
Formal Proofs of Cryptographic Security of
Diffie-Hellman-based Protocols

Arnab Roy1, Anupam Datta2, John C. Mitchell1

1 Stanford University, Stanford, CA
{arnab, mitchell}@cs.stanford.edu

2 Carnegie Mellon University, Pittsburgh, PA
danupam@cmu.edu

Abstract. We present axioms and inference rules for reasoning about
Diffie-Hellman-based key exchange protocols and use these rules to prove
authentication and secrecy properties of two important protocol stan-
dards, the Diffie-Hellman variant of Kerberos, and IKEv2, the revised
standard key management protocol for IPSEC. The new proof system is
sound for an accepted semantics used in cryptographic studies. In the
process of applying our system, we uncover a deficiency in Diffie-Hellman
Kerberos that is easily repaired.

1 Introduction

Diffie-Hellman key exchange (DHKE) is one of the earliest public-key concepts
[28]. It allows two parties without a prior shared secret to jointly create one
that is independent of past and future keys, and is therefore widely used in
many network security protocols. In this paper, we develop axioms for reason-
ing about protocols that use Diffie-Hellman key exchange, prove these axioms
sound using cryptographic reduction arguments, and use the axiom system to
formally prove authentication and secrecy theorems for two significant standard-
ized protocols. The two protocols we consider are Diffie-Hellman Key Exchange
for initial authentication in Kerberos V5 [43] (which we refer to as DHINIT)
and IKEv2 [34], the IPSEC key exchange standard. Kerberos is widely used in
Microsoft Windows networking and other applications, while IKEv2 is part of
IPSEC which is widely used for virtual private networks. The authentication
and secrecy theorems, for probabilistic polynomial-time execution and standard
cryptographic protocol attacks, have not been proved before to the best of our
knowledge. In analyzing DHINIT, we also discover that the KAS is not authen-
ticated to the client after the first stage, but we are able to prove formally in
our logic that authentication is nonetheless achieved at a later stage; we also
suggest a change to the protocol to ensure authentication after the first stage.
In analyzing IKEv2, which replaces the seriously flawed Internet Key Exchange
(IKEv1) protocol using concepts from an intermediate protocol called Just Fast
Keying (JFK) [3], we consider the IKEv2 mode in which signatures are used for
authentication and Diffie-Hellman exponentials are never reused.



The axioms presented in this paper are used in Protocol Composition Logic
(PCL) [24, 26, 41, 25, 39]. Our formalization uses the characterization of “good
key” from [27], but improves on previous work in several respects: (i) we fix
a bug in the DH axiom in [27] by using the “DHStrongSecretive” formulas
developed in the paper, (ii) we present a general inductive method for proving
secrecy conditions for Diffie-Hellman key exchange, and (iii) we present axioms
for reasoning from ciphertext integrity assumptions. These three innovations are
essential for the formal proofs for DHINIT and IKEv2, which could not be carried
out in the system of [27]. In addition, the present soundness proofs are based on
a new cryptographic definition and associated theorems about the joint security
of multiple encryption schemes keyed using random or DHKE-keys. This paper
complements [39] and completes the development of formal cryptographically
sound proofs for three modes of Kerberos V5 ([42] contains technical details).

Most demonstrated approaches for proving security of complex network pro-
tocols, of the scale that appear in IEEE and IETF standards, use a simplified
model of protocol execution based on symbolic computation and highly idealized
cryptography [9, 16, 19, 24]. However, proofs about symbolic computation do not
provide the same level of assurance as proofs about probabilistic polynomial-time
attacks. Several groups of researchers have therefore developed methods for de-
riving cryptographic meaning from properties of symbolic protocol execution [7,
6, 18, 22, 31, 32, 38]. These methods involve showing that the behavior of a sym-
bolic abstraction, under symbolic attacks, yields the same significant failures as a
finer-grained execution under finer-grained probabilistic polynomial-time attack.
However, such equivalence theorems rely on strong cryptographic assumptions,
and there are no known suitable symbolic abstractions of Diffie-Hellman expo-
nentiation. In addition, there are theoretical negative results that suggest that
correspondence theorems may be impossible for symmetric encryption if a pro-
tocol might reveal a secret key [17, 23], or for hash functions or exclusive-or [5,
8]. In contrast, computational PCL reasons directly about properties of proba-
bilistic polynomial-time execution of protocols, under attack by a probabilistic
polynomial-time adversary, without explicit formal reasoning about probability
or complexity. In addition, different axioms depend on different cryptographic
assumptions, allowing us to consider which assumptions are actually necessary
for each property we establish. As currently formulated in the RFC, Kerberos
requires a party to sign only its own Diffie-Hellman exponential. We prove this
is sufficient, using axioms that depend on the random oracle assumption [12].
However, we are not able to give a formal proof using alternate axioms that
do not depend on random oracles. On the other hand, the alternate axioms are
sufficient to prove authentication if we modify the protocol slightly so that the
KAS signs both the Diffie-Hellman exponentials, as is done in IKEv2 and JFK.

Two related studies are a symbolic proof for Kerberos (without DHKE) [4]
and a cryptographic reduction proof for JFK [3]. In the Kerberos analysis, a cor-
respondence between symbolic computation and cryptographic models [7] is used
to draw cryptographic conclusions. This requires a separate verification that a
“commitment problem” does not occur in the protocol (see [4]), and does not



extend to Diffie-Hellman. The JFK proof is interesting and informative, with
suggestions in [3] that “analysis based on formal methods would be a useful
complement,” but simpler than the proof of DHINIT since JFK digitally signs
Diffie-Hellman values differently. More generally, Abadi and Rogaway [1] initi-
ated computationally sound symbolic analysis of static equivalence, with exten-
sions and completeness explored in [37, 2]; a recent extension to Diffie-Hellman
appears in [15], covering only passive adversaries, not the stronger active ad-
versaries used in the present paper. Protocol Composition Logic [24] was used
in a case study of 802.11i [29], has previous computational semantics [26], and
was used to study protocol composition and key exchange [27]. In other studies
of DHKE, [30] uses a symbolic model, while [36] imposes nonstandard protocol
assumptions. The cryptographic primitives used in Kerberos are analyzed in [14].

Section 2 summarizes Protocol Composition Logic (PCL), with section 3
presenting the proof system and computational soundness theorem. Kerberos
DHINIT and IKEv2 are analyzed in sections 4 and 5, respectively. Conclusions
are in section 6.

2 Background

This section contains a brief summary of aspects of Protocol Composition Logic
(PCL) used in the rest of this paper. Additional background appears in [24, 26,
41, 25, 39].
Modelling protocols A protocol is given by a set of roles, each specifying a se-
quence of actions to be executed by an honest agent. Protocol roles may be
written using a process language in which each role defines a sequential process,
and concurrency arises as a consequence of concurrent execution of any number
of instances of protocol roles. The set of role actions include generating a new
nonce, signing or encrypting a messages, communicating over the network, and
decrypting or verifying a signature through pattern matching. A role may depend
on so-called input parameters, such as the intended recipient of messages sent
by an instance of the role, or the recipient’s public encryption key. An example
protocol is presented in Section 4.

Protocol execution may be characterized using probabilistic polynomial-time
oracle Turing machines [13]. In this approach, an initial configuration is defined
by choosing a number of principals (agents), assigning one or more role instances
to each principal, designating some subset of the principals as honest, and choos-
ing encryption keys as needed. Protocol execution then proceeds by allowing a
probabilistic polynomial-time adversary to control protocol execution by inter-
acting with honest principals (as oracles). This gives the adversary complete
control over the network, but keys and random nonces associated with honest
parties are not given directly to the adversary unless they are revealed in the
course of protocol execution.

Each protocol, initial configuration, and choice of probabilistic polynomial-
time adversary gives rise to a probability distribution on polynomial-length exe-
cutions. A trace records all actions executed by honest principals and the attacker



during one execution (run) of the protocol. Since honest principals execute roles
defined by symbolic programs, we may define traces so that they record symbolic
descriptions of the actions of honest parties and a mapping of symbolic variables
to bitstrings values manipulated by the associated Turing machine. Since an at-
tacker is not given by a symbolic program, a trace only records the send-receive
actions of the attacker, not its internal actions. Traces also include the random
bits (used by the honest parties, the adversary and available to an additional
probabilistic polynomial-time algorithm called the distinguisher), as well as a
few other elements used in defining semantics of formulas over collections of
traces [26].

Protocol logic, proof system, cryptographic soundness The syntax of PCL and the
informal descriptions of the principal predicates are given in [25, 39]. Most pro-
tocol proofs use formulas of the form θ[P ]Xφ, which are similar to Hoare triples.
Informally, θ[P ]Xφ means that after actions P are executed by the thread X,
starting from any state where formula θ is true, formula φ is true about the
resulting state. Formulas θ and φ typically combine assertions about temporal
order of actions (useful for stating authentication) and assertions about knowl-
edge (useful for stating secrecy).

Intuitively, a formula is true about a protocol if, as we increase the security
parameter and look at the resulting probability distributions on traces, the prob-
ability of the formula failing is negligible (i.e., bounded above by the reciprocal
of any polynomial). We may define the meaning of a formula ϕ on a set T of
equi-probable computational traces as a subset T ′ ⊆ T that respects ϕ in some
specific way. For example, an action predicate such as Send selects a set of traces
in which a send occurs (by the indicated agent). More precisely, the semantics
JϕK (T,D, ε) of a formula ϕ is inductively defined on the set T of traces, with
distinguisher D and tolerance ε. The distinguisher and tolerance are only used
in the semantics of the secrecy predicates Indist and GoodKeyAgainst, where they
determine whether the distinguisher has more than a negligible chance of distin-
guishing the given value from random or winning an IND-CCA game (standard
in the cryptographic literature), respectively. We say a protocol Q satisfies a
formula ϕ, written Q |= ϕ if, for all adversaries and sufficiently large security
parameters, the probability that ϕ “holds” is asymptotically overwhelming. A
precise inductive semantics is given in [26].

Protocol proofs are written using a formal proof system, which includes ax-
ioms and proof rules that capture essential properties of cryptographic primitives
such as signature and encryption schemes. In addition, the proof system incorpo-
rates axioms and rules for first-order reasoning, temporal reasoning, knowledge,
and a form of inductive invariant rule called the “honesty” rule. The induction
rule is essential for combining facts about one role with inferred actions of other
roles. An axiom about a cryptographic primitive is generally proved sound by a
cryptographic reduction argument that relies on some cryptographic assumption
about that primitive. As a result, the mathematical import of a formal proof in
PCL may depend on a set of cryptographic assumptions, namely those assump-
tions required to prove soundness of the actual axioms and rules that are used in



the proof. In some cases, there may be different ways to prove a single PCL for-
mula, some relying on one set of cryptographic assumptions, and another proof
relying on another set of cryptographic assumptions.

3 Proof System

Section 3.1 contains new axioms and rules for reasoning about Diffie-Hellman
key exchange. Section 3.2 summarizes the concept of secretive protocol and proof
rules taken from [39] that are used in this paper to establish secrecy properties.
However, we give new soundness proofs for these axioms, based on an exten-
sion of standard multiparty encryption schemes [10] to allow for multiple public
and symmetric encryption schemes keyed using random or Diffie-Hellman based
keys. The associated cryptographic definitions and theorems are presented in
Section 3.3.

3.1 Diffie-Hellman Axioms

In this section we formalize reasoning about how individual threads treat DH ex-
ponentials in an appropriate way. We introduce the predicate DHGood(X, m, x),
where x is a nonce used to compute a DH exponential, to capture the notion
that thread X only uses certain safe actions to compute m from values that
it has generated or received over the network. For example, axioms DH2 and
DH3 say that a message m is DHGood if it has just been received, or if it is
just computed by exponentiating the known group generator g with the nonce
x. Axiom DH4 states that the pair of two DHGood terms is also DHGood.

Note that unlike the symbolic model, it is not well defined in the computa-
tional model to say “m contains x”. That is why our proof systems for secrecy
in the symbolic model [41] and computational model [39] are different - the com-
putational system does induction on actions rather than structure of terms. The
need to look at the structure of m is obviated by the way the reduction to games
like IND-CCA works. The high level intuition is that a consistent simulation of
the protocol can be performed while doing the reduction, if the terms to be sent
to the adversary are “good”.

DH0 DHGood(X, a, x), for a of any atomic type, except nonce, viz. name or key

DH1 New(Y, n) ∧ n 6= x ⊃ DHGood(X, n, x)

DH2 [receive m; ]X DHGood(X, m, x)

DH3 [m := expg x; ]X DHGood(X, m, x)

DH4 DHGood(X, m0, x) ∧ DHGood(X, m1, x) [m := m0.m1; ]X DHGood(X, m, x)

DH5 DHGood(X, m, x) [m′ := symenc m, k; ]X DHGood(X, m′, x)

DH6 DHGood(X, m, x) [m′ := hash m; ]X DHGood(X, m′, x)

The formula SendDHGood(X, x) indicates that thread X sent out only “DH-
Good” terms w.r.t. the nonce x. DHSecretive (X, Y, k) means that there exist
nonces x, y such that threads X, Y respectively generated them, sent out “DH-
Good” terms and X generated the key k from gxy. DHStrongSecretive(X, Y, k)



asserts a stronger condition - that threads X and Y only used each other’s DH
exponentials to generate the shared secret (The predicate Exp(X, gx, y) means
thread X exponentiates gx to the power y). The formula SharedSecret(X, Y, k)
means that the key k satisfies IND-CCA key usability against any thread other
than X or Y , particularly against any adversary. Formally,

SendDHGood(X, x) ≡ ∀m. Send(X, m) ⊃ DHGood(X, m, x)

DHSecretive(X, Y, k) ≡ ∃x, y. New(X, x) ∧ SendDHGood(X, x)∧
New(Y, y) ∧ SendDHGood(Y, y) ∧ KeyGen(X, k, x, gy)

DHStrongSecretive(X, Y, k) ≡ ∃x, y. New(X, x) ∧ SendDHGood(X, x)∧
New(Y, y) ∧ SendDHGood(Y, y) ∧ KeyGen(X, k, x, gy)∧
(Exp(X, gy, x) ⊃ gy = gy) ∧ (Exp(Y, gx, y) ⊃ gx = gx)

SharedSecret(X, Y, k) ≡ ∀Z. GoodKeyAgainst(Z, k) ∨ Z = X ∨ Z = Y

The following axioms hold for the above definition of SendGood:

SDH0 Start(X) ⊃ SendDHGood(X, x)

SDH1 SendDHGood(X, x) [a]X SendDHGood(X, x), where a is not a send action

SDH2 SendDHGood(X, x) [send m; ]X DHGood(X, m, x) ⊃ SendDHGood(X, x)

The following axioms relate the DHStrongSecretive property, which is trace
based, to computational notions of security. The first axiom, which depends
on the DDH (Decisional Diffie-Hellman) assumption and IND-CCA security
of the encryption scheme, states a secrecy property - if threads X and Y are
DHStrongSecretive w.r.t. the key k, then k satisfies IND-CCA key usability.
The second axiom, which depends on the DDH assumption and INT-CTXT (ci-
phertext integrity [11, 33]) security of the encryption scheme, states that with
the same DHStrongSecretive property, if someone decrypts a term with the key
k successfully, then it must have been encrypted with the key k by either X or Y .
Both the axioms are proved sound by cryptographic reductions to the primitive
security games.

DH DHStrongSecretive(X, Y, k)⇒ SharedKey(X, Y, k)

CTXGS DHStrongSecretive(X, Y, k) ∧ SymDec(Z, Esym[k](m), k) ⊃
SymEnc(X, m, k) ∨ SymEnc(Y, m, k)

If the weaker property DHSecretive(X, Y, k) holds then we can establish an
axiom similar to CTXGS, but we have to model the key generation function
as a random oracle and the soundness proof (presented in [42]) is very different.
The intuition behind this requirement is that if the threads do not use each
other’s intended DH exponentials then there could, in general, be related key
attacks; the random oracle obviates this possibility.

CTXG DHSecretive(X, Y, k) ∧ SymDec(Z, Esym[k](m), k) ⊃
SymEnc(X, m, k) ∨ SymEnc(Y, m, k)

The earlier paper [27] overlooked the subtle difference between the DHStrongSecretive
and DHSecretive predicates. Specifically, in order to prove the axiom DH sound
without the random oracle model, it is necessary to ensure that both parties use



only each other’s DH exponentials to generate keys—a condition guaranteed by
DHStrongSecretive, but not DHSecretive or the variant considered in [27].

To provide some sense of the soundness proofs, we sketch the proof for the
CTXGS axiom. The axiom is sound if the set (given by the semantics)
JDHStrongSecretive(X, Y, k) ∧ SymDec(Z,Esym[k](m), k) ⊃ SymEnc(X, m, k) ∨
SymEnc(Y,m, k)K(T,D, ε) includes almost all traces in the set T generated by
any probabilistic poly-time adversary A. Assume that this is not the case: Let
E be the event that an honest principal decrypts a ciphertext c with the key k
such that c was not produced by X or Y by encryption with the key k; there
exists an adversary A who forces E to occur in a non-negligible number of traces.
Using A, we will construct an adversary A′ who breaks DDH, thereby arriving
at a contradiction.

Suppose A′ is given a DDH instance (ga, gb, gc). It has to determine whether
c = ab. Let the DH nonces used by X, Y be x, y respectively. A′ simulates exe-
cution of the protocol to A by using ga, gb as the computational representations
of gx, gy respectively. Whenever a symbolic step (k′ := dhkeygen m,x;) comes
up, A′ behaves in the following manner: since DHStrongSecretive(X, Y, k) holds,
m has to be equal to gb, then k′ is assigned the value gc; Likewise for the ac-
tion (k′ := dhkeygen m, y; ). After the protocol simulation, if the event E has
occurred then output “c = ab”, otherwise output “c 6= ab”. The advantage of A′

in winning the DDH game is:

AdvDDH(A′) = Pr[E|c = ab]− Pr[E|c 6= ab]

By the assumption about A, the first probability is non-negligible. The second
probability is negligible because the encryption scheme is INT-CTXT secure.
Hence the advantage of A′ in breaking DDH is non-negligible. The SendDHGood
predicate that DHStrongSecretive implies, ensures that the protocol simulation
can be carried out consistently. Intuitively, this is ensured as long as the protocol
simulator has to manipulate received messages, gx, gy (but not x, y directly) and
key messages with gxy to construct messages to be sent out. Axioms DH0− 6
are used to formally establish that the protocol has this property.

3.2 Secretive Protocols

In this section, we adapt the concept of secretive protocol, a trace-based condition
implying computational secrecy [40, 39], to permit keys generated from DHKE.
While the proof rules remain identical, the soundness proofs are significantly
different and involve a reduction to a multi-scheme IND-CCA game that we
introduce in Section 3.3 of this paper. This definition allows the use of multiple
encryption schemes keyed using randomly generated keys or keys output from
a DHKE. A secretive protocol with respect to a nonce s and set of keys K is
a protocol which generates secretive traces, defined below, with overwhelming
probability.

Definition 1 (Secretive Trace). A trace is a secretive trace with respect to
s and K if the following properties hold for every thread belonging to honest
principals:



– a thread which generates nonce s, ensures that it is encrypted with a key k
in the set K in any message sent out.

– whenever a thread decrypts a message with a key k in K, which was produced
by encryption with key k by an honest party, and parses the decryption, it
ensures that the results are encrypted with some key k′ with k′ ∈ K in any
message sent out.

To account for DH keys in the set K, we wish to establish that DH keys are
used in a “safe” manner by the protocol, formally captured by the predicate
DHStrongSecretive. Following [39], the predicate Good(X, m, s,K) asserts that
the thread X constructed the term m in accordance with the rules allowing a
secretive protocol with respect to nonce s and set of keys K to send out m.
The formula SendGood(X, s,K) asserts that all messages that thread X sends
out are good and Secretive(s,K) asserts that all honest threads only send out
good messages. The axioms characterizing these predicates are same as in [39]
and are omitted here. The induction rule INDGOOD states that if all honest
threads executing some basic sequence (i.e. a fragment of a role pausing before
the next receive, denoted P ) in the protocol (denoted Q) locally construct good
messages to be sent out, given that they earlier also did so, then we can conclude
Secretive(s,K). A set of basic sequences (BS) of a role is any partition of the
sequence of actions in a role such that if any element sequence has a receive
then its only at its begining.

INDGOOD ∀ρ ∈ Q.∀P ∈ BS(ρ).

SendGood(X, s,K) [P ]X Φ ⊃ SendGood(X, s,K)
Q ` Φ ⊃ Secretive(s,K)

(∗)

(∗): [P ]X does not capture free variables in Φ, K, s,

and Φ is a prefix closed trace formula.

Now we relate the concept of a secretive protocol, which is trace-based, to
complexity theoretic notions of security. We define a level-0 key to be either
a pre-shared secret, a public key or a DH Key. To apply the results here the
DHStrongSecretive property has to hold for a DH key k for some pair of honest
threads. A nonce is established to be a level-1 key when the protocol is proved
to be a secretive protocol with respect to the nonce and a set of level-0 keys.
This concept is extended further to define level-2 keys and so on.

For a set of keys K of levels ≤ 1, C(K) is the union of all the level-0 keys in K
and the union of all the level-0 keys protecting the level-1 keys in K. The formula
InInitSet(X, s,K) asserts X is either the generator of nonce s or a possessor of
some key in C(K). GoodInit(s,K) asserts that all such threads belong to honest
principals. The formula GoodKeyFor lets us state that secrets established by
secretive protocols, where possibly the secrets are also used as keys, are good
keys against everybody except the set of principals who either generated the
secret or are in possession of a key protecting the secret. For level-0 keys which
we want to claim as being possessed only by honest principals we use the formula
GoodKey. For protocols employing an IND-CCA secure encryption scheme, the
following axiom is sound:

GK Secretive(s,K) ∧ GoodInit(s,K)⇒ GoodKeyFor(s,K)



If the encryption scheme is both IND-CCA and INT-CTXT secure then follow-
ing axioms are sound:

CTX0 GoodKey(k) ∧ SymDec(Z, Esym[k](m), k) ⊃
∃X. SymEnc(X, m, k), for level-0 key k.

CTXL Secretive(s,K) ∧ GoodInit(s,K) ∧ SymDec(Z, Esym[s](m), s) ⊃
∃X. SymEnc(X, m, s)

The following axiom states that if a protocol is secretive with respect to s
and K, then the only keys, under which a message containing s openly is found
encrypted in a “good” message, are in the set K:

SDEC Secretive(s,K) ∧ SymDec(X, Esym[k](m), k)∧
Good(X, Esym[k](m), s,K) ∧ ContainsOpen(m, s) ⊃ k ∈ K

The predicate ContainsOpen(m,a) asserts that a can be obtained from m by a
series of unpairings only.

The soundness theorem is proved by showing that every axiom is a valid
formula and that all proof rules preserve validity. The soundness proofs for the
four axioms above are sketched in [42]; they proceed by reduction to the multiple
encryption scheme game defined in the next section.

Theorem 1 (Soundness). ∀Q, ϕ. if Q ` ϕ then Q � ϕ

3.3 Joint Security of Multiple Encryption Schemes

A public-key encryption scheme ES is a triplet (KG, E ,D) such that KG(I) gen-
erates a pair of keys (ek, dk), where I is some initial information, ek is the public
key and dk is the private key, and E and D are the encryption and decryption
functions respectively. In [10], Bellare, Boldyreva and Micali analyzed the secu-
rity of a single public-key encryption scheme in a setting where more than one
independent keys are used. The security of an encryption scheme is defined in
terms of a game between an adversary and a challenger. In the chosen plain-
text (IND-CPA) setting, the adversary has access to a left-or-right encryption
oracle Eek(LR(·, ·, b)), which takes a pair of equal length messages m0,m1 from
the adversary and returns the encryption of mb with the key ek, the bit b be-
ing unknown to the adversary. In the chosen ciphertext (IND-CCA) setting, the
adversary has, in addition, access to a decryption oracle Ddk(·), with the caveat
that it cannot query for the decryption of a ciphertext it received as an answer
to a previous encryption oracle query.

In this section, we extend their definition to settings involving multiple en-
cryption schemes. Consider a sequence of n, not necessarily distinct, encryption
schemes 〈ESi | 1 ≤ i ≤ n〉, possibly consisting of public-key and symmetric-key
encryption schemes with either pre-shared keys or setup by a Diffie-Hellman
exchange. For notational uniformity we define eki = dki for symmetric key
schemes, both equal to the secret key. For Diffie-Hellman schemes, eki = dki =
keygen(gxy) where gx and gy are the public DH values. Let DH be the set of



Diffie-Hellman public values (gx, gy) for those keys which are generated by a DH
exchange and PK be the set of public-keys among the eki’s. In the multi-scheme
setting we let the adversary have access to n encryption and decryption oracles
with their corresponding public informations (PK and DH), all using the same
challenger bit b for encryption. Security in this setting is defined below.

Definition 2 (Multi Scheme Indistinguishability). The experiment MS-
IND-CCA, for adversary A, is defined as:

Experiment ExpMS-IND-CCA
〈ES〉,I (A, b)

For i = 1, · · · , n do (eki, dki)← KGi(I) EndFor

d← A
E1

ek1
(LR(·,·,b)),...,En

ekn
(LR(·,·,b)),D1

dk1
(·),...,Dn

dkn
(·)

(I, PK, DH)

Return d

A query to any LR oracle consists of two messages of equal length and that
for each i = 1, . . . , n adversary A does not query Ddki

(·) on an output of
E i

eki
(LR(·, ·, b)). The advantage of A is defined as:

AdvMS-IND-CCA
〈ES〉,I (A) = Pr[ExpMS-IND-CCA

〈ES〉,I (A, 0) = 0]− Pr[ExpMS-IND-CCA
〈ES〉,I (A, 1) = 0]

The sequence of encryption schemes 〈ESi | 1 ≤ i ≤ n〉 is MS-IND-CCA secure
if the advantage of any probabilistic poly-time adversary A is negligible in the
security parameter.

The definition of MS-IND-CPA is similar, with the decryption oracles dropped.
We prove that individual security of the encryption schemes implies joint secu-
rity.

Theorem 2 (IND-CPA(CCA) → MS-IND-CPA(CCA)). If encryption
schemes ES1, ES2, . . . , ESn are individually IND-CPA(CCA)secure, then the
sequence of schemes 〈ES1, ES2, . . . , ESn〉 is MS-IND-CPA(CCA) secure.

4 Kerberos with DHINIT

In this section, we formally model Kerberos with DHINIT and prove that it
satisfies computational authentication and secrecy properties under standard
assumptions about the cryptographic primitives. Authentication proofs for each
stage of Kerberos rely on the secrecy guarantees of keys set up in earlier stages,
while the secrecy proofs similarly rely on previously proved authentication guar-
antees, an alternation first pointed out in [20]. Since the later stages of DHINIT
are the same as those of Basic Kerberos [35], we obtain proofs for the com-
plete protocol by appealing to security proofs and composition theorems in a
compatible setting [39].

We find, perhaps surprisingly, that the KAS is not authenticated to the client
after the first stage and suggest a fix to the protocol to avoid this problem.
Our counterexample is similar in flavor to the attack found on Kerberos V5
with public-key initialization by [19]. In addition, we use an axiom that relies on



random oracles to complete the proof of the security properties. We also develop
an alternative proof, using only axioms that hold in the standard model, for a
variant of the protocol that requires the KAS to sign both the Diffie-Hellman
exponentials. We leave open whether this discrepancy arises from a security flaw
in DHINIT or a limitation of our current proof.

4.1 Modelling the Protocol

The Kerberos protocol involves four roles—the Client, the Kerberos Authenti-
cation Server (KAS), the Ticket Granting Server (TGS), and the application
server. The KAS and the TGS share a long term symmetric key as do the TGS
and the application server. Mutual authentication and key establishment be-
tween the client and the application server is achieved by using this chain of
trust. We write ktype

X,Y to refer to long term symmetric keys, where X and Y
are the principals sharing the key and type indicates their roles, e.g. t → k for
TGS and KAS and s → t for application server and TGS. Kerberos runs in
three stages with the client role participating in all three. The client program
for the first stage and the KAS program are given below but the complete formal
description of the protocol is given in [42].

The client C and KAS K carry out a Diffie-Hellman key exchange protocol
authenticated by digital signatures to set up a key AKey to be used as a session
key between the client and the TGS in the next stage. (In Basic Kerberos, this
phase is simpler; it relies on a preshared key between C and K.) The first few
actions of the client are explained as follows: it generates three random numbers
n1, ñ1, x using new actions. It then generates the Diffie-Hellman exponential gx
and sends a message to the KAS K containing its signature over the exponential
and a few other fields including the identities of the TGS T̂ and itself. In the
second stage, the client gets a new session key (SKey - Service Key) and a
service ticket (st) to converse with the application server S which takes place
in the third stage. The control flow of Kerberos exhibits a staged architecture
where once one stage has been completed successfully, the subsequent stages can
be performed multiple times or aborted and started over for handling errors.

Client = (C, K̂, T̂ , Ŝ, t) [

new n1; new ñ1;

new x; gx := expg x;

chksum := hash Ĉ.T̂ .n1;

sigc := sign “Auth”.chksum.ñ1.gx, skC ;

send CertC .sigc.Ĉ.T̂ .n1;

receive CertK .sigk.Ĉ.tgt.enckc;

verify sigk, “DHKey”.gy.ñ1, vkK ;

k := dhkeygen gy, x;

textkc := symdec enckc, k;

match textkc as AKey.n1.T̂ ;

· · · stage boundary · · ·
]C

KAS = (K) [

receive CertC .sigc.Ĉ.T̂ .n1;

verify sigc, “Auth”.chksum.ñ1.gx, vkC ;

chk := hash Ĉ.T̂ .n1;

match chk as chksum;

new AKey;

new y; gy := expg y;

k := dhkeygen gx, y;

sigk := sign “DHKey”.gy.ñ1, skK ;

tgt := symenc AKey.Ĉ, k
t→k
T,K ;

enckc := symenc AKey.n1.T̂ , k;

send CertK .sigk.Ĉ.tgt.enckc;

]K



SECk : Hon(Ĉ, K̂) ⊃ (GoodKeyAgainst(X, k) ∨ X̂ ∈ {Ĉ, K̂})

SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (GoodKeyAgainst(X, AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X, SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), CertK .SIG[skK ](“DHKey”.gy.ñ1).Esym[k
t→k
T,K ](AKey.Ĉ).

Esym[k](AKey.n1.T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[k
s→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SEC
client
k : [Client]C SECk SEC

kas
k : [KAS]K SECk

SEC
client
akey : [Client]C SECakey AUTH

client
kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SEC
kas
akey : [KAS]K SECakey AUTH

tgs
kas : [TGS]T Hon(T̂ , K̂)

SEC
tgs
akey : [TGS]T SECakey ⊃ ∃n1, k, gy, ñ1. AUTHkas

AUTH
client
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SEC
client
skey : [Client]C SECskey AUTH

server
tgs : [Server]S Hon(Ŝ, T̂ )

SEC
tgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 1. DHINIT Security Properties

4.2 Security Properties and Proofs

Table 1 lists the authentication and secrecy properties of Kerberos with DHINIT
that we want to prove. The authentication properties are of the form that a mes-
sage of a certain format was indeed sent by some thread of the expected princi-
pal. The secrecy properties state that a putative secret is a good key for certain
principals. For example, AUTHclient

kas states that when C finishes executing the
Client role, some thread of K̂ indeed sent the expected message with probabil-
ity asymptotically close to one; SECclient

akey states that the authorization key is
“good” after execution of the Client role by C. The other security properties are
analogous. More specifically, GoodKeyAgainst(X, k) [27] intuitively means that if
k were used instead of a random key to key an IND-CCA encryption scheme,
then the advantage of X in the corresponding security game would be negligible.
The motivation for using this definition is that stronger conditions such as key
indistinguishability fail to hold as soon as the key is used; key indistinguishability
is also not necessary to establish reasonable security properties of practical pro-
tocols (see [27] for further discussion). We abbreviate the honesty assumptions
by defining Hon(X̂1, X̂2, · · · , X̂n) ≡ Honest(X̂1)∧Honest(X̂2)∧ · · ·Honest(X̂n).

The following protocol execution demonstrates that AUTHclient
kas does not

hold after the first stage of the client role.

C −→ K(I) : CertC .SIG[skC ](“Auth”.HASH(Ĉ.T̂ .n1).ñ1.gx).Ĉ.T̂ .n1

I −→ K : CertI .SIG[skI ](“Auth”.HASH(Î .T̂ .n1).ñ1.gx).Î.T̂ .n1

K −→ I −→ C : CertK .SIG[skK ](“DHKey”.gy.ñ1).

Esym[kt→k
T,K ](AKey.Î).Esym[k](AKey.n1.T̂ )



C cannot parse the incorrect tgt : Esym[kt→k
T,K ](AKey.Î), as it does not have

the key kt→k
T,K . Consequently, after interacting with the KAS the client is not

guaranteed that the KAS thinks it interacted with the client. This problem can
be easily fixed by requiring the KAS to include the client’s identity inside the
signature. However, the subsequent interaction with the TGS does ensure that
the KAS indeed intended communication with the given client.

Theorem 3 (KAS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended KAS indeed sent the expected response assuming that both the client
and the KAS are honest, the signature scheme is CMA-secure, the encryption
scheme is IND-CCA and INT-CTXT secure, and the Decisional Diffie-Hellman
(DDH) assumption holds. A similar result also holds for a principal executing
the TGS role. Formally, KERBEROS ` AUTHclient

kas , AUTHtgs
kas.

The axiomatic proof is in [42]. The key steps of the proof are the following:
(a) the client C verifies the KAS K’s signature on its Diffie-Hellman public
value (gy) and the client’s nonce (ñ1) and infers using the SIG axiom that
the KAS did produce the signature; (b) a program invariant (proved using the
honesty rule HON) is used to infer that the KAS observed the client’s nonce
and produced the DH exponential gy by exponentiating some nonce y; (c) the
next few proof steps establish that the Diffie-Hellman key k can be used as an
encryption key only by C and K by proving that DHSecretive(X,Y, k) holds and
then using the axiom CTXG; note that this step requires the use of the random
oracle model since the soundness of CTXG depends on that; (d) since the client
decrypted the ciphertext Esym[k](AKey.n1.T̂ ) and the client did not produce
it itself, we therefore infer that it must have been produced by the KAS. At
this point, we are assured that the KAS agrees on T̂ , gx, n and AKey. However,
it still does not agree on the identity of the client. It turns out, as we will see
in Theorem 4, that this partial authentication is sufficient to prove the secrecy
of the authentication key (AKey) from the client’s perspective. Now, stronger
authentication properties are proved from the second stage of the protocol once
the client decrypts the message Esym[AKey] (SKey.n2.Ŝ). We infer that some
thread of Ĉ, K̂ or T̂ must have produced the encryption because of ciphertext
integrity. Using an invariant to reason about the special form of this ciphertext,
we conclude that the encrypting thread must have received a tgt containing
AKey and meant for itself. Since we have proved the secrecy of AKey already
under the keys k and kt→k

T,K , we infer that this tgt must be keyed with one of k and
kt→k

T,K the holders of which—Ĉ, T̂ and K̂—are honest. This reasoning is formally
captured in the axiom SDEC. Now we use the honesty rule to infer that if an
honest thread encrypted this message then it must have generated AKey; we
know that thread is K. At this point, we conclude that the TGS agrees on the
identity of the KAS. The proof that the TGS agrees on the identity of the client
is similar.

Theorem 4 (Authentication Key Secrecy). On execution of the Client
role by a principal, the Authentication Key is guaranteed to be good, in the sense



of IND-CCA security, assuming that the client, the KAS and the TGS are all
honest, the signature scheme is CMA-secure, the encryption scheme is IND-
CCA and INT-CTXT secure, and the DDH assumption holds. Similar results
hold for principals executing the KAS and TGS roles. Formally, KERBEROS `
SECclient

akey , SECkas
akey, SECtgs

akey.

The axiomatic proof is in [42]. The main idea is to prove by induction over
the steps of the protocol that AKey occurs on the network only as an encryption
key or as a payload protected by encryption with the Diffie-Hellman key k or
the pre-shared key kt→k

T,K . Formally, this step is carried out using the secrecy
induction rule INDGOOD. We therefore infer that AKey is good for use as an
encryption key using the axiom GK.

Since AKey is protected by both the DH key k and the symmetric key kt→k
T,K ,

therefore, we had to formulate a reduction to a multi party IND-CCA game
where some of the keys can be symmetric, with either pre-shared keys or those
generated by DHKE in section 3.3. Although not required for this paper, we
considered the further generalization of also considering public keys, since that
didn’t involve additional innovation.

We prove additional authentication and secrecy properties about the later
stages of the protocol. Since the later stages of DHINIT are the same as those
in basic Kerberos, we leverage the composition theorems in prior work to reuse
existing proofs [39].

Theorem 5 (TGS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended TGS indeed sent the expected response assuming that the client, the
KAS and the TGS are all honest, the signature scheme is CMA-secure, the en-
cryption scheme is IND-CCA and INT-CTXT secure, and the DDH assumption
holds. Similar result holds for a principal executing the Server role. Formally,
KERBEROS ` AUTHclient

tgs , AUTHserver
tgs .

Theorem 6 (Service Key Secrecy). On execution of the Client role by
a principal, the Service Key is guaranteed to be good, in the sense of IND-
CCA security, assuming that the client, the KAS, the TGS and the applica-
tion server are all honest, the signature scheme is CMA-secure, the encryp-
tion scheme is IND-CCA and INT-CTXT secure, and the DDH assumption
holds. Similar result holds for a principal executing the TGS role. Formally,
KERBEROS ` SECclient

skey , SECtgs
skey.

5 IKEv2

IKEv2 [34] is a complex protocol used to negotiate a security association at the
beginning of an IPSec session. We consider the mode in which Diffie-Hellman
exponentials are never reused and signatures are used for authentication. We
formally model this mode of IKEv2 and provide the first formal proof that it
satisfies computational authentication and security guarantees in the standard



SEC
init
sk : [Init]A Hon(Â, B̂) ⊃ (GoodKeyAgainst(X, ski) ∨ X̂ ∈ {Â, B̂})∧

(GoodKeyAgainst(X, skr) ∨ X̂ ∈ {Â, B̂})

SEC
resp
sk : [Resp]B Hon(Â, B̂) ⊃ (GoodKeyAgainst(X, ski) ∨ X̂ ∈ {Â, B̂})∧

(GoodKeyAgainst(X, skr) ∨ X̂ ∈ {Â, B̂})

AUTH
init
resp : [Init]A ∃η. B = (B̂, η) ∧ Receive(B, “I”.infoi1.gx.n) <

Send(B, “R”.infoi2.gy.m) < Receive(B, enci) < Send(B, encr)

AUTH
resp
init : [Resp]B ∃η. A = (Â, η) ∧ Send(A, “I”.infoi1.gx.n) <

Receive(A, “R”.infoi2.gy.m) < Send(A, enci)

Table 2. IKEv2 Security Properties

model; full details are in [42]. A significant difference from DHINIT is that the
IKEv2 proofs do not require the random oracle model. At a high-level, this
difference arises because in IKEv2 honest parties authenticate their own as well
as their peer’s Diffie-Hellman exponential using signatures. This enables us to
prove the DHStrongSecretive(X,Y, k) property and use the CTXGS axiom in
our proofs. Recall that in the DHINIT proofs we could only prove the weaker
DHSecretive(X,Y, k) property and hence had to use the CTXG axiom, which is
sound only in the random oracle model. However, the key derivation function
needs to satisfy certain properties (described in [42] based on issues identified in
[21]).

The security properties of IKEv2, listed in Table 2, state that on completion
of a thread executing one of the roles, the shared keys ski and skr satisfy the
GoodKey property, i.e. they are suitable for use as encryption keys for an IND-
CCA scheme. The authentication properties state that on completion of a thread
executing either role, it is guaranteed with overwhelming probability that the
intended peer indeed received and sent the corresponding messages.

Theorem 7 (IKEv2 Key Secrecy). On execution of the Init role by a princi-
pal, the keys ski, skr are guaranteed to be good, in the sense of IND-CCA security,
assuming that the Iniatiator and the Responder are both honest, the signature
scheme is CMA-secure, the encryption scheme is IND-CCA and INT-CTXT
secure, and the DDH assumption holds. Similar result holds for a principal exe-
cuting the Resp role. Formally, IKEv2 ` SECinit

sk , SECresp
sk .

Theorem 8 (IKEv2 Authentication). On execution of the Init role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended Responder indeed received the intended messages and sent the expected
responses assuming that both the Initiator and the Responder are honest, the
signature scheme is CMA-secure, the encryption scheme is IND-CCA and INT-
CTXT secure, and the DDH assumption holds. A similar result also holds for a
principal executing the Resp role. Formally, IKEv2 ` AUTHinit

resp, AUTHresp
init .



6 Conclusion

We develop axioms and rules for proving authentication and secrecy properties
of protocols that use Diffie-Hellman key exchange in combination with other
mechanisms. The resulting reasoning method, which reflects intuitive informal
direct arguments, is proved computationally sound by showing the existence of
conventional cryptographic reductions.

We prove security of Kerberos with DHINIT, as defined in the RFC [43],
in the random oracle model, and prove security in the standard model for a
modification in which the KAS signs both the Diffie-Hellman exponentials. We
also discover that the KAS is not authenticated to the client after the first stage
and suggest a fix to the protocol to avoid this problem. While IKEv2 [34] provides
for several cryptographic options, we focus on the mode in which Diffie-Hellman
exponentials are never reused and signatures are used for authentication. We
prove that IKEv2 satisfies computational authentication and secrecy guarantees
in the standard model. Intuitively, we do not need the random oracle assumption
because honest IKEv2 parties authenticate both their own and their peer’s Diffie-
Hellman exponentials, which we believe is a prudent engineering practice.
Acknowledgement: We thank the referees and Iliano Cervesato for helpful com-
ments and suggestions.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

2. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic
soundness and completeness of formal encryption. In Proc. of the 18th IEEE
Computer Security Foudnations Workshop, pages 170–184, 2005.

3. W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis, and
O. Reingold. Just Fast Keying: Key agreement in a hostile internet. ACM Trans.
Inf. Syst. Security, 7(4):1–30, 2004.

4. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptograph-
ically sound security proofs for basic and public-key Kerberos. In Proceedings of
11th European Symposium on Research in Computer Security, 2006. To appear.

5. M. Backes and B. Pfitzmann. Limits of the cryptographic realization of XOR.
In Proc. of the 10th European Symposium on Research in Computer Security.
Springer-Verlag, 2005.

6. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In
Proc. IEEE Symposium on Security and Privacy, pages 171–182. IEEE, 2005.

7. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library. Cryptology ePrint Archive, Report 2003/015, 2003.

8. M. Backes, B. Pfitzmann, and M. Waidner. Limits of the reactive simulatabil-
ity/UC of Dolev-Yao models with hashes. In Proc. of the 11th European Sympo-
sium on Research in Computer Security. Springer-Verlag, 2006.

9. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy
goals. In Proceedings of the 5th European Symposium on Research in Computer
Security, pages 361–375, 1998.



10. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology - EURO-
CRYPT 2000, Proceedings, pages 259–274, 2000.

11. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT, pages
531–545, 2000.

12. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

13. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’93), pages 232–249. Springer-Verlag, 1994.

14. A. Boldyreva and V. Kumar. Provable-security analysis of authenticated encryp-
tion in Kerberos. In Proc. IEEE Security and Privacy, 2007.

15. E. Bresson, Y. Lakhnech, L. Mazare, and B. Warinschi. A generalization of DDH
with applications to protocol analysis and computational soundness. In Advances
in Cryptology - CRYPTO 2007, Proceedings, 2007.

16. F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. Verifying confidentiality
and authentication in Kerberos 5. In ISSS, pages 1–24, 2003.

17. R. Canetti and M. Fischlin. Universally composable commitments. In Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Proceedings, pages 19–40, 2001.

18. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In Theory of Cryptography Conference
- Proceedings of TCC 2006, pages 380–403, 2006.

19. I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and
fixing public-key Kerberos. In Eleventh Annual Asian Computing Science Confer-
ence - ASIAN, pages 164–178, 2006.

20. I. Cervesato, C. Meadows, and D. Pavlovic. An encapsulated authentication logic
for reasoning about key distribution protocols. In CSFW, pages 48–61, 2005.

21. O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. Key derivation and
randomness extraction. Cryptology ePrint Archive, Report 2005/061, 2005. http:
//eprint.iacr.org/.

22. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-
curity protocols. In Proceedings of 14th European Symposium on Programming
(ESOP’05), pages 157–171, 2005.

23. A. Datta, A. Derek, J. Mitchell, A. Ramanathan, and A. Scedrov. Games and the
impossibility of realizable ideal functionality. In TCC, pages 360–379, 2006.

24. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 13:423–
482, 2005.

25. A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol Composition Logic (PCL).
Electronic Notes in Theoretical Computer Science, 172:311–358, 2007.

26. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In ICALP, pages 16–29,
2005.

27. A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound com-
positional logic for key exchange protocols. In Proceedings of 19th IEEE Computer
Security Foundations Workshop, pages 321–334. IEEE, 2006.

28. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.



29. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of IEEE 802.11i and TLS. In ACM Conference on Computer and
Communications Security, pages 2–15, 2005.

30. J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In
Proceedings of 16th IEEE Computer Security Foundations Workshop, pages 234–
247. IEEE, 2003.

31. J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, MIT, 2004.

32. R. Janvier, L. Mazare, and Y. Lakhnech. Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In Proceedings of 14th
European Symposium on Programming (ESOP’05), pages 172–185, 2005.

33. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In FSE, pages 284–299, 2000.

34. C. Kaufman. Internet Key Exchange (IKEv2) Protocol, 2005. RFC.
35. J. Kohl and B. Neuman. The kerberos network authentication service, 1991. RFC.
36. Y. Lakhnech and L. Mazaré. Computationally sound verifiation of security pro-

tocols using Diffie-Hellman exponentiation. Cryptology ePrint Archive: Report
2005/097, 2005.

37. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.
Preliminary version in WITS 2002.

38. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC
2004, pages 133–151, 2004.

39. A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive proofs of computational
secrecy. In ESORICS, pages 219–234, 2007. Full version at http://www.stanford.
edu/∼arnab/rddm-InductiveProofs.pdf.

40. A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive trace properties for
computational security. WITS, 2007. Full version at http://www.stanford.edu/
∼arnab/rddm-IndTraceProps.pdf.

41. A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert. Secrecy analysis in
Protocol Composition Logic., 2006. to appear in Proceedings of 11th Annual Asian
Computing Science Conference.

42. A. Roy, A. Datta, and J. C. Mitchell. Formal proofs of cryptographic security
of Diffie-Hellman-based protocols. Manuscript, 2007. http://www.stanford.edu/
∼arnab/rdm-DHProofs.pdf.

43. L. Zhu and B. Tung. Public Key Cryptography for Initial Authentication in Ker-
beros (PKINIT). RFC 4556 (Proposed Standard), June 2006.


