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1 Introduction

The theoretical computer science community of the last century has continuously been stumped by a seem-
ingly simple conjecture: namely, P # NP. While most complexity theorists believe that it is true [Gas02],
efforts to find a proof of this conjecture have all fallen short. However, this is not for lack of trying: during
this time, evidence has emerged that separating P and NP is “hard” in a formal sense. In this work, we will
attempt to give a summary of important works in this area. For the sake of discussion, we will assume for
this work that indeed P and NP are unequal, and ask the question “why is it so difficult to prove such a
thing?”

We start by giving a brief overview of the history of some promising techniques to proving lower bound
conjectures such as P # NP. One of the first known techniques for showing lower bounds on complexity
classes was diagonalization. This was used by Hartmanis and Stearns [HS65] in 1965 to prove the time
hierarchy theorem, which states, roughly, that we can solve more problems if we have more time. At the
time, this sort of simple diagonalization technique was more or less the only known method of proving lower
bounds on complexity classes. In 1975, though, Baker, Gill, and Solovay [BGST5] showed a result now known
as the relativization barrier that implied that this simple technique alone cannot show that P # NP.

Thus, progress on this conjecture was halted for some amount of time, and complexity theorists sought out
other possible methods of attacking lower bound problems. One promising line was circuit complezity, first
introduced by Shannon [Sha49]. Shannon proved, information-theoretically, that almost all problems require
circuits of size 2°4™): however, he did not provide lower bounds on any particular problem; in particular, he
did not give a way of showing lower bounds that are useful to attack complexity-theoretic questions such as
P # NP. Since the relativization barrier does not apply to circuit lower bounds, a flurry of activity began
to try to strengthen circuit lower bound techniques in the hope of proving that NP Z P /poly, which would
imply P £ NP. However, this too proved mostly futile: in 1997, Razbarov and Rudich showed that, in some
sense, it is unlikely that a natural circuit lower bound can show a separation of P from any other complexity
class, not just NP. Thus, yet again, one of the most seemingly promising lines of attack of the P # NP
conjecture was halted.

The goal of this work is to give a nearly completely self-contained presentation of the important results
of Baker, Gill, and Solovay [BGST5|; and Razbarov and Rudich [RR97]. We warm up with one result of
the former work, which will be relatively short since we will only concern ourselves with the easier of the
two results in that paper, and we will spend most of this work discussing the latter work. Along the way,
we will see some common tools used in complexity theory and cryptography such as pseudorandom number
generators and hybrid arguments.

2 Warmup: The Relativization Barrier

In 1975, Baker, Gill, and Solovay [BGST5H] gave a proof the following theorenﬂ

IThe authors of [BGS75] also show that there is another language B for which PB # NPZ, which similarly demonstrates
that no relativizing technique can show that P = NP. For brevity and to keep the focus on P # NP, we will not discuss this
proof here.



Theorem 1 (Theorem 1 in [BGSTH]). There is a language A for which P4 = NP4,

Before giving a proof of it, we will discuss why this seemingly-innocent result is annoying to those who
seek to prove P # NP. Recall that our proof of P # EXP used diagonalization. Notice that the argument
used would also apply verbatim if we add an arbitrary oracle A. Thus, for any A we have P4 # EXPA.
However, if we used similar techniques to show that P # NP, then it would also follow that P4 # NP4 for
all A, which contradicts Theorem

A proof technique that is invariant to adding oracles is said to relativize. Thus, Theorem [I] implies
that no proof technique that relativizes can possibly show that P # NP. For how simple it sounds, this is
a surprisingly strong result—indeed, diagonalization was the primary tool used at the time to prove lower
bounds, and this result shows that a simple diagonalization technique alone cannot suffice to show P # NP;
in particular, our proof that P = EXP cannot be easily adapted to show P # NP.

We now give a short proof of Theorem

Proof of Theorem[] Let A be any PSPACE-complete language under polynomial time reductionsﬂ Then
observe the following inclusions:

(a) PSPACE C P4 since A is PSPACE-complete;

(b) PAC NP since we don’t need to use the nondeterminism; and

(¢) NP# C NPSPACE since we can use polynomial space to simulate any oracle calls to A that we need
to simulate.

However, recall by Savitch’s Theorem that PSPACE = NPSPACE; thus, the above inclusions are in fact
equalities; in particular, we have P4 = NPA, as desired. O

3 Definitions

In the rest of the paper, we will give an overview of natural proofs, introduced by Razborov and Rudich
IRR97], and attempt to give a proof of one of the main results in this paper.

3.1 Natural Properties

In this section, we will define the notion of a natural property. For the remainder of this paper, we will be
discussing families of boolean circuits. For simplicity of notation, let B = {0,1}. We will give a series of
definitions leading up to a formal definition of a “natural proof”.

Definition 1. A boolean function on n inputs is a function f,, : B™ — B. We will denote by F,, the set of
all such boolean functions. A boolean family is a sequence f = {f,}nen where f,, has n inputs for all n.

It will often be useful to think of boolean functions f,, on n inputs as truth tables of length 2", which
can be represented by strings of length 2™. We will thus often use F,, (the set of such boolean functions)
interchangeably with B2" (the set of strings of length 2").

Definition 2. A combinatorial property is a sequence C' = {Cy, }neny where C,, C F), for all n. A boolean
family f possesses the property C if f, € C,, for infinitely many n.

With these definitions, a seemingly reasonable method of proving that P % NP may go as follows:

(a) Exhibit a “natural” combinatorial property C, for some notion of “natural”.
(b) Show that some NP boolean family, say 3-SAT, possesses property C.

(¢) Show that no boolean family admitting a polynomial-size circuit family can possess property C

2An example of a PSPACE-complete langauge is TQBF (“true quantified boolean formulas”), the language of arbitrarily
quantified formulas that are satisfiable. This is the natural generalization of the languages ¥,,-SAT for n € N. For a more detailed
description of the langauge and a proof of its PSPACE-completeness, see the Wikipedia article on TQBF. As an interesting
note, it can also be shown that many common board games, such as Gomoku (which is itself generalized Tic-Tac-Toe) [HT07],
Othello [IK94] and Amazons [Hea05|, are PSPACE-complete to determine who is winning from a given position



(d) Conclude that 3-SAT ¢ P/poly; thus NP & P/poly and so P # NP.

Before the seminal paper of Razborov and Rudich, this sort of proof was considered a very promising route
to proving that P # NP: for one, circuit lower bounds do not relativize (so we do not run into the issue
discussed in Section . However, this paper showed, in some sense, that this technique is very unlikely
to work: for some reasonable definition of “natural”, assuming some commonly-held assumptions about
pseudorandom number generators, there is no “natural combinatorial property” that both contains some
NP-complete boolean family and cannot admit any polynomial-size circuits.

We will now define what we mean by “natural”. Observe that subsets C,, C F,, can also be thought of
as boolean functions on 2" inputs (namely, C,,(t) on a string t € B®" = F, is 1 when t € C,,.). We can thus
discuss how difficult it is to compute a combinatorial property C'.

Definition 3. A combinatorial property C is constructive if deciding whether f, € C, when given f, as
a truth table can be done by a circuit family with size poly(2") = 20(n). j.e. polynomial in the size of the
truth tabld?]

Definition 4. A combinatorial property C is large if |C,|/|F,,| > 279, Notice, again, that C), itself is a
function with N = 2" inputs; thus, largeness is the condition that the fraction of functions f,, possessing C,
should be non-negligible in N (i.e. 1/ poly(N)).

Definition 5. Let L be a complexity class, which we will view as a set of boolean families. A combinatorial
property C' is natural against L if (1) it is constructive; (2) it is large, and (3) no boolean family in L
possesses property C.

With these definitions, we can now define a natural proof as one that follows steps (a)-(d) above:

Definition 6. A natural proof is one that exhibits a combinatorial property that both is natural against
P/poly, and contains an NP problem.

3.2 Pseudorandomn Number Generators

The power (or perhaps lack thereof) of randomness is one of the core concepts in modern complexity theory.
In particular, much recent work has been devoted to derandomization, the study of creating deterministic
algorithms out of randomized ones. One possible route to derandomization is to show the existence of a
pseudorandom number generator: a method of generating new random bits that cannot be distinguished from
purely random bits by any efficient algorithm. In this section, we will formalize a notion of pseudorandomness
which will be useful in the ensuing formalization and proof. For the rest of the paper, we will use the notation
a <& S to denote a uniformly random element a sampled from a finite set S.

Definition 7. A pseudorandom generator (PRG) on k bits is a function G : B¥ — B?*. A PRG family
G = {Gi}ren is a set of pseudorandom generators, one for each length k¥ € N. A PRG family is efficient if
it can be computed by some polynomial size circuit family.

The above definition says nothing about how good a PRG family is; indeed, the map x — 0, which is not
at all random, satisfies this definition. To discuss what a good PRG family is, it will be useful to introduce
the notion of computational distinguishability.

Definition 8. Let D and D’ be two distributions over B™. Then D and D’ are S-computationally distin-
guishable if there is a circuit C' of size at most S such that

Pr [C(z)=1]—- Pr [C(z)=1]| > i

a:(iD z(iD’

nn

3The original paper [RR97] defines C to be constructive/large if some subset C* C C' is constructive/large; for simplicity,
we do not use this definition here. This change does not affect the main result. Also, for simplicity, in this work, we have
define our notion of efficiency to be polynomial-size circuits. Generalizing these results by swapping polynomial size circuits
with polynomial time (deterministic or randomized) Turing machines where possible is left as an exercise to the overachieving
reader.



Definition 9. The hardness H(G}) of a PRG Gy is the smallest number S such that the distribution of
Gr(x) for x <& B* is S-computationally distinguishable from a random string y <& B2*. Similarly, the
hardness Hg of a PRG family G is the function Hg (k) = H(Gy). We will say Gy, is broken by a circuit of
size S if it has hardness at most S.

We are primarily interested in PRG families that are (1) efficiently computable and (2) hard. In particular,
it is conjectured by many (e.g. [RR97]) that PRGs with exponential hardness exist, and there are many
important consequences of their existence (or nonexistence) across complexity theory, cryptography, and
many other areas of computer science. We will give an example of an important theorem relating hard PRG
families to the important cryptographic notion of one-way functions.

One-way functions, which this work does not contain enough space to discuss in detail, are functions that
are easy to evaluate but hard to invert: in particular, a function f : B* — B* is one-way if f is efficiently
computable, and given y € f(B*), it is difficult to find « such that f(z) = y. Much of the security of modern
cryptography rests on the existence of such functions, but it is very difficult to prove that they exist.

Theorem 2 (Corollary of Theorems 1 and 2 in [GGMS86]). A PRG family of superpolynomial hardness exists
if and only if one-way functions exist. Further, in this case, P # NP.

4 Natural Proofs Cannot Show P # NP

In this section, we state and prove an important result in the seminal work of Razborov and Rudich [RR97],
namely that it is unlikely that one can prove that P ## NP using a natural proof as defined in Section [3.1

Theorem 3 (Theorem 4.1 in [RRIT]). If there is a natural combinatorial property against P/poly, then no
efficient PRG family G = {Gy} has hardness ok

Notice that this is much stronger than what we need to show. To show that we cannot show P # NP
using a natural proof, we only need to show that there is no natural combinatorial property against P/poly
that contains an NP problem. So, in fact, this theorem implies the stronger result that no natural proof can
separate P from any other complezity class! We now give a proof of Theorem

Proof of Theorem[3 Suppose for contradiction that that there is some natural combinatorial property C
against P/poly. Let G = {G} be an efficient PRG family, and pick an arbitrary ¢ > 0. Let k € N andﬂ
n = k*. We will show that Hg (k) < 20(n) = 90(k%) "which, since € was arbitrary, would imply that G does
not have hardness 28"

Let Go, Gy : B¥ — B* be the first k bits and the last k bits of G}, respectively. For any r € N and any
string y € B", define G, = G, oG, _,0---0G,,, where o denotes function compositiorﬂ Finally, for strings
x € B* and y € B", let f.(y) be the first bit of Gy (x).

We claim now that, for sufficiently large k, we have C,, N {fz rx € Bk} = (). To see this, suppose not.
Then there is some sequence {z1}72; such that f,, € C, infinitely often. But note that {f,} € P/poly,
since each f,, is a composition of polynomial-sized circuits (namely the Gs) for each k. This contradicts the
definition of a natural combinatorial property against P/poly.

Thus, in particular, note that, for sufficiently large k, we have

(Gl
[E)

Pr [f € Cn] - }R)r [fac € On}

o‘ > 970 (1)
&R, & Bk

since C is large. Further, since C' is efficient, by definition, deciding containment in C,, can be done with
a circuit of size 20(™ . This leaves us with something that looks close to the definition of hardness for
S = 20("): the only problem is that f wasn’t our original pseudorandom number generator G.

To fix this, our general strategy be as follows. We will define a sequence of distributions Dy, ..., Dy
for some N = 29" where Dy will be the distribution of f for x <& B* drawn uniformly at random, and
Dy is a uniform random element from F,,. By Eqn. and the triangle inequality, we will conclude that

4Floors and ceilings won’t matter here, so we will ignore them.
5This may seem like black magic, and that is fine. The utility of this weird definition will hopefully become clear later on.
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Figure 1: 71, in the case n = 2

there is some 4 such that D; and D;y; are 20(")_computationally distinguishable. We will then show, by
our construction of the D;, that this distinguishability implies that G is broken by circuits of size 2°("); i.e.
Hg(k) < 290 completing the proof. The technique of defining a sequence of distributions and applying
the triangle inequality to recover that at least one of the consecutive pairs in the sequence is distinguishable
is commonly used in proofs in cryptography, where it is known as a hybrid argument, and the distributions
D; for 0 < i < N are known as hybrids, since they are something in between Dy and Dy .

We first need a bit more machiner Fori=0,...,2" — 2 let r; <& B*. We will define a sequence of
trees Tp,...,Ton_o as follows. The tree T is a complete binary tree of height n (i.e. with 2™ — 1 nodes).
The nodes are numbered in breadth-first and then left-to-right order: that is, we will call the root vy0, and
the two children of a node v; will be numbered v9;41 and vg; 2. We will also label the nodes with strings as
follows: The root is labeled rg. Then, for any node v; with label s, the left child of v; is labeled Gy(s) and
the right child is labeled G1(s). In the tree T} for any j > 0, the nodes v; for ¢ < j have their labels replaced
with ;. The nodes v; for ¢ > j are then recomputed according to the algorithm specified above. For clarity,
we include in Figure [l] a picture of what T} would look like if the tree had height n = 2. Note in particular,
that vs and v4 have labels Gy(r1) and G1(r1), not Goo(rg) and Go1 (7).

Notice that each tree T} defines a function g; € F}, that depends on the random values r; for ¢ < j. In
particular, define g;(y) for y € B™ to be the first bit of the label on the leaf node reached by starting at the
root node of T} and, for each bit i = 1,...,n, following the left child if 3; = 0, or the right child if y; = 1. For
example, in tree Ty, one will arrive at the leaf node labeled with (G, 0 Gy, _, 0+ 0 Gy, )(ro) = Gy(ro), so
g1(y) is just the first bit of Gy (r¢), which by definition is fr,(y). This allows us to define our distributions.
For j =0,...,2" =2, let D; be the distribution of functions g; constructed as above, over the random choices
of r; <& B¥ for i < j. Observe that go = f,,, and that gon_»o is a uniformly random function. We will ignore
the odd-numbered Tjs; it will suffice to consider the even-numbered ones. Using the triangle inequality, Eqn.

gives

on—l_o o2n—1l_2
> ’Pf[gzjw € Cp] = Prlgz; € Cp]| 2 Prgzj42 € Cp] — Prlga, € Cy)]
=0 =0

> ‘Pr[ggn_g € C,] —Prlgo € Cp]| > 270M

6The construction that is described here was originally given by [GGMS86], and the presentation and usage of the construction
in [RR97| was impossible for me to follow. With the intent of giving a self-contained presentation of this proof, in this work we
give an overview of the construction of [GGMS86|, and attempt to reconstruct this part of the proof in [RR97| manually using
hopefully clearer notation.



where the randomness is over the random choices of r; <~ B*. Thus, there must be some j such that

2—O(n) o
Pr[ggj+2 S Cn] — Pl"[ggj € Cn] > m =2 (n) (2)
that is, Dy; and Dgj o are 20(")_computationally distinguished by the circuit family for the constructive
property C. Now, consider the following algorithm, which we will call A, and which we claim breaks Gy.

1 on input y € B%*:

2 write y = (yo,v1) for yo,y1 € BF

3 construct the tree T>j, except we replace the labels on nodes wzjy1 and wvaji2

4 with yo and y1 respectively (and recompute their children as usual). call this tree T™".
5 construct the function ¢g* represented by this tree

6 return 1 if ¢* € C,,, else 0.

Since g € C),, can be decided by a 2°(" size circuit and the rest of this computation is clearly efficient in
the size of the tree (which is 20("), this algorithm can be computed by a polynomial size circuit. Further,
notice that

(a) if y is a uniformly random, then constructing ¢g* is equivalent to constructing gsj42: in the tree Thj4o,
yo and y; are identified with r9;11 and 75,42 respectively.

(b) if x <& B* and y = Gi(z), then constructing g* is equivalent to constructing the function go;. In tree
T5;, the label 7; on v; should technically be replaced with x, which does not change the outcome—g*
is still the same function regardless of what the label on v; is, since it only depends on the leaves.
Identifying = with r; is safe because they are both uniformly random from BF.

Thus, we have

Pr [A(Gr(z)) =1]= Pr [g; € Cy]

L 92;~Ds;
Pr [A(y)=1=  Pr  [goj42 € Cy]
y(isz g2j+2~D2jt2

which, combining with Eqn. , gives

Pr [A(Gr(z)) =1 — Pr [A(y) =1]| > 279™);
w&B’C y(iB%

that is, A breaks the PRG G, completing the proof. O

5 Conclusion

In this work, we have developed some tools to formally analyze why proving the conjecture P # NP is so
difficult. In particular, we looked at the relativization barrier [BGS75] and the natural proof barrier [RR97].
There is more work along these lines that we do not have the space to discuss in this work. In particular,
Shamir’s 1990 proof that IP = PSPACE [Sha90] developed a novel technique known as arithmetization,
which again created some hope that P vs NP would be resolved soon using this new technique that neither
relativized nor was a natural proof. However, more recently, Aaronson and Widgerson [AWQ9] showed yet
another impossibility result that implies, informally, that arithmetization also cannot suffice to show P # NP.
What tools, then, will resolve P vs NP, and how long will this cycle of hopeful techniques being squashed by
impossibility results continue? We can only guess, and we will never know for sure until someone actually
resolves this monster of a problem.
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