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Abstract

Type Qualifiers: Lightweight Specifications to Improve Software Quality
by

Jeffrey Scott Foster

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexander S. Aiken, Chair

Software plays a pivotal role in our daily lives, yet software glitches and security vulner-
abilities continue to plague us. Existing techniques for ensuring the quality of software
are limited in scope, suggesting that we need to supply programmers with new tools to
make it easier to write programs with fewer bugs. In this dissertation, we propose using
type qualifiers, a lightweight, type-based mechanism, to improve the quality of software.
In our framework, programmers add a few qualifier annotations to their source code, and
type qualifier inference determines the remaining qualifiers and checks consistency of the
qualifier annotations. In this dissertation we develop scalable inference algorithms for flow-
insensitive qualifiers, which are invariant during execution, and for flow-sensitive qualifiers,
which may vary from one program point to the next. The latter inference algorithm in-
corporates flow-insensitive alias analysis, effect inference, ideas from linear type systems,
and lazy constraint resolution to scale to large programs. We also describe a new language
construct “restrict” that allows a programmer to specify certain aliasing properties, and
we give a provably sound system for checking usage of restrict. In our system, restrict is
used to improve the precision of flow-sensitive type qualifier inference. Finally, we describe
a tool for adding type qualifiers to the C programming language, and we present several
experiments using our tool, including finding security vulnerabilities in popular C programs

and finding deadlocks in the Linux kernel.
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Chapter 1

Introduction

Software systems are an increasingly important part of our daily lives. Today,
everything from routine office transactions to critical infrastructure services relies on the
effectiveness of large, complicated software systems, yet our ability to produce such systems
far outstrips our ability to ensure their quality. Well-publicized software glitches have led to
failures such as the Mars Climate Orbiter crash [76], and security vulnerabilities in software
have paved the way for attacks such as the Code Red Worm [15]. The potentially staggering
cost of software quality problems has led to a renewed call to increase the safety, reliability,
and maintainability of software [49, 89].

There are currently two widely used techniques for validating program properties:
testing and code auditing. In testing, either programmers or testers check their program on
a series of inputs designed to exercise the system’s various features. In code auditing, groups
of programmers manually review source code together, looking for potential problems. Both
techniques are extremely useful in practice: testing catches many errors and shows that
the code runs correctly on a variety of inputs, and code auditing can find both obvious
and subtle bugs in software. Unfortunately, while effective, both techniques have serious
limitations. Although well-designed test cases cover much of the behavior of a program,
the only assurance testing provides is that the test cases work correctly. Code auditing is
extremely difficult, and it is unreasonable to assume that manual inspection can show the
safety of a large, complicated software system. Given these limitations, it seems clear that
we need to complement both testing and code auditing with other techniques.

In this dissertation we propose using type qualifiers to improve software quality.

Type qualifiers are lightweight annotations for specifying program properties (see below).



In later chapters we present techniques that verify, at compile-time, the correctness of
type qualifier annotations in source code. This kind of static, specification-and-checking

approach has a number of advantages:

e Unlike dynamic techniques like testing, static analysis conservatively models all runs
of a program. This is especially valuable for finding bugs that are hard to replicate
and for finding security vulnerabilities, and both are exactly the problems that are

most difficult to identify with testing.

e Static checking can provide strong guarantees by proving that certain program prop-
erties always hold. In particular, type qualifier systems, when applied to type-safe
languages, are sound, meaning that programs with valid qualifier annotations do not
violate the semantics of the qualifiers. This assurance enables the programmer to use

type qualifiers to eliminate whole classes of bugs from their program.

e Programmers work hard to convince themselves that their programs behave as in-
tended. By providing programmers with a specification language for writing down
some of their intentions, and by providing automatic checking of their specifications,

we help programmers write and design correct programs from the start.

e Specifications that are incorporated into the source code are a very precise form of
documentation. Such documentation is invaluable when modifying and upgrading
code, and automatic checking can identify attempted changes that violate existing

interfaces.

The type qualifiers we propose as specifications are atomic properties that “qual-
ify” the standard types. Many programming languages have a few special purpose type
qualifiers. In contrast, in this dissertation we propose a general framework for adding new,
user-specified qualifiers to languages such as C, C++4, Java, and ML. In our framework,
programmers add a few key type qualifier annotations to their programs and then apply
type qualifier inference to the source code, automatically inferring the remaining qualifiers
and checking the consistency of the qualifier annotations.

As one example, we can use type qualifiers to detect potential security vulnerabil-
ities (Section 6.2). Security-conscious programs need to distinguish untrusted values read
from the network from trusted values the program itself creates. We can model this prop-

erty by using qualifiers tainted and untainted to mark the types of untrusted and trusted



data, respectively. Type qualifier errors occur when a value of type tainted T is used where
a value of type untainted T is expected, where T is a standard unqualified type. Any such
type qualifier error indicates a potential security vulnerability.

As another example, we can use type qualifiers to statically check correct usage
of I/O operations on files (Section 6.4). In most systems, file operations can only be used
in certain ways: a file must be opened for reading before it is read, it must be opened for
writing before it is written to, and once closed a file cannot be accessed. We can express
these rules with type qualifiers. We introduce qualifiers open, read, write, and readwrite to
mark files that have been opened in an undetermined mode, for reading, for writing, and
for both reading a writing, respectively. We also introduce a qualifier closed to mark files
that are not open. File operations are given types for tracking file states. For example, the
close function takes an open file and changes it to a closed file. Type qualifier errors occur
when we misuse the file interface—for example, if we attempt to read a closed file or write
a read file. Any such error indicates a potential bug in the program.

Type qualifiers have a number of advantages as a mechanism for specifying and

checking properties of programs:

e Of the multitude of proposals for statically-checked program annotations, types are
arguably the most successful. In many languages, programmers must already include
type annotations in their source code. Thus the machinery of types is familiar to
the programmer, and we believe it is natural for a programmer to specify additional
properties with a type qualifier. This bodes well for the adoption of type qualifiers in
practice, since a key concern about any specification language is whether programmers

are willing to use it.

e Type qualifiers are additional annotations layered on top of the standard types. As
such, they can be safely ignored by conventional tools (such as standard compilers)
that do not understand them. This natural backward compatibility lowers the barrier

to adopting type qualifiers.

e Type qualifiers support efficient inference, which reduces the burden on the program-
mer by requiring fewer annotations. Efficient inference also allows us to apply type
qualifiers to large bodies of legacy code; we can sprinkle in a few type qualifier anno-

tations, and inference determines the remaining qualifiers automatically.



e While lightweight, type qualifiers can express a number of interesting properties, some

of which we discuss in Chapter 6.

Outline of This Work and Contributions

In our framework, type qualifiers are added to every level of the standard types.
The key technical property of type qualifiers is that they do not affect the underlying
standard type structure (Section 2.1 describes standard types). That is, a program with
type qualifier annotations should type check only if the same program type checks with the
annotations removed. Aside from this restriction, type qualifiers could potentially affect
program semantics arbitrarily. In this dissertation, however, we focus on a very useful
subclass of type qualifiers, those that introduce subtyping.

In our system, each set of related type qualifiers forms a partial order (Section 2.3),
which is extended to a subtype relation among qualified types, which are simply types
with qualifiers. For example, consider the qualifiers tainted and untainted. While it is
an error for tainted data to be used in wuntainted positions, the reverse is perfectly fine—
presumably positions that accept tainted data can accept any kind of data. Thus we choose
untainted < tainted as the partial order. For the qualifiers open, read, write, readwrite, and

closed, we choose the partial order

readwrite < read < open

readwrite < write < open

In other words, a file open for reading and writing can be treated as a file open reading or as
a file open for writing, and any of those is an open file. A closed file can never be considered
a open file, nor vice-versa, hence closed is incomparable to the other four qualifiers.
Chapter 3 presents a generic system for extending a standard type system with
type qualifiers and related annotations. Chapter 3 also describes an algorithm for perform-
ing flow-insensitive (see below) type qualifier inference. Our inference algorithm is designed
using constraint-based analysis. To infer qualifiers in a source program, we scan the program
text and generate a series of constraints ¢; < g among qualifiers and qualifier variables,
which stand for as-yet-unknown qualifiers. We solve the constraints for the qualifier vari-
ables and warn the programmer if the constraints have no solution, which indicates a type

qualifier error.



In program analysis, there is an important distinction between flow-insensitive
analysis, which tends to be very efficient, and flow-sensitive analysis, which is more precise
but usually does not scale well to whole programs. Flow-insensitive analysis proves facts
about a program that are true throughout the whole execution. For example, it is reasonable
to model tainted and untainted qualifiers flow-insensitively, i.e., variables are either always
tainted or always untainted. Flow-sensitive analysis, in contrast, proves facts that may
change from one program point to another. For example, it makes the most sense to model
open, closed, etc. flow-sensitively, since the state of a file can vary from one program point
to the next.

The centerpiece of this dissertation is Chapter 4, which presents a flow-sensitive
type qualifier system, including a novel, lazy constraint-based algorithm for flow-sensitive
type qualifier inference. In contrast to classical data flow analysis, the system described
in Chapter 4 explicitly models pointers, heap-allocated data, aliasing, and function calls.
Since we would like to apply our system to large programs, our inference algorithm is
carefully crafted to scale to whole program analysis. We use an inexpensive flow-insensitive
alias analysis and effect inference to produce an approximate model of the store. That
model of the store forms the basis for a second inference step that computes flow-sensitive
information, using ideas from linear type systems to model updates. To achieve scalability,
rather than explicitly modeling the entire state at each program point, we lazily solve
only a portion of the constraints generated by the second step, namely the portion of the
constraints needed to check qualifier annotations.

In the context of our flow-sensitive qualifier system, we introduce a new language
construct that may be of independent interest, restrictz = e; in ey (Section 4.2). The
restrict construct, related to the ANSI C type qualifier of the same name [6], allows
programmers to specify aliasing behavior in their programs. We say that two expressions
referring to a memory location alias if they evaluate to the same location. The presence
of aliasing, which is an essential feature of most modern programming languages, makes
program analysis much more difficult. A programmer can use occurrences of restrictx =
e1 in es to help improve the precision of a program analysis. In this construct, the name x is
initialized to e, which must be a pointer, and x is in scope during evaluation of es. Suppose
x and ej point to object o, i.e., *x and *e; alias, where *e reads indirectly through pointer
e. At a high level, the meaning of restrict is that, within the scope of ey, only x and

values derived from x may be used to access o. This fact often allows a program analysis—



in particular, our flow-sensitive type qualifier inference—to track the state of o precisely
within eg, intuitively because the restrict construct guarantees that the programmer does
not modify o “behind the back” of the program analysis; the programmer always modifies
o through z or values derived from z. Our inference system checks the correctness of
restrict annotations using effects, and we give proof that this checking is sound.

To test our ideas in practice, we built a tool called CQUAL for adding user-defined
flow-insensitive and flow-sensitive type qualifiers to C (Chapter 5). CQUAL has been used
both in our own research and by others [127]. A key feature of CQUAL is that it includes
a user interface that shows programmers not only what type qualifiers were inferred but
why they were inferred. After inference, the program source code is presented to the user
with each identifier colored according to its inferred qualifiers. For each error message, the
user can browse qualifier constraints that exhibit the error. For example, if an error occurs
because tainted data is used in an untainted position, the user is shown a set of constraints
and a program path that shows step-by-step how tainted was propagated to untainted.
From our own personal experience, such an interface, while often neglected in the research
literature, is one of the most important and visible features of any program analysis tool,
and we found the interface invaluable in our research.

We have performed a number of experiments with CQUAL (Chapter 6). We have
used CQUAL to infer const qualifiers [6] in ANSI C programs. We found that qualifier
inference is able to infer many additional consts, even in programs that already make a
significant effort to use const (Section 6.1). We have used CQUAL to check for format-string
bugs, a particular kind of vulnerability, in several popular C programs. Using CQUAL, we
were able to find security vulnerabilities that were not known to us (Section 6.2). We have
used CQUAL to find several new deadlocks in the Linux kernel (Section 6.3). Finally, we
have used CQUAL to check for proper file operation usage in two C programs (Section 6.4).

In summary, this dissertation makes a number of new contributions:

e We present a framework for adding type qualifiers to almost any language with stan-
dard types, and we show that flow-insensitive type qualifier inference can be carried

out efficiently.

e We show how to extend our system to flow-sensitive type qualifiers, and we give
a novel, lazy, scalable, constraint-based algorithm for inferring flow-sensitive type

qualifiers.



e We introduce a new language construct restrict that allows programmers to specify
aliasing behavior in their programs. We give a system for checking restrict and show

that it is sound.

e We describe a practical tool CQUAL that adds type qualifiers to the C programming
language. We believe many of the lessons learned in developing CQUAL are applicable

to other languages, as well.

e We present empirical evidence that type qualifiers are useful in practice by describing
a number of experiments with type qualifier systems, both flow-insensitive and flow-

sensitive. In the process, we show that our algorithms scale to large programs.



Chapter 2

Background

In this and the next two chapters we present the theoretical underpinnings of
type qualifier systems. Type qualifiers can be added to any language with a standard
static type system. In order to abstract away from many of the tedious details of real
languages, in this and the next two chapters we present type qualifiers in the context of
a particularly simple, abstract language: the call-by-value lambda calculus [55] extended
with updatable references [122]. Chapter 5 discusses an implementation of type qualifiers
for the C programming language.

Figure 2.1 gives our source language. Note that there are no qualifiers in this
language; we introduce qualifiers in Chapter 3. We sometimes use the non-terminal v
to denote values, which are expressions that cannot be further evaluated.! Our language
contains three kinds of values: variables, written with lowercase letters x, y, z, etc., integers,
and functions Ax.e, which denotes a function with parameter x that evaluates to e. The
constructs in our language that can be evaluated are function application e; eo, which
applies function e; to argument es, name binding let x = e1 in es which evaluates e; and
then binds the variable x to e; within the scope of es, allocation ref e, which allocates a
new cell in memory and initializes it to e, dereference *e, which returns the contents of
cell e, and assignment ej :=es, which replaces the contents of cell e; with the value of es.
Rather than add explicit recursion to the language, we assume without further comment
that we have a primitive function Y such that Y f reduces to f (Y f) [120, 122].

In addition to the grammar for our source language, in order to reason about how

a program is supposed to behave we need to have some formal statement of what a program

"We do not allow evaluation within a function body



e = w values
| e1e application
| letxz =ejin e; name binding
| refe allocation
| xe dereference
| e1:=e assignment
v o= T variable
| n integer
| Az.e function

Figure 2.1: Source Language

means, i.e., we need a semantics for our language. Figure 2.2 gives a big-step operational
semantics [90] for our language. In these semantics a store S is a mapping from locations [
to values v. We use ) for the empty store.

In the rules in Figure 2.2, as well as throughout this dissertation, we present
semantics and type systems in the natural deduction style. Rules are of the form

H ... H,
c

meaning that if we know the hypotheses H; through H, are true, then we can prove that

conclusion C is true. For example, here is modus ponens written in this style:

A A=1B
B

If we know that A is true and A implies that B is true, then we can conclude that B is
true.

The semantics in Figure 2.2 is a set of reduction rules of the form S F e — v; S,
meaning that in initial store S, expression e evaluates to value v and yields a new store
S’. Here a value is either a location, an integer, or a function. Notice that our semantics
contains no environments for variables—instead, we use substitution to bind variables to

values. We discuss each of the rules:

e In [Var], [Int], and [Lam], values remain the same—they do not reduce any further.

e In [App|, we evaluate e; ey by first evaluating e;, which must yield a function of the

form Az.e. Next we evaluate es, which yields some value v. Finally, we evaluate the
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[ € dom(S)
[Var]
SEI—11;8
[Int]
Skn—n;S
[Lam]

S Ax.e — Ar.e; S

Ste — Axe; S S'tey—wu; 8" S"Felr—v] -0 8"

S €1 €9 — o' S [APP]

Ste —wv;;8  SFexr— ] — vy S

Let
SFletx =e1in es — vy; 5" [Let]
Ste—wv;S8 1 &dom(5) (Ref]
Strefe— ;8 — v
./ /
Ste—10;S 1edom(Y) Deref]
St xe— S'(1); 5
Ster—01S  SFey—v;8 1€ dom(S") )
[Assign]

Skei=es — v; 8"l — ]

Figure 2.2: Big-Step Operational Semantics

function body e with formal argument x replaced by actual argument v. Notice the
sequencing specified in this rule: we evaluate function application left-to-right, and
we evaluate the argument of a function before performing the function call. The latter

corresponds to our choice of a call-by-value semantics.

e In [Let], we evaluate e; first to yield a value vy, and then we evaluate ey with z in ey
replaced by v1. Notice that in fact we could treat let x = e; in e as syntactic sugar

for (Az.ez) e;.

e In [Ref], we first evaluate e to yield value v. Then we find an unused (fresh) location I,
and we return a new store in which [ has been bound to value v. The whole expression

evaluates to [.

e In [Deref], we first evaluate e, which yields a location [. We then return the value

bound to [ in S".
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e Finally, in [Assign] we evaluate e; followed by ea (notice the left-to-right order of
evaluation). The evaluation of e; must yield a location I, and we rebind [ to the value

of es.

The operational semantics of Figure 2.2 shows us how to execute a program in our
source language. Unfortunately, not all programs in our source language make sense—some
programs cannot be executed according to the rules in Figure 2.2. For example, rule [App]
requires that the expression in application position evaluate to a function. If we try to
evaluate the expression 3 4 (apply function 3 to argument 4), then rule [App] does not
apply. In fact, there is no rule that allows us to evaluate 3 4, since 3 is not a function.

We model such erroneous programs by reducing them to a special symbol err.
The symbol err is not a value. Intuitively, if while evaluating an expression e we encounter
an expression to which the rules of Figure 2.2 do not apply, then S - e — err;S’. As
shorthand, we often write this as S F+ e — err, since S’ is meaningless once we have
produced an err result. For the sake of completeness, Figure 2.3 gives the error reduction
rules for our semantics. In these rules we use the symbol r to stand for either a value v or the
symbol err. Notice that Figure 2.3 contains two kinds of rules: rules that propagate err
from a sub-step of the reduction (our semantics is strict in err ), and rules that introduce
err when an error is detected locally. Thus there are three possible results for evaluating

an expression: either it reduces to a value, it reduces to err, or it does not terminate.

2.1 Standard Type Systems

As we have just seen, in our operational semantics, among all the programs we can
write down in our source language there are some bad ones that reduce to err. The main
goal of adding a type system to a language is to disallow such programs. Since determining
whether a program reduces to err is undecidable [60], we choose to make our type system
sound but not complete: none of the programs our type system accepts reduce to err, but
there may be some programs our type system rejects that also do not reduce to err.

We observe that one major case when reduction fails is when we apply an operation
to the wrong kind of object (for example, we try to assign to a function, or we try to use
an integer as a function). The idea behind standard static type systems is to try to assign

a static (compile-time) type to each expression e, indicating whether e is an integer, a
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SEke —r risnot of the form Ax.e

A /
S el e — err [App]
Ske— Mx.e; S S'Fey—err (App’]
SF el eg — err PP
Ske — Mx.e;S  S'tey— 08
S" k e[x — v] — err App”]
S kel ea — err pp
Ste — err ,
[Let']
Stletx =e;in ey — err
Ske — V1; S’ S’ - eg[x — 'Ul] — err Let”]
€
StEletx =e;in ey — err
SFe—err
[Ref’]
SFrefe— err
Skte—1r risnot of the form { Deref]
S+ *xe — err e
. '
Skte—10;S" 1 &dom(S) Deref’
S F *e — err
SFe —r risnot of the form [ (Assign']
Ss1gn
Ste:=ey — err &
Ske —1;8 Shkey—err .,
[Assign”]
SFkel:i=ey — err
Ste —1;5 Ste—v;8" 1¢dom(S") (Assign’”
gn”’]

Stkep:=eg — err

Figure 2.3: Big-Step Operational Semantics, Error Rules

function, or a memory cell. Then when we see an operation on e, we can determine at
compile-time whether it is valid. For example, if we see e1 ey, we accept this application as
valid only if e; is a function, and if the type of the domain (parameter type) of e; matches
the type of es. Note that reduction also may fail if we encounter a variable that is not
bound in the current environment; our type system also prevents this from happening.

The types s (for standard type) we assign to expressions are given by the following
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z € dom(T")
Tz T O
I'En:iint (Tot)

Flz—s]kFe:s

L
I'FXMe:s— & (Lam)

I'Fe:s—3s Tley:s

A
T'Fejey:s (App)
F'ker:sy Tz—sihex: sy (Let)
I'Fletx =ejin ey : 59
I'ke:s
(Ref)
I'trefe: ref(s)
I'te:ref(s) (Deref)
I'kxe:s
F'kFei:ref(s) Thea:s (Assign)

I'kFel:i=ey:s
Figure 2.4: Standard Type Checking System

gramimar:

su=1nt | ref (s)]| s — &

The type int is the type of integers. The type ref (s) is the type of a pointer to something
of type s. Finally, the type s — s’ is the type of a function that given a parameter of type
s produces a result of type s’. We can use the standard technique of currying [10] to model
functions with multiple parameters.

Our type system is presented as a set of judgments I' F e : s, meaning that under
type assumption I', expression e has type s. The type assumption I' is a mapping from
variables to types; intuitively I' assigns types to the free variables of e. We write () for the
empty mapping.

Figure 2.4 presents our type checking rules. We discuss each of the rules:

e (Var) assigns a variable x the type it has in environment I'. If x is not assigned a

type in I', then this rule cannot apply—hence we reject as ill-typed any programs that
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contain free variables.
e (Int) assigns all integers the type int.

e (Lam) assign a function \z.e type s — s’ if, under the assumption that z has type

s, we can show that e has type s'.

e (App) checks that e; is a function and that the type of es matches the type of the
domain of e;. Then (App) assigns e es the type of the range of e;.

e (Let) computes the type s; of e1, and then type checks ez under the assumption that
x has type s1. The type of the let expression is the type of es.

e (Ref) computes the type s of e, and then assigns ref e the type ref (s), i.e., pointer
to type s.

e (Deref) computes the type of e and checks that it is a ref type. (Deref) assigns *e
the type e points to.

e (Assign) checks that e; is an updatable reference (a pointer), and that ey is of the

type e; points to. Then the expression e; :=eq is given the type of es.

Definition 2.1 Ife is a closed expression and there exists a type s such that O & e : s, then

we say that e type checks; informally we say that e has type s.

A key property enjoyed by our type system is subject reduction, meaning an ex-

pression’s type is preserved by reduction:

Lemma 2.2 (Subject Reduction) If e is a closed expression, ) Fe — r, and D e : s,

then O -1 : s.

Note that this lemma is usually presented in a weaker form to make a proof by induction
easier. We shall not give a proof of this lemma, since it is well known and follows from
the soundness proofs in Appendices A and B, which are for more complicated type systems
described in later chapters.

Using the subject reduction lemma, soundness follows immediately, since err has

no type:

Theorem 2.3 (Type Soundness) If e is a closed expression, 0 e — 1, and D e : s

for some s, then r is not err.
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Thus we see that type correct programs have the desirable property that they never reduce
to err. Notice, however, that we have not shown that a program that type checks is
“correct.” For example, a program that type checks could fail to terminate, or it could
produce an answer that has the right type but the wrong value. But the partial correctness
guarantee of a type-correct program is still extremely valuable, because it ensures that the
program is free from a large class of errors, allowing the programmer to spend their time
and energy elsewhere. In subsequent chapters in this dissertation, we develop type qualifier

systems to help the programmer eliminate still larger classes of application-specific errors.

2.2 Standard Type Inference

Given that type correct programs have the desirable property that they never
reduce to err, we would like to be able to type check all programs. However, observe that
to apply the type checking rules in Figure 2.4, we need some extra information besides the
bare program in our source language. In particular, to apply (Lam) we somehow need to
guess a type s for the function parameter in order to satisfy the hypothesis of (Lam). But
where does this type come from?

One reasonable solution is to require that programmers annotate their programs
with types. In particular, we extend the syntax for function definition to Az : s.e, where
s is the type of the parameter. Then, whenever we apply (Lam), we get the type of the
parameter from the source code. This is the solution used in languages such as C, C++,
and Java.

It turns out, however, that there is a well-known alternative solution: type infer-
ence. Instead of requiring that the programmer annotate each function parameter with a
type, we can infer the types automatically. This is the solution used in languages such as
ML and Haskell, and it has the advantage that the programmer is freed from the burden of
writing down the types explicitly. ML and Haskell also support (parametric) polymorphic
type inference, which allows the same piece of code to be automatically reused at different
types. However, this dissertation focuses on monomorphic types, so we will not discuss
polymorphism over standard types.

Figure 2.5 shows the rules for performing standard type inference on a program
with no explicit type annotations. These rules prove judgments of the form I' ' e : s,

meaning as before that in type environment I', expression e has type s. In this and the



x € dom(I") (Var)
F'Hz:T(x)
—— (Int’

T'Hn:int (Int")

/ .o
Fx—alFH e:s afresh (Lam)

' xe:a— s

I'e :s1 TI'Hey:isy s1=89— 3 [ fresh

A /
' e es:f (App)
F'He:sy Tlz—si|H eyt s (Let')
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I'He:s (Ref)
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ro I _

F'He sy T'Hex:isy  s1=ref (s2) (Assign')

I'Hej:=es: s9

Figure 2.5: Standard Type Inference System
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CU{a=s} = Claw—s] add « — s to solution
CU{s=a} = Claw s add « — s to solution
Cu{int =int} = C
CU{ref (s1) =ref (s2)} = CU{s1 = s2}
CU{s1 — s2=8] — 54} = CU{s1 =51} U{s2 =55}
C U {other type eqn} = unsatisfiable

Figure 2.6: Type Equality Constraint Resolution

remainder of the dissertation we distinguish the inference version from the checking version
of a type system by adding a prime to the judgment and to the rule labels. Our type
inference rules are remarkably similar to the type checking rules of Figure 2.4, so we do not
explain them in detail. There are two key differences. First, we add type variables o, which

stand for unknown types that have yet to be determined, to our language of types:
su=a|int|ref(s)|s — &

We usually write type variables with Greek letters near the beginning of the alphabet (a, 3,
etc.). We call the set of types without type variables ground types. Whenever we encounter
an expression whose type we need to guess (for instance, a function parameter in (Lam’)),
we give as its type a fresh type variable.

Second, as we perform type inference, we discover constraints among certain types.
For example, in (App’) when we see e; ez, we know that e; must be a function whose
domain type matches the type of es. We write these conditions on the side with type
equality constraints s; = So.

After applying the type inference rules in Figure 2.5, we have two things: a proof
tree in exactly the shape we need to perform type checking and a set of type equality
constraints on the type variables appearing in the proof. The last step we need is to solve

the type equality constraints. Let C' be a set of type equality constraints s; = so.

Definition 2.4 A solution o to a system of constraints C is a mapping from type variables
to ground types (types without variables) such that for each constraint s; = so in C, we

have o(s1) = o(s2).

If o is a solution to the constraints C, we write o = C. Figure 2.6 gives a set of resolution

rules for checking whether a set of type equality constraints C has a solution. These rules
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should be read as left-to-right rewrite rules, in which the system of constraints on the left is
replaced by the (simpler) system of constraints on the right of each =-. After we have applied
the rules in Figure 2.6, we have either determined that the constraints are unsatisfiable,
or we have computed a partial function ¢ assigning types to some of the variables in our
program. The remaining type variables, and the remaining variables in the range of o, are
unconstrained, and hence we can set them arbitrarily—for example, to int. In fact, the
rules in Figure 2.6 compute a most general solution—they constrain as few type variables

as possible.

Lemma 2.5 The rules in Figure 2.6 compute a solution o to a system of constraints C
if and only if a solution exists. Moreover, if o' |= C, then there exists an R such that

o' =0oR,ie., oisamost general solution.

Thus we see that if any solution to a system of constraints exists, the rules in Figure 2.6
will succeed.

Standard type inference is very efficient. The rules in Figure 2.6 can be imple-
mented using unification [3]. Given an initial, untyped program of size n, standard type
inference takes O(na(n)) time, where a(n) is the inverse Ackerman’s function.

In this dissertation we assume that programs are fully annotated with their stan-

dard types, either by the programmer or by a preliminary step of type inference.

2.3 Partial Orders and Lattices

In this dissertation we are concerned with adding type qualifiers to further expand
the classes of bugs that type systems can prevent. In our framework, type qualifiers are
related to each other by a partial order. In this section we define partial orders and lattices
and give some of their basic properties. For an excellent introduction to the theory of partial

orders and lattices, see Davey and Priestley [24].

Definition 2.6 A partial order is a pair (S, <) consisting of a set S and a relation < on

S such that < is reflexive, anti-symmetric, and transitive.

We write a < b if a < b and a # b. If it is clear from context we often refer to a partial

order (S, <) simply by the name S.



19

a b a
b
(a) a and b unrelated | (b) b < a

Figure 2.7: Two-point Partial Orders

a b c a b a a b c
c b c a b
c
(a) unrelated (b)b<c|(c)ec<b<al| (dec<a,c<b | (e)a<ec,b<c

Figure 2.8: Three-Point Partial Orders

There are several basic partial orders we use in this dissertation. Given any set
S, we can define the discrete partial order on S as the partial order (.S, 0), meaning that
no two elements are related. Let So = {a,b}. Then there are exactly two partial orders on
Sy: Either a and b are unrelated (the discrete partial order), or we have a < b. (The case
b < a is isomorphic to the second case.) Figure 2.7 contains a graphical representation of
these two partial orders. Similar, Figure 2.8 contains a graphical representation of the five
possible three-point partial orders. See Davey and Priestley [24] for a precise definition of
such graphs.

Given two partial orders, one useful way of combining them to form a new partial

order is to take their cross product.

Definition 2.7 Let (S1,<1) and (S2,<2) be two partial orders. Then the partial order
(S1,<1) % (S2,<9) is defined as (S,<) where S = S x S, and (a1,az3) < (b1,b2) iff

a1 <1 by and az <3 ba.

Given a partial order, we define two relations between its elements, the least upper

bound or join Ll and the greatest lower bound or meet 1:

Definition 2.8 If a and b are elements of a partial order, then a Ub is the element such
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that
I.a<aUbandb<albd

2. Ifa<candb<c, thenalb<c.

Definition 2.9 If a and b are elements of a partial order, then a b is the element such

that
I.anb<aandalb<bd

2. Ifc<aandc<b, thenc<allb

Note that it is not always the case that aMb and a U b are defined uniquely, and they may
not even be defined at all if a and b are unrelated. If for any two elements 1 (L) is always
defined, we refer to the partial order a meet (join) semilattice. If a partial order is both a
meet and a join semilattice, we call the partial order a lattice. For example, Figures 2.7b
and 2.8c are lattices, Figure 2.8d is a meet semilattice, and Figure 2.8e is a join semilattice.

It is also useful to define two closure operations on elements of a partial order

(S, <).

Definition 2.10 The upward closure | a of an element a is defined as T a = {b | a < b}.

The downward closure | a of an element a is defined as | a = {b| b < a}.

We extend T and | to sets of elements in the natural way, T S = U,cqg T sand | § = U,cq | s
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Chapter 3

Flow-Insensitive Type Qualifiers

In this section we present an extension to standard type systems that incorporates
flow-insensitive type qualifiers. In general, type qualifiers can be added to any language
with a standard type system. Throughout this chapter we use the language first introduced
in Chapter 2 to illustrate the process. We assume that our input programs are type correct
with respect to the standard type system of Chapter 2, and that function definitions have
been annotated with standard types s. If that is not the case, we can perform a preliminary

standard type inference pass.

3.1 Qualifiers and Qualified Types

As discussed in Chapter 1, in our system the user specifies a set of qualifiers @
and a partial order < among the qualifiers. In practice, the user may wish to specify several
sets (Q;, <;) of qualifiers that do not interact, each with their own partial order. But then
we can choose (Q,<) = (Q1,<1) X -+ X (Qn,<p), so without loss of generality we can
assume a single partial order of qualifiers. For example, Figure 3.1 gives two independent
partial orders and their equivalent combined, single partial order (in this case the partial
orders are lattices). These particular qualifiers are described in more detail in Chapter 5.
In Figure 3.1, as in the rest of this dissertation, we write elements of () using slanted text.
We sometimes refer to elements of Q) as type qualifier constants to distinguish them from
type qualifier variables introduced in Section 3.4.

For our purposes, types Typ are terms over a set ¥ of n-ary type constructors.
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const tainted const tainted
/ \
nonconst tainted const untainted
nonconst | yntainted T /
nonconst untainted

Figure 3.1: Example Qualifier Partial Order

Grammatically, types are defined by the language

Typ ::= c(Typy, - . -, Typam‘ty(c)) ceX

In our source language, the type constructors are {int, ref, —} with arities 0, 1, and 2,
respectively. We construct the qualified types QTyp by pairing each standard type construc-
tor in ¥ with a type qualifier (recall that a single type qualifier in our partial order may
represent a set of qualifiers in the programmer’s mind). We allow type qualifiers to appear

on every level of a type. Grammatically, our new types are

Typ ::= Q c(Typr; - -, TyParity(c)) ceEX
For our source language, the qualified types are

T = Qo

o == nt|ref (1) | T —T
To avoid ambiguity, when writing down qualified function types we parenthesize them
as Q (1 — 7). Some example qualified types in our language are tainted int and
const ref (untainted int). We define the top-level qualifier of type @ o as its outermost
qualifier Q.

So far we have types with attached qualifiers and a partial order among the qual-
ifiers. A key idea behind our framework is that the partial order on type qualifiers induces
a subtyping relation among qualified types. In a subtyping system, if type B is a subtype
of type A, which we write B < A (note the overloading on <), then wherever an object
of type A is allowed an object of type B may also be used. Object-oriented programming
languages such as Java and C++ are perhaps the most well known examples of subtyping
systems (usually called subclassing in an object-oriented context).

Figure 3.2 shows how a given qualifier partial order is extended to a subtyping

relation for our source language. In the first rule (Int<) we have Q int < Q' int if Q < Q'.
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Q<Q (Tnt<)
Q it < Q' int -
Q<qQ =1 (Refs)

Figure 3.2: Subtyping Qualified Types

This same rule generalizes to any nullary type constructor—for example, char, float, double,
etc..

In the last rule (Fun<), we constrain the outermost qualifiers as in (Int<), and we
require that functions are contravariant in their domain (the subtyping direction is reversed)
and covariant in their range (the subtyping direction is preserved). For a discussion, see
Mitchell [78].

In the middle rule (Ref<), we again constrain the outermost qualifiers as in (Int<),
and we also require that the types of data stored in the references be equal (i.e., 7 < 7/ and
7/ < 7). At first glance this rule looks overly conservative—it would be more natural to

only require
Q<q <1
Q ref (1) < Q" ref (')

Unfortunately, this turns out to be unsound. Consider the following code fragment (we

(Wrong)

omit the qualifiers on the references for this example):

let wu: ref (untainted int) =refOin  /* u points to untainted data */
let t: ref (tainted int) = win /* Allowed by (Wrong) */
t := (tainted data) /* Oops! Wrote tainted data into untainted u. */

According to (Wrong), we can bind ¢ to u because ref (untainted int) < ref (tainted int).
But then *t and *u refer to the same object, yet they have different types. Therefore in
the assignment we can store tainted data into u by writing through ¢, even though *u is
supposed to be untainted. This is a well-known problem, and the standard solution is to use
the rule in Figure 3.2, which requires that the pointed-to types of an updatable reference

are equal.!

! Java uses the rule (Wrong) for arrays. In Java, if S is a subclass of T, then S[] is a subclass of T[], where
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e = v values

| el e application

| letxz =e;in ez name binding

|  refe allocation

| xe dereference

| e1:=es assignment

| annot(e, Q) qualifier annotation

| check(e, Q) qualifier check
von= variable

| n integer

| Az:see function

Figure 3.3: Source Language with Qualifier Annotations and Checks

In general, for any ¢ € 3 the rule

Q<Q m=1 i€ll.n]
Qc(ri,y...,m) <Q c(rq,...,7})

should be sound. Whether the equality can be relaxed for any particular position depends

on the meaning of the type constructor c.

3.2 Qualifier Assertions and Annotations

Next we wish to extend our standard type system to work with qualified types.
Thus far, however, we have supplied no mechanism that allows programmers to talk about
which qualifiers are used in their programs. One place where this issue comes up is when
constructing a qualified type during type checking. For example, if we see an occurrence of
the integer 0 in the program, how do we decide which qualifier @ to pick for its type @ int?
We wish to have a generic solution for this problem that allows programmers to talk about
qualifiers without modifying the type rules.

In our system, we extend the syntax with two new forms, shown marked in boldface
in Figure 3.3. A qualifier annotation annot(e, Q) specifies the outermost qualifier @ to add
to e’s type. Annotations may only be added to expressions that construct a term, and

whenever the user constructs a term our type system requires that they add an annotation.

X|] is an array of X’s. Java gets away with this by inserting run-time checks at every assignment into an
array to make sure the type system is not violated. Since we seek a purely static system, Java’s approach is
not available to us.
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Clearly this last requirement is not always desirable, and in Section 3.4 we describe an
inference algorithm that allows programmers to omit these annotations if they like.
Dually, a qualifier check check(e, @) tests whether the outermost qualifier of e’s
type is compatible with ). Notice that if we want to check a qualifier deeper in a type, we
can do so by first applying our language’s deconstructors. (For example, we can check the

qualifier on the contents of a reference z using check(*z, Q)).

3.3 Flow-Insensitive Type Qualifier Checking

Finally, we wish to extend the original type checking system to a qualified type sys-
tem that checks programs with qualified types, including our new syntactic forms annot(-, -)
and check(+,-). Intuitively this extension should be natural, in the sense that adding type
qualifiers should not modify the type structure (we make this precise below). We also need
to incorporate a subsumption rule [78] into our qualified type system to allow subtyping.

We define a pair of translation functions between standard and qualified types
and expressions. For a qualified type 7 € QTyp, we define strip(r) € Typ to be 7 with
all qualifiers removed. Analogously, strip(e) is e with any qualifier annotations or checks
removed. In the other direction, for a standard type s € Typ we define embed(s, q) to be the
qualified type with the same shape as t and all qualifiers set to ¢. Analogously, embed (e, q)
is e with annot(e¢’, ¢) wrapped around every subexpression €’ of e that constructs a term.
Figure 3.4 gives formal definitions of strip and embed.

Figure 3.5 shows the qualified type system for our source language. Judgments are
either of form I' -, e : o (the first three rules of Figure 3.5a) or I' I, e : 7 (the remaining
rules), meaning that in type environment I', expression e has unqualified type o or qualified
type 7. Here I' is a mapping from variables to qualified types.

The rules (Int;) and (Ref,) are identical to the rules from the standard type
checking system in Figure 2.4. (Lam,) is also as before, plus we check that the parameter’s
qualified type 7 has the same shape as the specified standard type. (This check is not
strictly necessary—see Lemma 3.1 below.) Notice that these three rules produce types that
are missing a top-level qualifier. The rule (Annot,) adds a top-level qualifier to such a type,
which is produced in our qualified type grammar by non-terminal o. Inspection of the type
rules shows that judgments of the form I' -, e : o can only be used in the hypothesis of

(Annoty). Thus the net effect of the four rules in Figure 3.5a is that all constructed terms



26

strip(Q int) = int
strip(Q ref (1)) = ref (strip(7))
strip(Q (1 — 7')) = strip(t) — strip(7')
strip(z) = =z
strip(n) = n

strip(Az.e
strip(eq eo
strip(letz = e1 in ey

)

)

) Az. strip(e)

)

)
strip(ref e)

)

)

)

)

= strip(e1) strip(ez)
= letx = strip(e1) in strip(eg)
ref strip(e)

strip(xe) = *strip(e)

strip(eq :=e3) = strip(ey) := strip(ea)

strip(annot(e,Q)) = strip(e)

strip(check(e, Q) = strip(e)

embed(int,q) = q int
embed(ref (s),q) = q ref (embed(q, s))
embed(s — s',q) = q (embed(s,q) — embed(s’,q))

embed(xz,q) = =
embed(n,q) = annot(n,q)

)

)

embed(\z.e, q)

embed ey €2, q)
embed(let x = ej in eg, q)
)
)
q)

annot(Ax. embed(e, q), q)
embed(e1,q) embed(ea,q)

let x = embed(e1,q) in embed ez, q)
= annot(ref embed(e,q),q)

* embed (e, q)

= embed(e1,q) := embed(ez, q)

embed(ref e, q
embed (*e, q
embed (e :=eq,

Figure 3.4: Definitions of strip(-) and embed(-, )

must be assigned a top-level qualifier with an explicit annotation.

The rules (Var,) and (Let,) are identical to the standard type checking rules. The
rules (Appy), (Deref;), and (Assign,) are similar to the standard type checking rules, except
that they match the types of their subexpressions against qualified types. Notice that these
three rules allow arbitrary qualifiers (denoted by @) when matching a type. Only the rule
(Checky,) actually tests a qualifier on a type.

Finally, the subsumption rule (Subgy) allows us to use a subtype anywhere a su-
pertype is expected. Notice that this is a non-syntactic rule that can be applied to any

expression (the other rules apply only to one form of expression). While this is convenient
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Figure 3.5: Qualified Type Checking System
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for explaining type checking, in Section 3.4 we incorporate this rule directly into the other

rules for inference purposes.

Lemma 3.1 Let e be a closed term.
o If0F e:s, then for any qualifier ¢ we have O -4 embed(e,q) : embed(s, q).

o IfQ0F,e:T, then O strip(e) : strip(T).

This lemma formalizes our intuitive requirement that type qualifiers do not affect the un-

derlying type structure.

3.4 Flow-Insensitive Type Qualifier Inference

As described so far, type qualifiers place a rather large burden on programmers
wishing to use them: programmers must add explicit qualifier annotations to all constructed
terms in their programs. We would like to reduce this burden by performing type qualifier
inference, which is analogous to standard type inference. As with standard type inference,
we introduce type qualifier variables QQVar to stand for unknown qualifiers that we need to
solve for. We write qualifier variables with the Greek letter k. In the remainder of this
dissertation we use type qualifier constants to refer to elements of the given qualifier partial
order, and we use type qualifiers to refer to either a qualifier constant or variable. We define
a function embed’(s) that maps standard types to qualified types by inserting fresh type

qualifier variables at every level:

embed'(int) = kK int k fresh
embed' (ref (s)) = K ref (embed'(s)) k fresh
embed' (s — s') = K (embed'(s) — embed'(s")) k fresh

The type qualifier inference rules for our source language are shown in Figure 3.6.
In this system, we have eliminated qualifier annotations completely. Instead, whenever we
assign a type to a term constructor, we introduce a fresh type qualifier variable to stand
for the unknown qualifier on the term (see (Intf), (Lamj), and (Ref,)). We use embed’
in (Lam;) to map the given standard type to a type with fresh qualifier variables. To
simplify the rules slightly we use our assumption that the program is correct with respect

to the standard types to avoid some shape matching constraints. For example, in (Appg)
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Figure 3.6: Qualified Type Inference System
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Cu{Q imt<Q int} = CU{Q<Q}
Cu{Q ref (1) <Q ref ()} = CU{Q<QIu{r<tu{r <7}
CU{Q(n —m)<Q (n—mn) = CU{RQIQTU{n<n}u{n<n}

Figure 3.7: Subtype Constraint Resolution

we know that e; has a function type, but we do not know its qualifier, or the qualifiers on its
parameter and result types. Finally, instead of having a separate subsumption rule, to make
inference syntax-driven we use the standard technique of incorporating (Sub,) directly into
(Appj) and (Assigny).

As we perform type qualifier inference, the rules in Figure 3.6 generate subtyping
constraints of the form 7 < 7. Next we apply the rules of Figure 3.7, which are simply the
rules of Figure 3.2 written as left-to-right rewrite rules, to reduce the subtyping constraints
to qualifier constraints among type qualifier constants and variables. Notice that because
we assume that the program we are analyzing type checks with respect to the standard
types, we know that none of the structural matching cases in Figure 3.2 can fail. The rule
(Checky) also generates qualifier constraints.

Thus after applying the rules in Figures 3.6 and 3.2, we are left with qualifier
constraints of the form L < R, where L and R are type qualifier constants from @ or type
qualifier variables k. As with the type equality constraints in Section 2.2, we need to solve

these qualifier constraints to complete type qualifier inference.

Definition 3.2 A solution o to a system of qualifier constraints C' is a mapping from type
qualifier variables to type qualifier constants such that for each constraint L < R, we have

o(L) <o(R).

We write o |= C'is o is a solution to C. Note that there may be many possible solutions to

C. There are two solutions in particular that we may be interested in.

Definition 3.3 If o = C, then o is a least (greatest) solution if for any other o’ such that
o' = C, for all k € dom(o) we have o(k) < o'(k) (0(k) > o' (k)).

Even if C is satisfiable, least and greatest solutions may not always exist for a given partial
order on ). Clearly if C' is satisfiable and @ is a meet semilattice then a least solution

exists, and similarly if @) is a join semilattice then a greatest solution exists.
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QUAL-SOLVE(C) =
for all K € C do S(k) — Q
for all ¢ € Q do S(q) — {q}
let ' =C
while C’ # () do
remove an L < R from C’
let S7 =S(L)Nn| S(R)
let S, =S(R)N 1T S(L)
if S, =0 or SR =10
then return unsatisfiable
if S(L) # S,
then S(L) — S}
Add each L' < Land L < R’ in C to '
if S(R) # Sh,
then S(R) — Sy
Addeach L’ < Rand R< R'in C to C'
return S

Figure 3.8: Qualifier Constraint Solving

A system of qualifier constraints is also known as an atomic subtyping constraint
system, and there are well-known algorithms for solving such constraints efficiently if Q is a
semilattice [93]. In general, solving atomic subtyping constraints over an arbitrary partial
order is NP-hard, even with fixed @ [91]. Here we present a simple algorithm that works
for semilattices, discrete partial orders, and arbitrary cross products of those.

Figure 3.8 gives our algorithm. The function QUAL-SOLVE(C') takes as input a
system of qualifier constraints. It either returns unsatisfiable or it returns a mapping
S : QVar — 29 that captures, in the sense described below, the possible solutions of C' if Q
is a semilattice, a discrete partial order, or a cross product of those. For any partial order

the algorithm is sound, as shown in the following lemma:

Lemma 3.4 Let S = QUAL-SOWVE(C'). Then for any o such that o = C and for any
qualifier variable k € C, we have o(k) € S(k).

Proof: We show that this property is preserved by each step of the algorithm. Clearly
it holds before the loop since S(k) = @ initially for all qualifier variables k. So suppose
that this property holds and we execute one step of the loop iteration. Let L < R be the
constraint we remove from C’. By assumption, o(L) € S(L) and o(R) € S(R) (where
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we set 0(q) = ¢ for ¢ € Q). Then since o = C, we must have o(L) < o(R). But then
o(L) €] o(R) and o(R) €T o(L). Thus o(L) € 57 and o(R) € Sy, and therefore the
property holds after this iteration. O

Corollary 3.5 If QUAL-SOLVE(C) = unsatisfiable, then C' has no solution.

Proof: Suppose for a contradiction that o = C. Then by Lemma 3.4, for all x we have
o(k) € QUAL-SOLVE(C'). But since the algorithm returned unsatisfiable, there must be
some k such that S(k) = (), a contradiction. O

If the algorithm returns unsatisfiable, then, no solution to the constraints exists.
As mentioned above, solving atomic subtyping constraints is NP-hard; thus there are cases
when the algorithm does not discover that the constraints are unsatisfiable even though
they are. But we can prove that our algorithm is complete if @) is a semilattice, discrete
partial order, or a cross product of those.

First we define a non-standard term