
CS364A: Exercise Set #7

Due by the beginning of class on Wednesday, November 13, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course staff (via Piazza or
office hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 13 Exercises

Exercise 55

Consider an atomic selfish routing game with affine cost functions. Let C(f) denote the total travel time of
a flow f and Φ(f) the value of Rosenthal’s potential function for f . Prove that

1
2
C(f) ≤ Φ(f) ≤ C(f)

for every flow f .

Exercise 56

Algorithmic Game Theory, Exercise 18.4. Note this exercise refers to atomic selfish routing games with
weighted players, where different players can control different amounts of flow. Example 18.7 from the AGT
book shows that with quadratic cost functions, pure Nash equilibria need not exist in such routing games.
(But this exercise asks about affine cost functions.)

Exercise 57

In lecture, we defined a mixed Nash equilibrium of a cost-minimization game to be a set σ1, . . . , σk of
distributions over the strategy sets A1, . . . , Ak such that

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s′i, s−i)]

for every player i and (pure) deviation s′i ∈ Ai, where σ = σ1 × · · · × σk is the product distribution induced
by the players’ mixed strategies.

Suppose instead we allow mixed-strategy deviations. That is, consider the distributions σ1, . . . , σk that
satisfy

Es∼σ[Ci(s)] ≤ Es′
i∈σ′

i,s∼σ[Ci(s′i, s−i)]
for every player i and distribution σ′i over Ai. Show that σ1, . . . , σk satisfy this condition if and only if it is
a mixed Nash equilibrium in the sense of our original definition.
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Exercise 58

Consider a cost-minimization game and a product distribution σ = σ1×· · ·×σk. Show that σ is a correlated
equilibrium of the game if and only if σ1, . . . , σk form a mixed Nash equilibrium of the game.

Exercise 59

Consider a cost-minimization game. Prove that a distribution σ over outcomes A1× · · · ×Ak is a correlated
equilibrium if and only if it has the following property: for every player i and function δ : Ai → Ai,

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(δ(si), s−i)] .

Exercise 60

Prove that every correlated equilibrium of a cost-minimization game is also a coarse correlated equilibrium.

Exercise 61

Consider an atomic selfish routing network that has four players with the same source s and destination t,
and six parallel edges from s to t, each with cost function c(x) = x.

Consider the distribution σ over outcomes that randomizes uniformly over all outcomes with the following
properties:

(1) There is one edge with two players.

(2) There are two edges with one player each (so three edges are empty).

(3) The set of edges with at least one player is either {1, 3, 5} or {2, 4, 6}.

Prove that σ is a coarse correlated equilibrium but not a correlated equilibrium.

Lecture 14 Exercises

Exercise 62

Prove that there is a location game in which the POA of pure Nash equilibria is 1
2 , matching the worst-case

bound given in lecture.

Exercise 63

Prove that every location game is a potential game in the sense of Lecture 13. What is the potential function?

Exercise 64

Prove that if s is an ε-approximate Nash equilibrium of a (λ, µ)-smooth cost-minimization game — meaning
that Ci(s) ≤ (1 + ε)Ci(s′i, s−i) for every player i and deviation s′i ∈ Ai — with ε < 1

µ − 1, then the cost of s

is at most λ(1+ε)
1−µ(1+ε) times that of an optimal outcomes.

2


