

ρ(cα(X1, . . . ,Xa(c)))={cw(t1, . . . , ta(c))|w ∈ ρ(α) ∧ ti ∈ ρ(Xi)}
ρ(c−i(X))={ti|cw(t1, . . . , ta(c)) ∈ ρ(X)}

An assignment ρ is a solution of a system of annotated constraints
{se1 ⊆w se2} if ρ(se1) ·w ⊆ ρ(se2) for all constraints. Solutions
may assign arbitrary sets to the word and term variables, provided
they satisfy the constraints. We now show a restricted family of
solutions, the M-regular solutions, are sufficient to characterize
all solutions. We define the following congruence on words in
L(Msub):

w ≡M w′ ⇔ ∀x, y ∈ Σ∗. xwy ∈ L(M) iff xw′y ∈ L(M)

Theorem 2.1. w ≡M w′ =⇒ ∀s ∈ S. δ(w, s) = δ(w′, s)

Proof. This result follows from the Myhill-Nerode theorem; we in-
clude the proof because it is useful in understanding our constraint
resolution algorithm. Assume w ≡M w′ yet there is an s ∈ S
such that δ(w, s) = si but δ(w′, s) = sk. Since the machine is
minimal, s must be reachable from s0, implying there is a word
x with δ(x, s0) = s. Minimality also implies the existence of
a word y where δ(y, si) ∈ Saccept and δ(y, sk) /∈ Saccept, or
vice versa. Without loss of generality, assume the first case. Then
xwy ∈ L(M) but xw′y /∈ L(M), contradicting the assumption
that w ≡M w′.

Thus, each word equivalence class W defines a unique represen-
tative function from states to states: f(s) = δ(w, s) for w ∈ W .
Associated with every automaton M is a finite set of representative
functions F≡

M =
S

i F i
M , computed inductively as follows:

F 0
M = {fσ | σ ∈ Σ where fσ(s) = δ(σ, s)}

F i
M = {f ◦ g | f, g ∈ F i−1

M } ∪ F i−1
M

The representative function for the word ε in any machine is the
identity fε mapping each state to itself. We appeal to this function
characterization of equivalence classes shortly.

We extend ≡M to an equivalence relation on annotated terms:

cw(t1, . . . , ta(c)) ≡M cw′
(t′1, . . . , t

′
a(c)) ⇔ w ≡M w′∧

^
i

ti ≡M t′i

An assignment ρ is M-regular if

w ∈ ρ(α) ∧ w ≡M w′ =⇒ w′ ∈ ρ(α)

t ∈ ρ(X) ∧ t ≡M t′ =⇒ t′ ∈ ρ(X)

Lemma 2.2. If t ≡M t′ and t · w ∈ T Msub

then t · w ≡M t′ · w.

Proof. By induction on the structure of t. Without loss of gener-
ality, assume t = cx(t1, . . . , ta(c)). Because t ≡M t′, we know
t′ = cy(t′1, . . . , t

′
a(c)) where x ≡M y and ti ≡M t′i.

cx(t1, . . . , ta(c)) · w = def. of ·
cxw(t1 · w, . . . , ta(c) · w) ≡M

cxw(t′1 · w, . . . , t′a(c) · w) ≡M

cyw(t′1 · w, . . . , t′a(c) · w) = def. of ·
cy(t′1, . . . , t

′
a(c)) · w

For the second step, t · w ∈ T Msub

implies that, for each i,
ti·w ∈ T Msub

and therefore we can apply the induction hypothesis
to conclude ti · w ≡M t′i · w. For the third step, observe x ≡M y
implies that xw ≡M yw.

We say ρ ≤ ρ′ if ρ(a) ⊆ ρ′(a) for all word and set variables
a. We say ρ′ is the M-regular completion of ρ if ρ′ is the smallest
assignment such that ρ′ ≥ ρ and ρ′ is M-regular.

Theorem 2.3. If ρ is a solution of a system of M-annotated con-
straints, then its M -regular completion ρ′ is also a solution.

Proof. Consider any constraint e1 ⊆w e2 and term t ∈ ρ′(e1); the
goal is to show t · w ∈ ρ′(e2).

t ∈ ρ′(e1) ⇒ def. of regular completion
∃t′ ≡M t. t′ ∈ ρ(e1) ⇒ ρ is a solution

t′ · w ∈ ρ(e2) ⇒ ρ′ ≥ ρ

t′ · w ∈ ρ′(e2) ⇒
t · w ∈ ρ′(e2)

The last step follows from Lemma 2.2, using t′ ≡M t from the first
step and the fact that t′ ·w ∈ ρ(e2) implies t′ ·w ∈ T Msub

(because
ρ is a solution and solutions range over subsets of T Msub

).

Because the regular completion of every solution is also a so-
lution, it suffices to compute only regular solutions. Furthermore,
in the regular solutions, each word set variable represents a set
of full equivalence classes, and by Theorem 2.1 each equivalence
class corresponds to a unique representative function. Thus, we
can replace word set variables with representative function vari-
ables and each annotation with the representative function for the

0

k

1g
k

g

Figure 1. Finite state automaton M1bit for the 1-bit language.

annotation’s equivalence class and deal with finite sets of repre-
sentative functions instead of infinite sets of words. A mapping
ρ(α) = {f1, f2, . . .} corresponds to the regular solution

ρ(α) = {w|∃f ∈ {f1, f2, . . .}.∀s ∈ S.f(s) = δ(s, w)}
From here on we refer to sets of representative functions, not sets
of words, in constructor annotations; we use the term representa-
tive function variables instead of word variables for clarity. Our
algorithm infers the representative functions needed as annotations
automatically, which is why we do not represent them in the surface
syntax.

We illustrate annotated constraints with a simple example. As-
sume the input automaton is M1bit shown in Figure 1.

Example 2.4. Consider the following constraint system:

cα ⊆g W oβ(W) ⊆g X
X ⊆ε oγ(Y) oγ(Y) ⊆ε Z

Let fg be the representative function containing the word g;
fg(0) = 1 and fg(1) = 1. The solution for the function vari-
ables is α, β = {fε}, γ = {fg} and for set variables (the
downward-closure of) Y,W = {cfg},X = {ofg (cfg)}, and
Z = {ofg (cfg)}. Note that the solution instantiates the constraint

oβ(W) ⊆g X
to

ofε(cfg) ⊆fg ofg (cfg)

The left-hand side illustrates that annotations on different levels of
constructors within a term are not always the same.

3. Solving Annotated Constraints
Our resolution algorithm uses a standard, two-phase approach:

• The first phase non-deterministically applies a set of resolution
rules to the constraints until no more rules apply. The rules
preserve all regular solutions of the constraints. If no manifest
contradiction is discovered, the final constraint system is in
solved form, which is guaranteed to have at least one solution.

• The second phase tests entailment queries on the solved form
system: Do the constraints imply, for example, that t ∈ X for
some annotated term t and set variable X?

3.1 Resolution Rules
The first two resolution rules deal with constraints between con-
structor expressions:

cα(X1, . . . ,Xa(c)) ⊆f cβ(Y1, . . . ,Ya(c)) ⇒V
i Xi ⊆f Yi ∧ f ◦ α ⊆ β

cα(. . .) ⊆f dβ(. . .) ⇒
no solution

The first rule propagates inclusions between constructed terms to
components and produces representative function constraints on

function variables annotating constructor expressions: the function
annotations β on the right-hand side constructor expression must
contain at least f ◦α, the composition of functions in α with f (we
define f ◦G, where G is a set of functions, to be {f ◦ g | g ∈ G}).
Because functions are just constants (zero-ary constructors) and
the set F≡

M of representative functions is known and fixed for a
given machine M , these function constraints are themselves simple
examples of set constraints. The second resolution rule simply
recognizes manifestly inconsistent constraints where the top-level
constructors do not match.

The third rule resolves projection constraints.

cα(. . . ,Xi, . . .) ⊆ Y ∧ c−i(Y) ⊆ Z ⇒ Xi ⊆ Z

These rules should be interpreted as follows: whenever there are
constraints satisfying the left-hand side of the rule, the right-hand
side constraint is added to the system of constraints. Because con-
straints are only added the rules are automatically sound (no new
solutions are created by the rules). It is easy to check that the rules
are also complete (each rule preserves all solutions of the original
system of constraints). These rules are not complete for a semantics
that uses strict constructors (i.e., if one component of a constructor
expression is ⊥ then the entire construction collapses to ⊥), and
indeed this is the reason we have chosen to use the non-strict se-
mantics here. Constraints with at least one binary strict constructor
are much more expensive to solve [2]; in practice, all implementa-
tions we know of assume a non-strict semantics for constructors.

Finally, a transitive closure rule propagates annotations by com-
posing them:

se1 ⊆f X ⊆g se2 ⇒ se1 ⊆g◦f se2

Because M is minimized, no work need be done propagating anno-
tations that are necessarily non-accepting, obviating the need for a
match operation as in [19]. Returning to Example 2.4, the solved
form of this system is:

cα ⊆fg W oβ(W) ⊆fg X
X ⊆ oγ(Y) oγ(Y) ⊆ Z

oβ(W) ⊆fg oγ(Y) W ⊆fg Y
cα ⊆fg Y fg ◦ β ⊆ γ

Note the transitive constraints cα ⊆fg W ⊆fg Y result in the
constraint cα ⊆fg Y because fg ◦ fg = fg (see Figure 1).

Lemma 3.1. Constraint resolution terminates.

Proof. (Sketch) The interesting case is the transitive closure rule.
The number of possible constraints depends on the maximum num-
ber of distinct functions and the number of set expressions. As the
resolution rules do not create any new set expressions and the num-
ber of functions on a finite set of states to itself is bounded, the total
number of possible constraints is also bounded.

3.2 Queries
In this section we outline queries on solved systems. The simplest
query we are interested in is whether a term t with an annotation
in L(M) is always in a particular set variable X in all solutions.
Intuitively, this question models whether a particular abstract value
t always flows to a program point corresponding to X along a path
annotated with a word in L(M).

More precisely, we say that constraints C1 entail constraints C2,
written C1 |= C2, if every solution of C1 is a solution of C2. The
formalization of the simple query is:

C ∧ fε ⊆ α ∧ fε ⊆ β . . . |=
_

f∈Faccept

t ⊆f X

where α, β, . . . are the function variables appearing in t and
Faccept = {f | f ∈ F≡

M ∧ f(s0) ∈ Saccept}. Intuitively, Faccept

is the subset of representative functions F≡
M that lead to an accept

state from the initial state; these functions represent full words in
L(M). We can now explain important aspects of querying anno-
tated constraints:

• Set constraint solvers differ in how much work they assign to
the solving phase and the query phase. We have described an
eager solver that does essentially all the work in the resolution
rules, as in [10]; queries in this case are particularly easy to
solve. For example, for a constant cα, the entailment

C ∧ fε ⊆ α |=
_

f∈Faccept

cα ⊆f X

holds if and only if a constraint cα ⊆f X is present in the
solved form system C where f(s0) ∈ Saccept.

• Demand driven solvers essentially move all of the work of res-
olution to queries [11]. As an optimization, our solver does
not generate function constraints or annotate constructors at all
during resolution and this decision has important performance
advantages (see Section 8). For our queries, the representative
function constraints needed to answer a query can be recon-
structed as part of the entailment computation itself.

• Our applications use queries beyond asking whether a single
term is in a set variable. The general form of a query is to ask
whether a set of terms (given by a set expression) intersected
with a variable is non-empty, given that the constructors must be
annotated in certain states. Such a query can be used to search
for the existence of a term denoting an error in the program
(e.g when checking finite state properties). We present only the
simpler case formally because it requires no additional notation,
and the general case introduces no new ideas.

Returning again to Example 2.4, let C1 be the solved form of the
constraints. The query

C1 ∧ fε ⊆ α ∧ fε ⊆ β |= oβ(cα) ⊆fg Z

is true. The least solution of C1∧fε ⊆ α∧fε ⊆ β is the assignment
given in Example 2.4.

We can now explain in more detail why we solve constraints
over T Msub

instead of T M . The transitive closure rule, in partic-
ular, cannot simply reject concatenations of words that are not in
L(M), as such annotations may later combine with other annotated
constraints through other uses of the transitive closure rule to form
a word in L(M). Solving in the larger domain T Msub

still guar-
antees termination and also preserves all entailment queries using
words in L(M).

3.3 An Example: Bit-Vector Annotations
As an example we show how to express bit-vector problems as
a regular annotation language. This annotation language could be
used to implement bit-vector based interprocedural dataflow anal-
ysis [12]. For an analysis that tracks n facts, we pick an alpha-
bet Σ partitioned into two sets G = {g1, . . . , gn} and K =
{k1, . . . , kn} (gens and kills, respectively). The idea is that a
gen cancels an adjacent matching kill kill, as in the word giki,
and that gens and kills are idempotent. Figure 1 shows the finite
state automaton M1bit for a single dataflow fact. For this language,
F≡

M = {fε, fg, fk}, since fg ◦fg = fg and fk ◦fg = fε and so on.
Thus, we need not track arbitrary sequences of gens and kills; it
suffices to track just three different possible annotations. An n-bit
language can be derived from a product construction.

4. Complexity
We sketch a complexity argument for the constraint resolution algo-
rithm described in Section 3. A system of constraints containing no
annotations can be solved in O(n3) time, where n is the size (mea-
sured in number of symbols) of the system. Each of n variables can
have up to n lower bounds and n upper bounds; thus every variable
in the transitive closure causes at most O(n2) work and there are
O(n) variables.

For an annotated system of constraints, we must compute a new
number of lower and upper bounds. Consider a particular lower
bound se ⊆ X (the argument for upper bounds is similar). There
may be one lower bound se ⊆f X between se and X for each
distinct equivalence class f annotating the constraints, so the prob-
lem is to bound the number of distinct representative functions.
Clearly, then, |F≡

M | gives the number of possible lower bounds on
any variable. In the n-bit language, for instance, this approach au-
tomatically exploits order independence of distinct bits: If (shift-
ing back to word annotations) a constraint X ⊆g1g2 Y is already
present in the system, the constraint X ⊆g2g1 Y is redundant (i.e.,
g1g2 ≡ g2g1) and need not be added.

Thus, each variable in an annotated system can have up to
n · |F≡

M | lower bounds and n · |F≡
M | upper bounds. With representa-

tive functions as the annotations on constraints, function composi-
tion can be implemented as a precomputed table and so f ◦g can be
computed in constant time via table lookup. Thus, each of n vari-
ables in the constraint system the solver does at most O(n2 |F≡

M |
2)

work. The total complexity is therefore O(n3 |F≡
M |

2). This generic
argument may be sharpened for the constraints generated by a par-
ticular application.

Now we relate complexity in terms of |F≡
M | to |S|, the number

of states in M . One can build an adversarial machine such that
|F≡

M | is superexponential in |S|, the number of states in M . The
idea is to construct a machine such that F≡

M contains each of the
|S||S| possible functions from domain S to range S. One such
machine, given in Figure 2, uses three operations rotate, swap, and
merge to generate the entire space of functions as follows:

• rotate maps state i to state i + 1, with wraparound.
• swap maps state 1 to state 2, and state 2 to state 1, while map-

ping every other state to itself. Every sequence of rotates and
swaps generates a permutation of the n states of the automaton,
and every permutation is generated by some sequence of rotates
and swaps.

• merge allows the generation of information-losing functions
(functions that are not injective) by mapping state 1 to itself,
state 2 to state 1, and any other state to itself. Using an appro-
priate sequence of swaps and rotates first, any pair of function
outputs can be merged.

This machine is clearly a pathologically bad case, yet the possibility
of having an implementation that is superexponential in the size of
the automata specification means that there could be examples that
are simply too costly to implement using bidirectional solving. On
the other hand, we have looked at a number of fairly complex finite
state properties and have not run into this limitation in practice.
In the next subsection, we discuss alternative solver strategies that
trade off the ability to do separate analysis for improved asymptotic
complexity.

5. Alternative Solution Strategies
We have assumed constraint resolution operates by applying reso-
lution rules in any order until the system is solved. We call this strat-
egy bidirectional solving because the constraints are “extended”
either forwards or backwards via transitive closure. Two natural

1 ...

n-1

rotate

merge

2

rotate

swap

rotatemerge

swap

swap,
merge

n

rotate

rotate

swap,
merge

Figure 2. A machine M with a small alphabet where |F≡
M | is large.

alternatives are forward solving and backward solving. Consider
the constraints f(c) ⊆ X ⊆ Y ⊆ f(Z). A forwards solver only
propagates transitive closure by pushing lower bound sources to-
wards upper bound sinks: pushing f(c) forwards adds f(c) ⊆ Y
and discovers f(c) ⊆ f(Z). A backwards solver only applies tran-
sitive closure by pushing upper bound sinks towards lower bound
sources: pushing f(Z) backwards adds X ⊆ f(Z) to discover the
same fact f(c) ⊆ f(Z). Bidirectional solvers can add both new
constraints, in any order.

5.1 Tradeoffs
Bidirectional solving has two advantages. Bidirectional solving en-
ables separate analysis, because the closure rules do not need all
sources and sinks to be present to solve the available constraints.
A related advantage is that constraints can be solved online. Uni-
directional solvers defer most processing until the entire constraint
graph is built.

On the other hand, unidirectional solvers can naturally be made
demand driven. For example, solving forward from a constant can
selectively answer the query “For what set of variables must this
constant appear in every solution?” Bidirectional solvers typically
compute a representation of all solutions prior to the query phase.

The choice of solver directionality also affects the complexity of
constraint resolution. Instead of the domain T Msub

, in the forward
case we need only consider the domain T Mpre

where words are
prefixes of words in L(M). In the forwards case, we relax the
congruence ≡M to a right congruence ≡r:

w ≡r w′ ⇔ ∀x ∈ Σ∗. wx ∈ L(M) iff w′x ∈ L(M)

Here, F≡r
M only distinguishes functions that map s0 to one of the

different |S| states in M , by the following analog of Theorem 2.1:

w ≡ w′ =⇒ δ(w, s0) = δ(w′, s0)

The construction for the backwards case is symmetric, using a left
congruence in place of a right congruence.

One significant difference from the bidirectional case is that
our initial annotations are representative functions drawn from F≡

M ,
while the annotations we derive are drawn from the coarser F≡r

M .
Notice that the forwards solver always computes new annotations
as g ◦ f , where f ∈ F≡r

M and g ∈ F≡
M . Furthermore, the result-

ing function g ◦ f is always in F≡r
M . In the bidirectional case, both

the initial and derived annotations are drawn from F≡
M . In fact, this

is precisely the source of the asymptotic complexity difference be-
tween unidirectional and bidirectional solving. In the unidirectional
case, we are able to use a coarser equivalence relation, resulting in a
much tighter bound on the number of possible derived annotations
between two set expressions.

In general, the complexity of annotated constraint solving is
O(n3i2), where i is the number of possible derived annotations.
Here, we have shown how to express that number in terms of the
number of states of M . In the unidirectional case, i is exactly |S|.
In the bidirectional case, i may be as much as |S||S|.

unpriv error

seteuid(!0),execl(...)

privseteuid(0) execl(...)
seteuid(!0)

seteuid(0)

Figure 3. Automaton for process privilege.

6. Application: Pushdown Model Checking
In this section, we use regularly annotated set constraints to solve
pushdown model checking problems. We show how to verify the
same class of temporal safety properties as MOPS, a model check-
ing tool for finding security bugs in C code [5]. Following the ap-
proach of [5], we model the program as a pushdown automata P .
Transitions in the PDA are determined by the control flow graph,
and the stack is used to record the return addresses of unreturned
function calls. Temporal safety properties are modeled by a finite
state machine M . Intuitively we want to compute the parallel com-
position of L(M) and L(P); the program is treated as a generator
for this composed language.

We use the following property concerning Unix process priv-
ilege as a running example: a process should never execute an
untrusted program in a privileged state—it should drop all per-
missions beforehand. Concretely, if a program calls seteuid(0),
granting root privilege, it should call seteuid(!0) before calling
the execl() function. A program that violates this property may
give an untrusted program full access to the system. Figure 3 shows
a finite state machine that characterizes this property, and the fol-
lowing is a C program that violates the property:

seteuid(0);
· · ·
execl(‘‘/bin/sh’’, ‘‘sh’’, NULL);

This program gives the user a shell with root privileges, which
probably represents a security vulnerability.

6.1 Modeling Programs with Constraints
We now show how to find violations of temporal safety properties
using annotated constraints. With each statement s in the control
flow graph we associate a set constraint variable S. For each suc-
cessor statement si of s (with constraint variable Si), we add a
constraint. The annotations are program statements relevant to the
security property (i.e., the statements labeling transitions in Fig-
ure 3). The specific form of the constraint depends on s; there are
three cases to consider:

1. If s is not relevant to the security property and is not a function
call, add the constraint S ⊆ Si.

2. If s is relevant to the security property (labels a state transition
in the FSM for the security property) add the constraint S ⊆s

Si.

3. If s is a call to function f at call site i, add the constraints
oi(S) ⊆ Fentry and o−1

i (Fexit) ⊆ Si, where Fentry (resp.
Fexit) is the node representing the entry (resp. exit) point of
function f .

To model the program counter, we create a single 0-ary constructor
pc and add the constraint pc ⊆ Smain, where Smain is the con-
straint variable corresponding to the first statement (entry point) of
the program’s main function.

f0 : unpriv → priv f2 : unpriv → unpriv
priv → priv priv → error
error → error error → error

f1 : unpriv → unpriv ferror : unpriv → error
priv → unpriv priv → error
error → error error → error

Figure 4. A few of the representative functions in F≡
M for the

process privilege model.

6.2 Checking for Security Violations
To check for violations of the property, we record each statement
that could cause a transition to the error state. For each such state-
ment, we query the least solution of the constraints by intersecting
with an automaton for positive-negative reachability (PN reacha-
bility [15]), which allows partially matched call-return paths (e.g.,
a path from a caller to callee that does not return to the caller is par-
tially matched because it has the constructor but not the canceling
projection). The presence of an annotated ground term pcerror de-
notes a violation of the security property. The ground terms them-
selves serve as witness paths (in this setting, the sequence of con-
structors in the term represent a possible runtime stack) that leads
to the error.

6.3 An Example
Consider the following C program:

s1: seteuid(0); // acquire privilege
s2: if (. . .) {
s3: seteuid(getuid()); // drop privilege

}
else {

s4: . . .
}

s5: execl(‘‘/bin/sh’’, ‘‘sh’’, NULL);
s6: . . .

This program violates the security property: the programmer
has made the common error of forgetting to drop privileges on
all paths to the execl call. The surface syntax constraints for this
example are in the left column below. Translating the example
to our internal syntax, we compute the set F≡

M and replace word
annotations with representative functions in the right column below
(relevant functions are shown in Figure 4):

pc ⊆ S1 pcfε ⊆ S1

S1 ⊆seteuid(0) S2 S1 ⊆f0 S2

S2 ⊆ S3 S2 ⊆ S3

S2 ⊆ S4 S2 ⊆ S4

S3 ⊆seteuid(!0) S5 S3 ⊆f1 S5

S4 ⊆ S5 S4 ⊆ S5

S5 ⊆execl(...) S6 S5 ⊆f2 S6

Constraint resolution discovers the following constraint path:

pcfε ⊆ S1 ⊆f0 S4 ⊆f2 S6

The constraints imply pcferror is in S6, the constraint variable
corresponding to the program point after the execl call, indicating
the presence of a possible security vulnerability.

6.4 Parametric Annotations
Pushdown model checking applications sometimes require a lim-
ited ability to correlate pieces of data. An excellent example is an
analysis that tracks the opening and closing of files; the automa-
ton for this analysis is shown in Figure 5. The annotations x =

closed

other

openedx = open(...)
close(x)

other

Figure 5. Automaton for tracking file state.

s1: int fd1 = open(‘‘file1’’,O RDONLY);
s2: int fd2 = open(‘‘file2’’,O RDONLY);
s3: close(fd1);
s4: . . .

Figure 6. Example C program that manipulates file descriptors.

open(...) and close(x) are parametric: the x should be treated
as a parameter that should be matched in the open and close calls.
In Figure 6 we show a simple program that manipulates two file
descriptors fd1 and fd2. We would like an analysis that determines
that fd2 remains open at the end of the program, but not fd1. Type
systems and dataflow analyses naturally incorporate this kind of
information using a type environment or symbolic map which can
separately track the types of multiple names, and we take a similar
approach. Adding this capability allows us to faithfully reproduce
the functionality of a particular pushdown model checker, MOPS
[4], that we use for our experiments (see Section 8).

To separate the states of each of the file descriptors in the
program, the automaton in Figure 5 must be instantiated for each
possible file descriptor that occurs in the input program. However,
our approach precludes explicit instantiation because we compile
away the automaton statically, before the input program is available
(recall Section 4).

Instead of explicit instantiation, we perform instantiations on-
the-fly by maintaining a substitution environment. Essentially, this
data structure allows us to lazily construct the product automaton
when there are multiple instantiations of a given parameter. We first
explain a simpler version of the data structure that supports only
one parameter per automaton. We then extend the data structure to
handle multiple parameters.

A substitution environment φ maps instantiated parametric an-
notations (stored as a parameter name/label pair) to a representa-
tive function. The parameter name/label pairs form the domain of
the substitution environment, while the representative functions are
the range. Substitution environments have an additional component
called a residual, which is itself just a representative function. The
residual stores any non-parametric transitions that have occurred.
Here is an example substitution environment φ:

[(x : fd1) 7→ f ; (x : fd2) 7→ g | rφ]

This particular substitution environment contains two entries: one
where parameter x is instantiated to fd1 and another where x is in-
stantiated to fd2. The residual function is rφ. The intuition is that
this substitution tracks two copies of the automation in Figure 5. If
any new instantiations are added via composition (e.g. (x : fd3)),
the residual rφ is incorporated into that instantiation’s representa-
tive function. In a given substitution environment, the residual has
already been incorporated into the existing instantiations. The pre-
ceding explanation can be formalized by showing the composition

f1 : closed → opened φ1 = [(x : fd1) 7→ f1 | fε]
opened → opened φ2 = [(x : fd2) 7→ f1 | fε]

φ3 = [(x : fd1) 7→ f2 | fε]
f2 : closed → closed

opened → closed

Figure 7. A few of the representative functions and substitution
environments for the file state example.

operation ◦ on substitution environments:

(φ1 ◦ φ2)(i) = φ1(i) ◦ φ2(i)

Notice that these definitions gracefully degrade to the nonparamet-
ric case if we treat nonparametric annotations as empty substitu-
tion environments with a residual function given by the represen-
tative function for that annotation. We allude to this by dropping
the brackets when writing an empty substitution environment: e.g.
[| r] is simply written r. Before discussing how to handle multiple
parameters, we walk through the example from Figure 6.

6.4.1 Example
In the surface syntax, the program in Figure 6 results in the system
of constraints shown in the left column below. Internally, the con-
straint system is translated into the system of constraints in the right
column (Figure 7 gives the definitions of the relevant representative
functions and substitution environments):

pc ⊆ S1 pcfε ⊆ S1

S1 ⊆open(fd1) S2 S1 ⊆φ1 S2

S2 ⊆open(fd2) S3 S2 ⊆φ2 S3

S3 ⊆close(fd1) S4 S3 ⊆φ3 S4

These constraints imply pc ⊆φ3◦φ2◦φ1 S4 where:

φ3 ◦ φ2 ◦ φ1 = [(x : fd1) 7→ f2; (x : fd2) 7→ f1|fε]

6.4.2 Multiple Parametric Annotations
We previously assumed a single parametric annotation. In the case
of multiple parameters, we need a slightly more complex substitu-
tion environment. Specifically, each entry in the environment could
be a list of instantiations instead of a single instantiation. For ex-
ample,

[(x : “i”, y : “j”) 7→ f ; (x : “k”) 7→ g | rφ]

An entry i in a substitution environment is compatible with another
entry j, written i � j, if all the common parameter/label pairs agree
and i has at least as many entries as j. By convention, every entry
is compatible with the residual. When computing ◦ on substitution
environments, compatible entries are merged by expanding the
entries to contain the union of all the parameter label pairs. If we
define φ(i) to return the largest entry1 in the domain of φ that i is
compatible with, we can reuse our definition of ◦ on substitution
environments and the desired effect is achieved.

7. Application: Flow Analysis
In this section we describe a novel flow analysis application that
uses regular annotations to increase precision. Our motivation is
to investigate algorithms for context-sensitive, field-sensitive flow
analysis. A proof by Reps shows the general problem to be unde-
cidable [22]. As mentioned previously, the core issue is the arbi-
trary interleaving of two matching properties: function calls and

1 This is unambiguous—if two entries have equal length, a larger entry in
the domain of the substitution environment must also be compatible.

Γ(x) = σ

Γ ` x : σ
(Var)

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` (e1, e2)L ` σ1 ×L σ2

(Pair)

Γ ` e : σ1 ×L σ2

Γ ` e.i : σi

(Proj i = 1, 2)
Γ, x : σ, f : σ → σ′ ` e : σ′

Γ ` f(x : τ) : τ ′ = e : σ → σ′
(Def)

Γ ` e : σ ` σ ≤ σ′

` e : σ′
(Sub)

Γ(f) = σ σ �i
+ σ′

Γ ` f i : σ′
(Inst)

Figure 8. Type rules for polymorphic recursive system.

returns, and type constructors and destructors. Viewing Reps’ re-
sult in a type-based setting, the problem involves precisely handling
flow through polymorphic recursive functions and recursive types.
Practical solutions to this problem require approximating one or the
other matching property. In practice the approach taken almost uni-
versally is to approximate function matchings, which is typically
done by analyzing sets of mutually recursive functions monomor-
phically.

Our view is that the essence of this approximation is reduc-
ing one matching to a regular language, while precisely model-
ing the other matching as a context-free language. For example,
treating recursive functions monomorphically reduces the language
of calls and returns to a regular language, while leaving the type-
constructor matching language context-free. While this approach
can be modeled using annotated set constraints (see Section 7.6),
we first present a natural alternative that models function match-
ings as a context-free language, while reducing the type-constructor
matching problem to a regular language. For this analysis, we apply
a previously known reduction strategy to model context-free lan-
guage reachability of function matchings as a set constraint prob-
lem [15]. We use regular annotations to model regular language
reachability of type constructor/destructor matchings.

This analysis permits non-structural subtyping constraints. To
our knowledge, ours is the first practical attempt to combine poly-
morphic recursion with non-structural subtyping constraints.

7.1 Source Language
The analysis operates on the following source language:

e ::= n fd ::= f(x : τ) : τ ′ = e
| x | fd; fd
| (e1, e2)
| e.i i = 1, 2
| f i e

In the function definition f(x : τ) : τ ′ = e, f is bound within e.
For simplicity, the source language does not include useful features
such as conditionals, mutual recursion or higher-order functions.
The analyses presented here can be extended to these features; we
omit them only to simplify the presentation. We use τ to range over
unlabeled types (pairs, integers, type variables, and first-order func-
tions). Types are labeled with set variables L. We use σ to range
over labeled types, which are introduced by a spread operator:

spread(τ1 × τ2) = spread(τ1)×L spread(τ2) L fresh
spread(int) = intL L fresh
spread(α) = αL L fresh

Function tl returns the top-level label of a labeled type.

7.2 Type Rules and Constraint Generation
Figure 8 shows the type system for the polymorphic recursive
analysis. The rules for variables, pairs, and pair projection are
straightforward. The rule (Def) adds the types of the argument
variable x and the function f to the environment, allowing recursive

tl(σ) ⊆ tl(σ′)

σ ≤ σ′
(Sub)

o−1
i (tl(σ)) ⊆ tl(σ′)

σ �i
+ σ′

(Pos)

oi(tl(σ
′)) ⊆ tl(σ)

σ �i
− σ′

(Neg)
σ1 �i

− σ3 σ2 �i
+ σ4

σ1 → σ2 �i
+ σ3 → σ4

(Fun)

intL
(Int WL)

αL
(Var WL)

tl(σ1) ⊆[1τ1 L tl(σ1) ⊆[2τ2 L
L ⊆]1τ1 tl(σ1) L ⊆]2τ2 tl(σ2)

σ1 ×L σ2

(Pair WL)

Figure 9. Constraint generation for polymorphic recursive system.

0

1[¹

2

[²

]¹

3
[²

]²
4[¹

]²

]¹

Figure 10. Finite state automaton for single level pairs.

uses of f . Functions must be instantiated before use via the rule
(Inst). The rule (Sub) permits non-structural subtyping steps, i.e. σ
and σ′ do not need to share the same type structure.

The constraint generation rules are shown in Figure 9. One key
aspect of constraint generation is that we do not apply constraints
downward through types—constraints extend only to the top-level
constructors.2 Constraints between substructures of types are dis-
covered automatically as needed during constraint resolution.

7.2.1 Function Call Matching with Terms
We apply a known reduction to model the matching of function
calls and returns [15]. The result in [21] shows that this is equiva-
lent to polymorphic recursive treatment of functions.

7.2.2 Type Constructor Matching with Annotations
Annotations are used to model the matching language of type con-
structors and destructors. For example, in (xX , yY)P .1Z , the con-
straint X ⊆[1int P models the flow from the first component of the
pair to the pair constructor, and the constraint P ⊆]1int Z models
the flow from the pair to the projected result. The two annotations
[1int and]1int should “cancel” each other, reflecting the flow from X
to Z via the un-annotated constraint X ⊆ Z . While this language
of matchings appears context-free, in the absence of recursive types
it is not possible for a symbol of the form [iτ to be followed by an-
other of the same symbol without first encountering a correspond-
ing]iτ symbol to cancel the first symbol. For this reason we need the
extra τ component on annotations to distinguish pair projection on
different levels of the type. Thus, for a given input program, we can
place a bound the longest string of annotations we need consider
by the size of the largest type. In Figure 10 we show the finite state

2 As noted earlier we could also treat function types as type constructors
and extend our construction to handle higher-order function types; we treat
function types specially here for brevity.

pair (y:int) : β = (1A,yY)P;
main () : int = (pairi 2B).2V

Figure 11. Non-structural subtyping example.

P ,, H

o−1
i

���
�
�
�
�
�
�

A

[1int

??~~~~~~~
Y

[2int

__???????

T
]1int

��~~
~~

~~
~

]2int

��@
@@

@@
@@

B

oi

OO�
�
�
�
�
�
�

U V

Figure 12. Constraint graph for the program in Figure 11 (only
relevant edges are shown).

automaton for this annotation language when the program’s largest
type is pair(int). In the presence of recursive types, flow must be
approximated, for example by replacing annotated constraints on
recursive types with empty annotations.

7.3 Answering Flow Queries
To ask whether a particular label (sayX) flows to another label (say
Y), the constraint x ⊆ X , where x is a fresh constant, is added to
the system. Then X flows to Y if x is in every solution of Y . This
query yields answers for matched flow, and this approach can be
extended to partially-matched reachability through functions using
PN reachability [15].

7.4 An Example
Consider the program in Figure 11 (from [8]). Non-structural sub-
typing assigns pair type intY → βH along with constraint β =
intA ×P intY . Figure 12 shows a simplified constraint graph for
this program. Flow from B to V is captured by constraints:

oi(B) ⊆ Y
Y ⊆[2int P
P ⊆ H

o−1
i (H) ⊆ T

T ⊆]2int V
which imply the relationship B ⊆ V .

7.5 Stack-Aware Aliasing
The analysis presented in this section can be used to implement
context-sensitive, field-sensitive alias analysis. An interesting con-
sequence of this formulation is that an additional dimension of sen-
sitivity can be recovered during the alias query phase. A standard
approach to computing aliasing information from a points-to anal-
ysis is to intersect sets of abstract locations—an empty intersection
indicates that two expressions do not alias. In our setting, we can
instead intersect the solutions of two variables and test for empti-
ness, giving stack-aware alias queries.

Consider the following C program:

void main() {
int a,b;

foo1(&a,&b); // constructor o1

foo2(&b,&a); // constructor o2

}
void foo(int *x, int *y) {

// May x and y be aliased?
}

If this is the whole program, x and y clearly cannot be aliased
within foo. If the points-to sets themselves are not considered
context-sensitively, however, the points-to results contain pt(x) =
pt(y) = {a, b}, and the analysis reports that x and y may alias.

In our setting, points-to sets are terms where unary constructors
encode information about function calls. Our analysis would yield
the following solution (annotations and downward closure elided)
representing points-to sets for the above program:

X = {o1(a), o2(b)}
Y = {o2(a), o1(b)}

Intersecting the solutions for X and Y reveals that there are no
common terms; hence the two variables are not aliased. Thus, the
constraint solutions themselves encode context-sensitive points-to
sets.

While the above example is somewhat contrived, stack-aware
alias queries allay a real problem: in most alias analyses, the mem-
ory abstraction is based on syntactic occurrences of calls to allo-
cation routines (e.g. malloc and new). Simple refactorings such
as wrapping an allocation function can destroy the precision of
the analysis. Stack-aware alias queries use the call stack to dis-
ambiguate object allocation sites, yielding yet another dimension
of precision for context-sensitive alias analysis. While stack-aware
queries are not likely to be as significant as other recent approaches
to context sensitivity (for example, object sensitivity), the benefit
comes with almost no cost, as stack-aware alias queries are encoded
in the constraint solutions already.

7.6 A Dual Analysis
As mentioned earlier, a more widely used approach to combining
context-sensitivity and field sensitivity is to approximate the lan-
guage of function calls and returns by treating mutually recursive
functions monomorphically. We note that this analysis is also ex-
pressible in our framework. The key change is to swap the roles of
annotations and terms: now annotations [i and]i model call/return
paths to a function call site i, and constructors oi(. . .) and projec-
tions o−1

i (. . .) model constructing/destructing the ith field from a
tuple. We can also take advantage of n-ary constructors to cluster
types, so that instead of using two constructors o1 and o2 to repre-
sent the first and second components of a pair, we use a binary con-
structor pair to construct a pair, and projections pair−1(. . .) and
pair−2(. . .) to deconstruct a pair. This more natural representation
can improve performance, as edge additions that would be discov-
ered twice using unary constructors can be discovered once instead
using a binary constructor. With this approach, the constraint sys-
tem for the example program in Figure 11 is as follows:

B ⊆[i Y
pair(A,Y) ⊆ H

H ⊆]i T
pair−2(T) ⊆ V

which implies the desired constraint B ⊆ V .

8. Experimental Results
We have implemented regularly annotated set constraints in the
publicly available BANSHEE toolkit [16, 14], which allows the
specification of program analyses using multiple, mixed constraint
formalisms [6]. We have added support for annotations to BAN-
SHEE’s existing implementation of the Set sort. Some of the tech-
nical details (such as handling projection merging [27] and cycle
elimination [7] in the presence of annotations) are similar to those
addressed in [25]; we omit them here.

Since BANSHEE already does specialization based on a statically-
specified description of the term constructors used in an analysis,
it is very natural to extend specialization to the input finite state
automaton. We have created an annotation specification language
whose syntax is loosely based on ML pattern matching syntax.
For example, the process privilege automaton shown in Figure 3 is
specified as follows in our language:

start state Unpriv :
| seteuid zero −> Priv;

state Priv :
| seteuid nonzero −> Unpriv
| execl −> Error;

accept state Error;

This specification is compiled by computing the set F≡
M and cre-

ating a lookup table that implements the ◦ operation. This allows
us to compute a new annotation for the transitive closure operation
in constant time. At runtime, annotations are represented as sub-
stitution environments in order to support parametric annotations.
Multiple parametric annotations are supported.

Our implementation omits representative function variables on
set expressions completely during constraint solving and instead
does all of the calculations involving these functions during queries
(recall Section 3.2). By omitting these variables from the solver we
can do aggressive hash-consing of terms, and the memory savings
from hash consing is substantial. The time and space overhead
needed to implement the operations in the transitive closure rule
is minimal, since function composition is reduced to table lookups
by the specializer.

To illustrate the viability of our approach, we have reproduced
some experiments first done using MOPS. We chose to examine
the applications of MOPS because pushdown model checking is
superficially very different from the usual applications of set con-
straints. We chose a security property (Property 1 from [4]) and
checked several sensitive software packages for security violations
using the approach outlined in Section 6. The property we checked
is a complete model of the simple process privilege property de-
scribed in Section 6. The complete model contains 11 states and
9 different alphabet symbols. It is the most complex property and
largest automaton reported in [4]. This property demonstrates that,
in practice, the representative function sets may not exhibit worst
case size—while the set F≡

M could contain millions of elements for
an 11 state automaton, in this case there are only 58 distinct repre-
sentative functions.

We report in Table 1 the number of lines of code for each pack-
age, the number of executables for each package, and the time to
check the property for the executables in the package for both BAN-
SHEE and MOPS.3 Each executable in a package is checked sepa-
rately. Our analysis times show that our algorithm’s scalability and
performance is very good, and that the bidirectional solver is us-
able for realistic applications. Performance is even better consider-

3 The experiment was performed on a 2.0 GHz Intel Core Duo machine with
512 Mb of memory.

Benchmark Size Programs BANSHEE (s) MOPS (s)
VixieCron 3.0.1 4k 2 .52 .57
At 3.1.8 6k 2 .52 .62
Sendmail 8.12.8 222k 1 2.3 5.1
Apache 2.0.40 229k 1 .6 .7

Table 1. Benchmark data for process privilege experiment.

ing that MOPS uses significant hand-coded optimizations external
to the core push-down model checker. In particular, for improved
performance MOPS first slices the program to extract the security-
relevant portion in a pre-pass, resulting in a much smaller program
to be checked by the push-down implementation, whereas our im-
plementation simply generates and solves constraints for the entire
program.

9. Related Work

Regularly annotated set constraints generalize the annotated
inclusion constraints presented in [25, 19]. We have shown how
to incorporate infinite regular languages as annotations, and we
believe that finite state automata are a more natural specification
language for annotations than the concat and match operators
used in prior work. We also believe that the annotation languages
used in [19] can be expressed in terms of finite state automata.

Parametric regular path queries are a declarative way of specify-
ing graph queries as regular expression patterns [18]. Regular path
queries are not as powerful as set constraints, though the use of
parameters to correlate related data may be a useful addition. The
combination of polymorphic recursion and non-structural subtyp-
ing was first considered in [8]. The solution proposed in [8] has the
disadvantage that polymorphism on data types is achieved by copy-
ing constraints. While there is no implementation of this algorithm,
the general experience with constraint-copying implementations is
that they are slow [9]. For this reason we consider our approach,
which relies on regular annotations rather than copying constraints
for polymorphism, to be a more practical algorithm for this class
of analyses. However, our results also suggest that a bidirectional
solver is unlikely to scale for this problem, as the number of states
of the DFA grows at least with the size of the largest type in the
program being analyzed. We believe a whole-program analysis us-
ing a forwards or backwards solver (in the style of [11]) would
scale; unfortunately BANSHEE includes only bidirectional solvers
and currently no forwards or backwards solvers for set constraints
are publicly available.

Weighted pushdown systems (WPDS) label transitions with val-
ues from a domain of weights [24]. Weighted pushdown reacha-
bility computes the meet-over-all-paths value for paths that meet
certain properties. WPDS have been used to solve various inter-
procedural dataflow analysis problems—the weight domains are
general enough to compute numerical properties (e.g., for constant
propagation), which cannot be expressed using our annotations. On
the other hand, WPDS focus on checking a single, but extended,
context-free property, while annotated constraints naturally express
a combination of a context-free and any number of regular reacha-
bility properties. The exact relationship between WPDS and regu-
larly annotated constraints is not clear.

Binary Decision Diagrams (BDDs) have been successful as an
alternative to graph reachability for program analysis applications
[28, 17]. BDD-based algorithms have exponential worst-case com-
plexity, whereas annotated set constraints can be solved in polyno-
mial time (but only using forwards or backwards solvers). Also, at

least to date BDD-based approaches have not been integrated with
context-free properties.

10. Conclusion
We have described a formalism that extends set constraints with
annotations drawn from a regular language, allowing the expression
of reachability problems involving simultaneous context-free and
regular properties. We have shown how to express applications
as diverse as type-based flow analysis, interprocedural dataflow
analysis, and pushdown model checking.

References
[1] A. Aiken, M. Fähndrich, J. Foster, and Z. Su. A toolkit for

constructing type- and constraint-based program analyses. In Proc. of
the Second International Workshop on Types in Compilation, 1998.

[2] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of
set constraints. In Proc. of the 7th Workshop on Computer Science
Logic, pages 1–17. Springer-Verlag, 1994.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc.
of the Symp. on Theory of Computing, pages 202–211, 2004.

[4] H. Chen, D. Dean, and D. Wagner. Model checking one million lines
of C code. In Proc. of the 11th Annual Network and Distributed
System Security Symp., pages 171–185, Feb. 4–6, 2004.

[5] H. Chen and D. Wagner. MOPS: An infrastructure for examining
security properties of software. In Proc. of the 9th ACM Conf. on
Computer and Communications Security, pages 235–244, 2002.

[6] M. Fähndrich and A. Aiken. Program analysis using mixed term
and set constraints. In Proc. of the 4th International Symp. on Static
Analysis, pages 114–126. Springer-Verlag, 1997.

[7] M. Fähndrich, J. Foster, Z. Su, and A. Aiken. Partial online cycle
elimination in inclusion constraint graphs. In Proc. of the Conf. on
Programming Language Design and Implementation, pages 85–96,
June 1998.

[8] M. Fähndrich, J. Rehof, and M. Das. From polymorphic subtyping
to cfl reachability: Context-sensitive flow analysis using instantiation
constraints. Technical Report MSR-TR-99-84, Microsoft Research,
1999.

[9] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
Monomorphic Flow-insensitive Points-to Analysis for C. In Proc.
of the Static Analysis Symposium, pages 175–198, June 2000.

[10] N. Heintze. Set Based Program Analysis. PhD dissertation, Carnegie
Mellon University, Department of Computer Science, Oct. 1992.

[11] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA:
A million lines of c code in a second. In Proc. of the Conf. on
Programming Language Design and Implementation, pages 254–
263, 2001.

[12] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural
dataflow analysis. In Proc. of the Symp. on Foundations of Software
Engineering, pages 104–115. ACM Press, 1995.

[13] T. Jensen, D. L. Metayer, and T. Thorn. Verification of control flow
based security properties. In Proc. of the 1999 IEEE Symp. on security
and Privacy, 1999.

[14] J. Kodumal. Banshee: A toolkit for constructing constraint-based
analyses. http://banshee.sourceforge.net, 2005.

[15] J. Kodumal and A. Aiken. The set constraint/CFL reachability
connection in practice. In Proc. of the Conf. on Programming
Language Design and Implementation, pages 207–218, 2004.

[16] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based
analysis toolkit. In Proc. of the 12th International Static Analysis
Symposium, pages 218–234, Sept. 2005.

[17] O. Lhoták and L. Hendren. Jedd: A BDD-based relational extension
of Java. In Proc. of the Conf. on Programming Language Design and
Implementation, 2004.

[18] Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu. Parametric
regular path queries. In Proc. of the Conf. on Programming Language
Design and Implementation, 2004.

[19] A. Milanova and B. Ryder. Annotated inclusion constraints for precise
flow analysis. In IEEE International Conf. on Software Maintenance,
Sept. 2005.

[20] J. Palsberg. Efficient inference of object types. Information and
Computation, (123):198–209, 1995.

[21] J. Rehof and M. Fähndrich. Type-based flow analysis: From
polymorphic subtyping to CFL-reachability. In Proc. of the Symp. on
Principles of Programming Languages, pages 54–66, Jan. 2001.

[22] T. Reps. Undecidability of context-sensitive data-dependence
analysis. In ACM Trans. Prorgram. Lang. Syst., volume 22, pages
162–186, 2000.

[23] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proc. of the Symp. on Principles of
Programming Languages, pages 49–61, Jan. 1995.

[24] T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and
their application to interprocedural dataflow analysis. In Proc. 10th
Int. Static Analysis Symp., pages 189–213, 2003.

[25] A. Rountev, A. Milanova, and B. Ryder. Points-to analysis for Java
using annotated constraints. In Proc. of the Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, pages 43–55,
2001.

[26] M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven
points-to analysis for Java. In Proc. of the Conf. on Object-Oriented
Programs, Systems, Languages, and Applications, 2005.

[27] Z. Su, M. Fähndrich, and A. Aiken. Projection merging: Reducing
redundancies in inclusion constraint graphs. In Proc. of the Symp. on
Principles of Programming Languages, pages 81–95, 2000.

[28] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Proc. of the Conf. on
Programming Language Design and Implementation, June 2004.

	Introduction
	Annotated Constraints
	Set Constraints
	Regularly Annotated Set Constraints
	Annotated Terms
	Annotated Set Constraints

	Solving Annotated Constraints
	Resolution Rules
	Queries
	An Example: Bit-Vector Annotations

	Complexity
	Alternative Solution Strategies
	Tradeoffs

	Application: Pushdown Model Checking
	Modeling Programs with Constraints
	Checking for Security Violations
	An Example
	Parametric Annotations
	Example
	Multiple Parametric Annotations

	Application: Flow Analysis
	Source Language
	Type Rules and Constraint Generation
	Function Call Matching with Terms
	Type Constructor Matching with Annotations

	Answering Flow Queries
	An Example
	Stack-Aware Aliasing
	A Dual Analysis

	Experimental Results
	Related Work
	Conclusion

