
CS364A: Algorithmic Game Theory
Lecture #2: Mechanism Design Basics∗

Tim Roughgarden†

September 25, 2013

1 Single-Item Auctions

The most sensible place to start our discussion of mechanism design — the science of rule-
making — is single-item auctions. Recall our overarching goal in this part of the course.

Course Goal 1 Understand how to design systems with strategic participants that have
good performance guarantees.

Consider a seller that had a single good, such as a slightly antiquated smartphone. This
is the setup in a typical eBay auction, for example. There is some number n of (strategic!)
bidders who are potentially interested in buying the item.

We want to reason about bidder behavior in various auction formats. To do this, we
need a model of what a bidder wants. The first key assumption is that each bidder i has a
valuation vi — its maximum willingness-to-pay for the item being sold. Thus bidder i wants
to acquire the item as cheaply as possible, provided the selling price is at most vi. Another
important assumption is that this valuation is private, meaning it is unknown to the seller
and to the other bidders.

Our bidder utility model, called the quasilinear utility model, is as follows. If a bidder
loses an auction, its utility is 0. If the bidder wins at a price p, then its utility is vi − p.
This is perhaps the simplest natural utility model, and it is the one we will focus on in this
course.1

∗ c©2013, Tim Roughgarden. These lecture notes are provided for personal use only. See my book Twenty
Lectures on Algorithmic Game Theory, published by Cambridge University Press, for the latest version.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1More complex utility models are well motivated and have been studied — to model risk attitudes, for

example.
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2 Sealed-Bid Auctions

For now, we’ll focus on a particular simple class of auction formats: sealed-bid auctions.
Here’s what happens:

(1) Each bidder i privately communicates a bid bi to the auctioneer — in a sealed envelope,
if you like.

(2) The auctioneer decides who gets the good (if anyone).

(3) The auctioneer decides on a selling price.

There is an obvious way to implement step (2) — give the good to the highest bidder.
Today, this will be the only selection rule that we study.2

There are multiple reasonable ways to implement step (3) and the implementation signif-
icantly affects bidder behavior. For example, suppose we try to be altruistic and charge the
winning bidder nothing. This idea backfires badly, with the auction devolving into a game
of “who can name the highest number”?

3 First-Price Auctions

A much more reasonable choice is to ask the winning bidder to pay its bid. This is called a
first-price auction, and such auction are common in practice.

First-price auctions are hard to reason about. First, as a participant, it’s hard to figure
out how to bid. Second, as a seller or auction designer, it’s hard to predict what will
happen. We’ll elaborate on the theory of first-price auctions in Problem Set #1 and in
later advanced material. For now, to drive the point home, imagine participating in the
following experiment. There’s an item being sold via a first-price auction. Your valuation
(in dollars) is the number of your birth month plus the day of your birth. Thus, your
valuation is somewhere between 2 (for January 1st) and 43 (for December 31st). Suppose
there is exactly one other bidder (drawn at random from the world) whose valuation is
determined in the same way. What bid would you submit to maximize your (quasilinear)
utility? Would your answer change if you knew there were two other bidders in the auction,
rather than one?

4 Second-Price Auctions

Let’s now focus on a different auction format, which is also common in practice, that is
much easier to reason about. To motivate it, think about what happens when you win an
eBay auction. If you bid $100 and win, do you necessarily pay $100? Not necessarily —
eBay uses a “proxy bidder” that increases your bid on your behalf until your maximum bid

2When we study revenue maximization a few lectures hence, we’ll see why other winner selection rules
are important.
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is reached, or until you are the highest bidder (whichever comes first). For example, if the
highest other bid is only $90, then you will only pay $90 (plus a small increment), rather
than your maximum bid $100. The upshot is: if you win an eBay auction, the sale price
equals the highest other bid (the second highest overall), plus a small increment.

A second-price or Vickrey auction is a sealed-bid auction in which the highest bidder wins
and pays a price equal to the second-highest bid.

Claim 4.1 In a second-price auction, every bidder has a dominant strategy: set its bid bi
equal to its private valuation vi. That is, this strategy maximizes the utility of bidder i, no
matter what the other bidders do.

This claim implies that second-price auctions are particularly easy to participate in —
you don’t need to reason about the other bidders in any way (how many there are, what their
valuations, whether or not they bid truthfully, etc.) to figure out how you should bid. Note
this is completely different from a first-price auction. You should never bid your valuation in
a first-price auction (that would guarantee zero utility), and the ideal amount to underbid
depends on the bids of the other players.
Proof of Claim 4.1: Fix an arbitrary player i, its valuation vi, and the bids b−i of the other
players. (Here b−i means the vector b of all bids, but with the ith component deleted. It’s
wonky notation but you need to get used to it.) We need to show that bidder i’s utility is
maximized by setting bi = vi. (Recall vi is i’s immutable valuation, while it can set its bid bi
to whatever it wants.)

Let B = maxj 6=i bj denote the highest bid by some other bidder. What’s special about a
second-price auction is that, even though there are an infinite number of bids that i could
make, only distinct outcomes can result. If bi < B, then i loses and receives utility 0.
If bi ≥ B, then i wins at price B and receives utility vi −B.3

We now consider two cases. First, if vi < B, the highest utility that bidder i can get
is max{0, vi − B} = 0, and it achieves this by bidding truthfully (and losing). Second, if
vi ≥ B, the highest utility that bidder i can get is max{0, vi −B} = vi −B, and it achieves
this by bidding truthfully (and winning). �

The second important property is that a truthtelling bidder will never regret participating
in a second-price auction.

Claim 4.2 In a second-price auction, every truthtelling bidder is guaranteed non-negative
utility.

Proof: Losers all get utility 0. If bidder i is the winner, then its utility is vi − p, where p
is the second-highest bid. Since i is winner (and hence the highest bidder) and bid its true
valuation, p ≤ vi and hence vi − p ≥ 0. �

3We’re assuming here that ties are broken in favor of bidder i. The claim holds no matter how ties are
broken, as you should check.
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The exercises ask you to explore further properties of and variations on the Vickrey
auction. For example, truthful bidding is the unique dominant strategy for a bidder in a
Vickrey auction.

5 Awesome Auctions

Taking a step back, we can claim the following.

Theorem 5.1 (Vickrey [3]) The Vickrey auction is awesome. Meaning, it enjoys three
quite different and desirable properties:

(1) [strong incentive guarantees] It is dominant-strategy incentive-compatible (DSIC),
i.e., Claims 4.1 and 4.2 hold.

(2) [strong performance guarantees] If bidders report truthfully, then the auction max-
imizes the social surplus

n∑
i=1

vixi, (1)

where xi is 1 if i wins and 0 if i loses, subject to the obvious feasibility constraint
that

∑n
i=1 xi ≤ 1 (i.e., there is only one item).4

(3) [computational efficiency] The auction can be implemented in polynomial (indeed,
linear) time.

All of these properties are important. From a bidder’s perspective, the DSIC property,
which guarantees that truthful reporting is a dominant strategy and never leads to negative
utility, makes it particularly easy to choose a bid. From the seller’s or auction designer’s
perspective, the DSIC property makes it much easier to reason about the auction’s outcome.
Note that any prediction of an auction’s outcome has to be predicated on assumptions about
how bidders behave. In a DSIC auction, one only has to assume that a bidder with an obvious
dominant strategy will play it — behavioral assumptions don’t get much weaker than that.

The DSIC property is great when you can get it, but we also want more. For example,
an auction that gives the item away for free to a random bidder is DSIC, but it makes no
effort to identify which bidders actually want the good. The surplus-maximization property
states something rather amazing: even though the bidder valuations were a priori unknown
to the auctioneer, the auction nevertheless successfully identifies the bidder with the high-
est valuation! (Assuming truthful bids, which is a reasonable assumption in light of the
DSIC property.) That is, the Vickrey auction solves the surplus-maximization optimization
problem as well as if the data (the valuations) were known in advance.

4Note that the sale price is not part of the surplus. The reason is that we treat the auctioneer as a player
whose utility is the revenue it earns; its utility then cancels out the utility lost by the auction winner from
paying for the item. We will discuss auctions for maximizing seller revenue in a few lectures.
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The importance of the third property is self-evident to computer scientists. To have
potential practical utility, an auction should run in a reasonable amount of time — or even
in real time, for some applications. Auctions with super-polynomial running time are useful
only for fairly small instances.

The next several lectures strive for awesome auctions, in the sense of Theorem 5.1, for
applications beyond single-item auctions. The two directions we focus on are well motivated:
more complex allocation problems, like those that inevitably arise in sponsored search and
combinatorial auctions; and maximizing seller revenue in lieu of social surplus.

6 Case Study: Sponsored Search Auctions

6.1 Background

A Web search results page comprises a list of organic search results — deemed by some
underlying algorithm, such as PageRank, to be relevant to your query — and a list of
sponsored links, which have been paid for by advertisers. (Go do a Web search now to remind
yourself, preferably on a valuable keyword like “mortgage” or “asbestos”.) Every time you
type a search query into a search engine, an auction is run in real time to decide which
advertisers’ links are shown, in what order, and how they are charged. It is impossible to
overstate how important such sponsored search auctions have been to the Internet economy.
Here’s one jaw-dropping statistic: around 2006, sponsored auctions generate roughly 98% of
Google’s revenue [1]. While online advertising is now sold in many different ways, sponsored
search auctions continue to generate tens of billions of dollars of revenue every year.

6.2 The Basic Model of Sponsored Search Auctions

We discuss next a simplistic but useful and influential model of sponsored search auctions,
due independently to Edelman et al. [1] and Varian [2]. The goods for sale are the k “slots”
for sponsored links on a search results page. The bidders are the advertisers who have a
standing bid on the keyword that was searched on. For example, Volvo and Subaru might
be bidders on the keyword “station wagon,” while Nikon and Canon might be bidders on the
keyword “camera.” Such auctions are more complex than single-item auctions in two ways.
First, there are generally multiple goods for sale (i.e., k > 1). Second, these goods are not
identical — slots higher on the search page are more valuable than lower ones, since people
generally scan the page from top to bottom.

We quantify the difference between different slots using click-through-rates (CTRs). The
CTR αj of a slot j represents the probability that the end user clicks on this slot. Ordering the
slots from top to bottom, we make the reasonable assumption that α1 ≥ α2 ≥ · · · ≥ αk. For
simplicity, we also make the unreasonable assumption that the CTR of a slot is independent
of its occupant. The exercises show how to extend the following results to the more general
and realistic model in which each advertiser i has a “quality score” βi (the higher the better)
and the CTR of advertiser i in slot j is the product βiαj.
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We assume that an advertiser is not interested in an impression (i.e., being displayed on
a page) per se, but rather has a private valuation vi for each click on its link. Hence, the
value derived by advertiser i from slot j is viαj.

6.3 What We Want

Is there an awesome sponsored search auction? Our desiderata are:

(1) DSIC. That is, truthful bidding should be a dominant strategy, and never leads to
negative utility.

(2) Social surplus maximization. That is, the assignment of bidders to slots should maxi-
mize

∑n
i=1 vixi, where xi now denotes the CTR of the slot to which i is assigned (or 0

if i is not assigned to a slot). Each slot can only be assigned to one bidder, and each
bidder gets only one slot.

(3) Polynomial running time. Remember zillions of these auctions need to be run every
day!

6.4 Our Design Approach

What’s hard about mechanism design problems is that we have to jointly design two things:
the choice of who wins what, and the choice of who pays what. Even in single-item auctions,
it is not enough to make the “correct” choice to first design decision (i.e., giving the good
to the highest bidder) — if the payments are not just right, then strategic participants will
game the system.

Happily, in many applications including sponsored search auctions, we can tackle this
two-prong design problem one step at a time.

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we
assign bidders to slots so that the above properties (2) and (3) hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that the above
property (1) holds?

If we successfully answer both these questions, then we have constructed an awesome
auction. Step 2 ensures the DSIC property, which means that bidders will bid truthfully
(assuming as usual that a bidder with an obvious dominant strategy does indeed play that
strategy). This means that the hypothesis in Step 1 is satisfied, and so the final outcome of
the auction is indeed surplus-maximizing (and is computed in polynomial time).

We conclude this lecture by executing Step 1 of sponsored search auctions. Given truthful
bids, how should we assign bidders to slots to maximize the surplus? As an exercise, you
should show that the natural greedy algorithm is optimal (and runs in near-linear time):
assign the jth highest bidder to the jth highest slot for j = 1, 2, . . . , k.

Can we implement Step 2? Is there an analog of the second-price rule — sale prices that
render truthful bidding a dominant strategy for every bidder? Next lecture we’ll derive an
affirmative answer via Myerson’s Lemma, a powerful tool in mechanism design.
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