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Tracking down Exceptions in Standard ML ProgramsManuel F�ahndrich� Je�rey S. Fostery Alexander Aikeny Jason CuEECS DepartmentUniversity of California, BerkeleyBerkeley, CA 94720-1776fmanuel, jfoster, aikeng@cs.berkeley.edu(510)-642-6509AbstractWe describe our experiences with an exception anal-ysis tool for Standard ML. Information about excep-tions gathered by the analysis is visualized using pam,a program visualization tool for emacs. We study theresults of the analysis of three well-known programs,classifying exceptions as assertion failures, error excep-tions, control-
ow exceptions, and pervasive exceptions.Even though the analysis is often conservative and re-ports many spurious exceptions, we have found it usefulfor checking the consistency of error and control-
owexceptions. Furthermore, using our tools, we have un-covered two minor exception-related bugs in the threeprograms we scrutinized.1 IntroductionThe ML type system guarantees that ML programsnever terminate abnormally. Normal termination, how-ever, may be caused by an exception, which is often un-desirable. ML compilers infer a type for each expressionin a program, but compute no information about excep-tions produced or raised by an expression. In [FA97] weproposed an exception inference system to �ll this gap.It subsumes the type inference by inferring ML typesannotated with exceptions.Based on this exception inference, we have built anexception analysis tool (eat) that allows the program-mer to display uncaught exceptions at certain programpoints while browsing code. The implementation ofeat is based on two components, called bane and pamthat we have developed over the last few years. bane�Supported in part by NSF Young Investigator Award CCR-9457812, NSF Grant CCR-9416973, an NDSEG fellowship, and agift from Rockwell Corporation.

(Berkeley ANalysis Engine) is a general framework forimplementing constraint-based program analyses. pam(Program Analysis Mode) is a point-and-click hyper-text system based on emacs for viewing the results ofprogram analyses.This paper describes our experience applyingthe exception analysis tool eat to three Stan-dard ML [MTH90] programs distributed with theSML/NJ [App92] compiler. With the help of pam, weclassify the exceptions used in ml-lex, ml-yacc, andml-burg into four categories and study the precisionof the exception analysis with respect to the uncaughtexceptions reported for the main function of each pro-gram. Any sound exception analysis is necessarily con-servative in that it may report exceptions that cannotbe raised in any actual run of the program. It is thusnecessary to resolve every exception that is reported aspotentially uncaught to an actual uncaught exception byexhibiting some input to the program that causes theuncaught exception, or to a spurious exception by show-ing that the raise expression in question constitutesdead code. pam helps in the resolution of uncaught ex-ceptions by allowing the programmer to view exceptioninformation at each lambda expression, function appli-cation, and exception handler. Using this technique, wefound two minor undocumented bugs, one in ml-lex,and one in ml-burg.We divide exceptions raised by ML programs intofour general categories:1. Assertion failures: Exceptions raised when a pro-gram enters an unexpected state, e.g., when an in-ternal data-structure is found to be inconsistent;2. Error exceptions: Exceptions raised after reportingan error, e.g., a parser may report a syntax errorand then raise an exception;1



3. Control-
ow exceptions: Exceptions raised withoutany error reporting, e.g., Fifo.Empty for a get op-eration on an empty queue; and4. Pervasive exceptions: Exceptions raised by prim-itives or prede�ned functions, e.g., Subscriptraised by Array.sub when the array index is outof bounds.These categories are approximate, and not every ex-ception corresponds exactly to one of them. Assertionfailures correspond roughly to errors that would be sig-naled in C programs using the assertmacro. A typicalexample appears in ml-lex, whose scanner can be inone of three integer modes, 0, 1, or 2. If the scanner�nds itself in any other mode (i.e., in the default branchof a particular case expression), an assertion failure ex-ception is raised. The user of a program does not expectto see any assertion failures. Instead, assertion failuresalert the programmer during development about miss-ing cases or violations of invariants.Error exceptions are used to terminate execution andcorrespond to non-zero integers returned to the operat-ing system by a C program. These exceptions shouldbe documented in the interface as possible results of theprogram.Control-
ow exceptions should always be caught atsome level. Otherwise, uncaught control-
ow excep-tions terminate the program without an error message.Note that some programs turn control-
ow exceptionsinto error exceptions using a top-level catch-all handlerthat prints out the name of the uncaught exception andthen reraises the exception.Pervasive exceptions are control-
ow exceptionsraised by built-in routines. Common examples areOverflow and range errors. Since our exception analy-sis does not model integer constants or arithmetic, suchexceptions are assumed to arise from any call to partic-ular built-in routines.The rest of this paper is organized as follows. Sec-tion 2 informally describes the exception analysis weuse. Section 3 outlines the pam visualization mode foremacs. We discuss our experience using eat in Sec-tion 4. Related work appears in Section 5, and Section 6concludes.2 Exception InferenceThis section informally describes the exception infer-ence used in our study and discusses some issues inworking with real programs. A more formal treatmentfor a subset of SML can be found in [FA97].The analysis is structured as a type and e�ect sys-tem [LG88]. For every expression e in the program, the

analysis infers a type � and an e�ect �. The type �corresponds closely to the SML type of e, except thatexception types, datatypes, and function types carryextra type parameters for exception sets. E�ects � de-scribe the set of exceptions that are potentially raisedduring evaluation of e. For example, the SML basisfunction List.hd returning the �rst element of a listval hd = fn l =>case l ofnil => raise Empty| (x::y) => xhas type 'a list Empty@p����! 'a, i.e., a function whosedomain is lists of element type 'a, whose range is 'a,and whose possible exceptions are Empty raised at po-sition p. E�ects are modeled as a pair containing anexception name (or set of names) and a position in thesource code. The lambda expression for hd has no e�ectitself, since evaluating the expression cannot raise anyexceptions.The next example is an excerpt from the hash tablefunctor of the SML/NJ library.datatype 'a hash_table =HT of {not_found : exn,table : ...,n_items : ...}fun mkTable (sizeHint,notFound) =(HT {not_found = notFound,table = ...,n_items = ref 0})The function mkTable is used to create an empty hashtable. It takes an exception argument notFound, whichis stored as part of the hash table data structure. Thisexception is raised during lookup and remove opera-tions on keys that are not part of the table. In orderto correctly report the exception raised by lookup orremove, we need to attach the exception used when cre-ating the hash table to the type of the hash table. Ingeneral, we augment types with exception informationby parameterizing types with an extra exception argu-ment. In the example, the hash table type constructortakes a second argument denoting the set of exceptionspotentially stored in the hash table structure. Thus,the type of mkTable isint � exn(�)! ('a; �) hash tablewhich states that mkTable can be applied to a pair con-sisting of an integer and an exception (whose excep-tion names are bound to �), and it returns a hash tabledata structure containing elements of type 'a and ex-ceptions �. The exception variable � can be instantiated2



to any set of exception names. The dependency betweenthe hash table type and the exceptions raised by thelookup function appears clearly in the type of lookup:('a; �) hash table! key �@p��! 'aAny exceptions carried by the hash table may be raisedat position p when calling lookup (p is the position ofthe raise expression within lookup).In general, we infer for each datatype whether or notit carries any exception names and e�ects. Our infer-ence con
ates all exceptions carried by a datatype. It ispossible to relax this restriction, and in fact we have an-alyzed programs other than the ones reported on here,where this restriction causes severe loss of precision.Standard ML has parameterized modules called func-tors. Our exception inference cannot directly analyzefunctors due to unresolved exception aliasing. We usea tool to expand all functor applications prior to per-forming the analysis.Readers familiar with SML may wonder about thegenerativity of exception declarations, which in generalmakes it impossible to statically name all exceptions.Generativity only comes into play if exception decla-rations appear within functions. Our analysis reportssuch declarations and treats these exceptions very con-servatively by never �ltering them in exception han-dlers.2.1 Basis LibraryIn order to produce meaningful results, any exceptioninference must know the exception signatures of prim-itive (pervasive) functions. For example, in our sys-tem the array indexing function Array.sub has type'a array * int Subscript@array-sig.sml:20.52-20.56�����������������������! 'a.We have manually generated signatures annotatedwith exceptions for large parts of the SML basis library.To make this tedious job signi�cantly easier, we makeuse of the signatures already provided in the SML/NJcompiler source. Functions of type 'd! 'r are manu-ally given new signatures ('d; 'r; 'e) efun, where efunis a new primitive type constructor for function typescarrying exceptions. The last element of the type, 'e,is an exception constructor C that stands for the ex-ception type exn(C). For example, the speci�cation forArray.sub is transformed tosignature ARRAY =sig...val sub : ('a array * int, 'a,Subscript) efun...end

Notice that not only is the change relatively minor, butthe signature is still parseable by the front end.A number of pervasive exceptions are not modeled byour inference, in particular Overflow due to its omni-presence. It would however be trivial to add it to thepervasive signatures.2.2 ImplementationWe have implemented our exception inference on topof the Berkeley ANalysis Engine.1 bane is a frame-work for writing program analyses based on a mixtureof constraints [FA97], including set-constraints [AW93].bane separates the speci�cation (constraint generation)of an analysis from its implementation (constraint solv-ing). Our exception inference traverses the source codeof the input program, generating type constraints andconstraints that capture the local 
ow of exceptions.bane handles the representation and resolution of con-straints.The solutions to the constraints model the global
ow of exceptions. We extract the set of uncaught ex-ceptions for functions, applications, and handle expres-sions. This information is then written into a descrip-tion �le suitable for visualization with pam.3 Visualizationpam is a program analysis mode for emacs, provid-ing a textual point-and-click interface for displaying theresults of a program analysis. pam takes as input aprogram analysis description �le, which contains a se-quence of overlays onto the source text of the program.Each overlay speci�es a character range, a highlightcolor for the region, and a pointer to the informationshown when this overlay is selected. When a source �leis opened in pam mode, the text is colored accordingto the overlays. A key press or mouse click on an over-lay displays the associated text in a separate emacswindow. The textual information associated with anoverlay can also contain hypertext cross-links to otherinformation or to positions in the source text �le.Besides the overlays, description �les also contain areport section, which is the text shown �rst when view-ing a pam description �le. For our exception inference,the report contains� the list of declared exceptions, cross-linked to theirpositions in the source text,� a list of handlers, each cross-linked to the sourcetext and showing the set of exceptions handled,1http://bane.cs.berkeley.edu3



Program Assertion Failures Error Excep-tions Control-
owExceptions Pervasive Ex-ceptions Unusedml-lex(3.5s) LexError Match Error eof LOOKUPnotfoundSyntaxError Chr Io SizeSubscript ParseErrorml-yacc(28.1s) Bind Find FindNth GotoLalr LexerErrorLexHackingError MatchMkTable mlyActionParseImpossibleParseInternal ProducesShift
ParseErrorSemantic DoneFifo.EmptyLexErrorselect arb List.EmptyIo SizeSubscriptml-burg(14.7s) Compiler FindNth GotoLexerErrorLexHackingErrormlyActionParseImpossibleParseInternal BurgErrorParseError Fifo.EmptyForced FoundLexErrorNotSamePatNotSameSizeNotThere List.EmptyIo OptionSizeSubscriptTable 1: Declared or used exceptions and their classi�cation

Figure 1: Screen shot of pam viewing ml-burg

� a list of function declarations, cross-linked to thesource text, and� a list of exceptions that the inference reports aspotentially uncaught during compile/load time.Overlays are generated for all lambda expressions, func-tion declarations, applications, and handle expressions.Exceptions are displayed in the form Name@p, where pis the position in the source �le where the exception ispotentially raised. The position part is cross-linked tothe source �le for easy navigation. pam allows back-tracking, similarly to a web browser.By using this system it is easy to start at the bodyof the main function of a program and follow the un-caught exceptions backwards to see where they wereraised. In this way one can decide whether the inferredexceptions are errors or whether they are results of theconservatism of the analysis.Figure 1 shows a screen shot of pam viewing the anal-ysis result of ml-burg. The top window shows the re-port section, focused on the list of handle expressions.The middle window shows the source text as it wouldbe displayed when clicking on the second to last handlerin the report section (cursor position). The handler inquestion appears near the bottom of the middle win-dow, handling Forced. The bottom window shows theresult of clicking on the handle keyword of the handlerin the middle window. This display shows that the han-dled Forced exception is raised at three positions (alsovisible in the middle window). Two Io exceptions andthe BurgError exception (raised by the call to errorvisible in the middle window) fall through the handler.4



Program Assertion Failures Error Excep-tions Control Flow Pervasiveml-lex LexError� Match? Error+ eof+ Chr? Io+Size�Subscript?ml-yacc Bind? Find? FindNth?Goto? Lalr?LexerError� Match?MkTable� mlyAction?ParseImpossible?ParseInternal?Produces� Shift?
ParseError+Semantic+ Fifo.Empty�LexError� List.Empty�Io+ Size�Subscript?ml-burg Compiler� FindNth?Goto? LexerError�mlyAction?ParseImpossible?ParseInternal? BurgError+ParseError+ Fifo.Empty�LexError+ List.Empty�Io+ Option�Size�Subscript?Table 2: Exceptions reported for the main function of each program4 ResultsWe have applied eat to three programs distributed withversion 109.31 of the SML/NJ compiler: the lexer gen-erator ml-lex, the parser generator ml-yacc, and thetree-rewrite generator ml-burg. Table 1 categorizesthe set of exceptions declared in each program as wellas the pervasive exceptions used indirectly through pre-de�ned functions.2 The number below each programname is the time in seconds needed to perform the ex-ception inference on an UltraSparc. ml-lex containsa declaration of exception ParseError that is subse-quently never used. Note the large number of asser-tion failure exceptions for ml-yacc and ml-burg. Themajority of them are part of the automatically gener-ated lexer and parser contained in ml-yacc and ml-burg. There are relatively few error exceptions in allprograms.Table 2 lists the uncaught exceptions reported by ouranalysis for the main function of each program. Foreach category, the reported uncaught exception nameis annotated with one of the symbols f+;�; ?g. A (+)symbol means that the exception can actually be raisedby providing suitable parameters to the program. Wehave veri�ed these using suitable example inputs. A (�)symbol means that the exception cannot be raised inany execution of the program, i.e. the analysis reportsa spurious exception. We identi�ed these exceptionsby inspecting the code. Finally, a (?) means that theexception is likely not raised, but proving so requires2We have manually moved four exception declarations fromwithin functions to outer scopes to improve the precision of theanalysis.

more than a simple code inspection.In the category of assertion failures, eat reports allexceptions as uncaught. This is not surprising, sincethese exceptions are never handled in the code. Show-ing that such exceptions do not occur requires provingthat the respective raise expressions are dead code.Our analysis cannot tell which branches of a case orif expression are taken and is thus very conservative inthis respect. Constant propagation or simple set-basedanalysis could be used to remove a few of the spuri-ous exceptions (marked by �). Similarly, our analy-sis is conservative with respect to pervasive exceptions.For example, showing that the Subscript exception isnever raised requires range analysis [SI77].On the other hand, eat is useful for detecting prob-lems with control 
ow exceptions, and to infer the setof error exceptions. It helped us detect a minor bugin the ml-lex program: the eof (end-of-�le) exceptioncan escape if the lexer generator is supplied with a lexspeci�cation that contains no occurrence of the % sign.One could argue that the eof exception is therefore anerror exception, but looking at the code, this does notseem to be the programmer's intention, since no errormessage is printed in this case.For ml-yacc, eat reports the spurious control-
owexceptions Fifo.Empty and LexError, neither of whichcan actually escape. Code inspection shows that the callto Fifo.get that potentially raises Fifo.Empty is calledwith a non-empty queue. The absence of LexError ismore subtle, since it rests on the fact that the lexer usedin ml-yacc handles all input characters.For ml-burg, eat reports the same control-
ow ex-ceptions as for ml-yacc, but in this case only the5



Fifo.Empty exception is spurious. The lex speci�ca-tion for burg �les does not handle all input charactersand raises LexError on an invalid character (e.g. on@).3 Since the LexError exception is raised withoutany error message, we claim that this uncaught excep-tion constitutes a programming bug.eat also reports exceptions that are potentially raisedat compile/load time. For ml-lex, our analysis provesthe absence of such exceptions. For ml-yacc and ml-burg, a few spurious exceptions are reported, e.g.,LexHackingError.Although our exception analysis is very conservativeand reports many spurious exceptions, it has provenuseful in uncovering two minor bugs in long-standingprograms. Our visualization mode pam has been keyin understanding the 
ow of exceptions discovered byour analysis. Without a good visualization tool, resultsof program analyses are very di�cult to interpret andvalidate.5 Related WorkThere are several other exception inference systems forML. Yi [Yi94] uses an abstract interpretation [CC79]framework to perform a much more precise analysisthan ours. Unfortunately, it scales poorly, requiringmany hours of analysis time on ml-yacc, and the anal-ysis results are very di�cult to inspect. The systemsdescribed in [GS94, YR97] are simpler analyses thanour own, and are in general less precise. To study theprecision trade-o�, we have also implemented a varia-tion of [FA97] similar to [GS94]. On the three programsstudied in this paper, the two versions produced iden-tical results. However, for programs using more higherorder features, the loss of precision in the second ap-proach can be signi�cant.One problem with eat is that it isn't useful to provethe absence of assertion failures. To do so requires prov-ing that certain raise expressions constitute dead code.Several techniques can be used to improve the analysisin this area. [Yi94] models variants of datatypes andintegers such that impossible branches can be pruned.Similarly, set-based analysis [Hei94] can also provide in-formation to prune branches. Re�nement types [FP91]are another approach to proving that certain branchesof case statements are not needed. If datatypes areviewed as de�ning regular tree languages, then re�ne-ment types specify sub-languages of datatypes. Re-�nement types have potential to express complex datastructure invariants.3Due to a yet unresolved problem in the compiler, ml-burghangs instead of raising the exception.

Pervasive exceptions like Subscript are also modeledvery conservatively by our analysis. In general, provingthe absence of Subscript exceptions is equivalent toproving that no runtime check on array indexing is re-quired. A long line of work on range-checking for arraysubscripts starts with [SI77].Finally, in Java [GJS96], methods must declare theset of exceptions that might be thrown during a call.This allows Java compilers to perform a similar (al-though non-polymorphic) exception veri�cation. Thatapproach however has the same shortcomings as the onedescribed here with respect to assertion failures and cer-tain pervasive exceptions. As a result, such exceptionsare called unchecked in Java and need not be listed inmethod signatures.pam is in part inspired by MrSpidey [FFK+96], astatic debugger for Scheme. MrSpidey performs set-based analysis on Scheme programs and presents theinformation to the programmer as graphical overlaysover the source code.6 Conclusions and Future WorkWe have evaluated the precision and utility of an ex-ception inference for Standard ML. Although the anal-ysis cannot prove the absence of exceptions raised as aresult of a failed assertion, it is useful to check the con-sistency of control-
ow exceptions and to infer the setof error exceptions. Applying the analysis to three pro-grams distributed with the SML/NJ compiler, we havediscovered two minor exception related bugs.We are also currently applying eat to a verylarge program, a points-to analysis for C written inbane [FFA97]. Two problems arose in this context.First, although the inference does scale, the description�le of the analysis results uses more than 100MB of diskspace. As a result, the visualization becomes impracti-cal. Factoring repeated information in the description�le might help curb this blowup. Second, the programwe are looking at contains many higher order functionsand stores functions in data structures. Due to the waywe model datatypes carrying exceptions, the exceptionsof many distinct functions are con
ated, yielding veryimprecise results. We are experimenting with ways toincrease the precision of our analysis to make the resultsmore useful.References[App92] A. Appel. Compiling with Continuations.Cambridge University Press, 1992.6
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