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Abstract

In various settings, such as when customers use the same
passwords at several independent web sites, security deci-
sions by one organization may have a significant impact on
the security of another. We develop a model for security
decision-making in such settings, using a variation oflin-
ear influence networks.The linear influence model uses a
matrix to represent linear dependence between security in-
vestment at one organization and resulting security at an-
other, and utility functions to measure the overall benefit to
each organization. A simple matrix condition implies the
existence and uniqueness of Nash equilibria, which can be
reached by a natural iterative algorithm. Afree-riding in-
dex, expressible using quantities computed in this model,
measure the degree to which one organization can poten-
tially reduce its security investment and benefit from invest-
ments of others. We apply this framework to investigate
three examples: web site security with shared passwords,
customer education against phishing and identity theft, and
anti-spam email filters. While we do not have sufficient
quantitative data to draw quantitative conclusions about
any of these situations, the model provides qualitative in-
formation about each example.

1. Introduction

In many settings, the security of one organization may
depend on the security measures taken by others. For ex-
ample, many web users enter the same password at multi-
ple sites (10; 17). For this reason, compromise of a low-
security site such as a high school reunion web site may
provide valid user names and passwords for sensitive sites
such as banks or online merchants. In such situations, it is
not immediately clear how a bank should best protect its as-
sets: should it invest more in protecting its own sites from
compromise that might reveal its passwords, or donate se-
curity services to non-profit organizations that could share
users credentials? Perhaps the banking industry would be
well served by forming a consortium to provide better au-
thentication and web security to non-profits, who may be
measurably free-riding on banking industry consumer edu-
cation programs already. In order to address such questions,

we suggest a relatively simple model for evaluating risks,
benefits, incentives, and investments by independent orga-
nizations with interdependent operations. The main contri-
butions of this paper are to present a core linear influence
network model that is applicable to some sample security
situations, and explore ways that the model can be used
to understand risk and utility-based decision-making trade-
offs. While there is clearly more work needed to establish a
comprehensive theory of security decision-making in inter-
dependent industries, we hope this paper identifies a useful
connection between economic modeling techniques and se-
curity problems that will be useful in further studies.

The quantitative model used in this paper is a variation
of a class of recently proposed “linear influence networks”
(5; 6), further discussed in section 2. In this model the de-
pendence between a security investment at one organization
and the resulting security benefit at another is assumed lin-
ear. While there are likely to be non-linear relationships
in some situations, it seems reasonable to use a linear ap-
proximation within certain decision-making ranges. Fur-
ther, in many situations of interest, it is not clear how to ob-
tain meaningful estimates of numerical parameters for more
complex non-linear models; a linear approximation is con-
sistent with the accuracy of numerical input into the model.
The model also includes autility function for each orga-
nization, representing the generally non-linear relationship
between improved absolute security (measured, perhaps, in
the probability of a break-in on a given day) and the to-
tal value of all deployed security mechanisms to the firm.
The use of a non-linear utility function is critical for mod-
eling rational decision making, and distinguishes our model
from simple probabilistic fault tolerance and failure mod-
els that aim only to provide probability estimates of break-
ins or failures. The main technical properties of the lin-
ear influence network model we use in this paper are The-
orem 4.2, stating that if the interaction matrix is strictlydi-
agonally dominant, the resulting game has a unique Nash
Equilibrium, and Theorem 4.3 showing that under the same
assumptions, a natural iterative strategy by all agents con-
verges to the (unique) Nash equilibrium from any starting
point. We also consider afree-ridingindex that measure the
degree to which one organization can potentially reduce its
security investment and reap the benefits from investments
of others. This framework is able to provide quantitative



evaluations of possible investments, given sufficiently ac-
curate quantitative estimates of the governing parameters.
In addition, as we illustrate with sample case studies, it ap-
pears possible to derive reasonable qualitative insight from
ballpark estimates of relevant input quantities. The model
provides an innovative analysis of the interdependent na-
ture of security investments by enabling the relationships
to be modeled in a flexible way. The relationships need
not be symmetric and can be either beneficial or detrimen-
tal to neighboring nodes. The investments themselves are
restricted only to non-negative real numbers.

Game theoretic models of interaction “networks” have
attempted to explicitly model how agents, connected by a
set of links, make decisions based on the positive or nega-
tive interactions found between players across these links
(see section 2). The interactions represented by links in
such a network, commonly known in economic circles as
externalities, represent the additional cost or benefit in-
curred by one player due to other players’ actions. Typ-
ically, these externalities can lead to “suboptimal” invest-
ments on the part of the players. The optimality of a set
of investments can be measured in a number of ways but
generally, we find that it can be assessed using two con-
cepts: (1) amount of free-riding, which reflects the degree
to which one player can invest less than they would in isola-
tion, due to the net benefit accrued from other players, and
(2) deviation from social optimum, which is the way players
would invest if they were directed by a central planner that
sought to maximize the total welfare of all of the players. A
common theme found in the security scenarios we investi-
gated is that there are both positive and negative interactions
between independent agents. Intuitively, an investment in
security by one agent may benefit others because the in-
vestment reduces a risk shared by both players. A nega-
tive interaction usually results from the fact that given two
potential victims, an attacker will likely choose the path of
least resistance. In other words, an investment in securityby
one party will increase the likelihood that the other agents
within the network are attacked instead. The model we use
in this paper incorporates both positive (beneficial) as well
as negative (detrimental) externalities. Specifically, the im-
mediate consequences of an agent’s actions are augmented
by a linear function of others’ actions. The coefficients of
this linear function can be either positive or negative, cor-
responding to net positive and negative influences, respec-
tively. Each player’s cost, however, is a function of its ac-
tion alone. Under these conditions, we consider the single
stage, complete information game in which each player ef-
fectively announces its strategy and receives some utilityas
a function of its neighbor-augmented decision.

The current password-based authentication method used
widely at banks, financial institutions, retail sites, and
many non-commercial sites provides an interesting case
study. Given the opportunity, many users will use the
same username and password for multiple websites, re-

gardless of the content of the site (10; 17). For example,
some users might use the same password at Citibank and
www.nytimes.com. In one Japanese survey of 1,091 In-
ternet users,87.7% confessed that they tried to use the same
username-password pair for multiple sites (20). If the user
database at one website is more vulnerable to attack than
at a more vigilant website, then the security efforts at more
vigilant website are undermined by user behavior and lax
security of other sites. In one sense, the increased invest-
ment in security of one website could help other websites
whose user base overlaps significantly with the website with
increased investment. On the other hand, one website’s in-
crease in security investments could simply lead to attack-
ers’ shifting to other websites with lower security require-
ments. We model these interdependencies, grouping sites
into high security and low security sites, and show how in-
terdependence causes certain websites to invest more than
their fair share, while others may choose to free ride and not
invest much at all.

Our second case study is based on customer education
efforts aimed to combat phishing and online identity theft
(see, e.g., (1)). Many banks are investing a significant por-
tion of their security budget in customer education, in an ef-
fort to combat phishing. Whether it is through advertising or
direct communication with their valued customers, financial
institutions must clearly communicate what customers can
expect from the banks to ensure that the email customers re-
ceive or the website the customer just visited is legitimate.
However, different institutions have different email policies,
and sometimes undercut each others’ efforts. This may even
occur within a single institution. For example, in confiden-
tial discussion with a large bank, we found that two differ-
ent policies are used: customers are informed that no links
will ever be included in “service” email from the bank, but
customers are not told that marketing email from the mar-
keting division may include links. In such a situation, the
information security division’s efforts to educate bank cus-
tomers undercuts the marketing divisions effort to sell bank
products, and conversely. We model how the customer ed-
ucation efforts at various institutions (or even departments
within a single institution) impact one another based on the
consistency of the messaging between different organiza-
tions in an example network. We show the resulting over-
investment by a subset of the parties within the network due
to a single entity with conflicting customer communication
policies and show that the subset includes parties that have
consistent messaging with the majority.

The third case study discussed in this paper is based
on anti-spam efforts through email routing path verifica-
tion, such as Sender ID, Sender Policy Framework (SPF),
and Domain Keys (15; 19; 12). Generally speaking, these
frameworks allow an organization that sends or routes email
to insert information into the email that can be verified by
the receiver. The verification method generally relies on
extended DNS information, in some cases merely requir-



ing additional DNS records, and in other requiring crypto-
graphic information in email and verification keys in DNS
records. At first glance, these mechanisms may appear to
appeal only to an organizations altruistic motives: if orga-
nization A adopts an email sender verification system, this
appears only to benefit an organization B that receives email
from A and verifies its sender. However, the true value of
these mechanisms is more complex. As outlined in Mi-
crosoft’s Sender ID Whitepaper (16), an organization that
adopts Sender ID benefits directly by protecting the organi-
zation’s brand against spammers who forge email from the
organization. Another direct benefit is the enhanced deliv-
ery of authentic email from the organization, as we discuss
in section 6.3. While vendors claim that the cost of deploy-
ing these methods is low, because the computational load
on servers is relatively low (16), there are still system ad-
ministration and maintenance costs that must by balanced
against the direct and indirect benefits. In order to evalu-
ate the situations in which an organization may rationally
decide to adopt Sender ID or related mechanisms, we con-
sider a model in which we have two types of nodes, busi-
nesses and email service providers. Modeling an example
network with six nodes, we show how in this case, email
service providers have no incentive to invest in an email
routing path verification framework. Despite the negative
externality still present in this system, we find that overall,
the businesses benefit from the relationships and in general
invest less than they otherwise do as an isolated node. Re-
sults are summarized in section 6.3.

2. Related Work

The literature which provides the context for this area of
research can be divided into the economics of information
security and network game theory.

The concept that security policy can be optimized
through modeling is a growing area of research.
Anderson(4) provides an overview of the body of
work has been created around this discipline. They argue
that fundamentally, divergent interests creates as much a
problem as technical design with regards to information
security. One of the foundational concepts that has been
richly discussed is that the lack of information security is
often considered to be a negative externality much like air
pollution (9). As such, investment in information security
causes positive externalities. While this is largely true,
we suggest in this paper that the externality caused by
investment in security can be both positive and negative.

The extent to which these externalities impact the level
of investment by each party depends on not only the net-
work, it depends on the nature of the relationships between
the parties. Varian(18) examines free riding and welfare for
several symmetric, two player models, including a “total ef-
fort” structure that is similar to our linear influence formu-
lation. Our work extends some of these ideas by allowing

for arbitrary numbers of players with potentially asymmet-
ric relationships. We also introduce a metric for quantifying
the extent of free riding, something not addressed in Var-
ian’s work.

Another influential model along these lines is by Heal
and Kunreuther(14) which notes the interdependent struc-
ture of information security and studies the impact of this
structure within a game theoretic framework. They charac-
terize the equilibrium of a model in which agents choose
to either invest or not invest where an investment in a par-
ticular shared resource (the canonical example was airline
baggage security) leads to increased security. Our work, in
contrast, considers any level of investment in[0,∞) and al-
lows for situations in which investments in security cause
negative externalities. Within the context of informationse-
curity modeling, our major contribution here is a model that
allows asymmetric relationships that can be characterized
as either beneficial or detrimental with an arbitrary number
of players.

Various network game theoretic models have been stud-
ied in the existing literature. Most of these have assumed
symmetryin either the underlying network or player utility
functions. In particular, we call the reader’s attention toGa-
leotti et al.(13), a working paper that posits a general model
for network games in which the payoff of each player is de-
pendent only on its number of neighbors while these players
have incomplete informationabout the network structure.
Our model allows for players to haveasymmetricpayoffs
and neighbor relationships but under an assumption ofcom-
plete information.

In the working paper, Yolken et al.(6), we provide
the theoretical results associated with this linear influence
model and delve more deeply into technical details. We
also present results which show how monotonic improve-
ments can be made given perturbations of certain model
parameters. Ballester et al.(5) similarly considers interde-
pendent games and explore existence and uniqueness con-
ditions relating these to theKatz centrality measurefor the
underlying network of player-to-player interactions. The
fundamentals of our model, although developed indepen-
dently, are the same in that they too, recognize the connec-
tion between the optimality conditions with respect to the
Nash Equilibria and a linear complementarity problem. But
where they focus on the the implications of their theory for
the various cases of strategic substitutes and complements,
this paper applies this model specifically to the case of in-
formation security and discusses the implications of the as-
sumptions made within this context with some qualitative
insight into the information security context. We also show
a convergent algorithm that allow agents to arrive at the
Nash Equilibrium in a distributed manner. We were orig-
inally motivated to study this linear influence model based
on some of the interdependent relationships we saw in the
security setting. Therefore, we consider the application in
this setting not only natural but also quite important.



3 The Model

3.1 Network Model

Consider a network of autonomous players with interde-
pendencies as discussed in the introduction. We represent
this network using aweighted directed graph, G = {N , E}
of nodesN and edgesE . Each node represents an au-
tonomous player (e.g. an enterprise making security invest-
ment decisions or websites) while the directed link between
two players represents some sort of dependence between
those players (e.g. the security of the originating node influ-
ences the security of the destination node). The set of nodes
hasN elements, one for each player, indexed asni for
i = 1 . . .N . The set of links, contains an elementeij if a de-
cision by nodei influences nodej. For each edge there is an
associatedweight, ψij ∈ R, representing the “strength” of
the link or the degree of influence of one player on another.
It follows that we can encode the combined connection and
weight information into a single matrix,W ∈ R

N×N , as
follows:

Wij =







1 if i = j

ψij if eij ∈ E
0 otherwise

(1)

An example network and the associatedW matrix is
shown in Fig. 1 above.

3.2 Incentive Model

Suppose that each player,i, autonomously chooses a
level of investmentxi ∈ [0,∞). In vector form, we write
the investment levels of all players asx ∈ R

N . Because
of interdependencies between the systems, actions by one
node can produce eitherpositiveor negative influences /
externalitieson its neighbors, as discussed previously. In
particular, assume that ifeij ∈ E , then nodej’s choice is
increased (or decreased) by the productψijxi. For ease of
notation, we takeW = WT in the remainder of this pa-
per, with the components of this matrix denotedwij . Note
thatWxi represents the total effective investment in secu-
rity place by all players in the network into nodei. Suppose
that each player/agent has an associateutility function that
quantifies its relative preferences for certainx outcomes
over others. One can think of this utility function as a func-
tion that translates the effective investment in security into
the total “benefit” experienced by that player.

We assume that these functions take the following, quasi-
linear form:

Ui(x) = Vi((Wx)i)− cixi (2)

for some functionVi(·) andci > 0 for each user.cixi is the
linear cost due to the level of effort or investment made by
agenti.
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Figure 1. Example linear influence network
and corresponding connection/weight ma-
trix, W . Player 1 has no outgoing links, so its
decisions have no effect on the other players.
Player 2’s investments produce a small posi-
tive externality for 1. Investments by player 3
produce relatively large positive externalities
for players 2 and 4. Finally, players 4’s deci-
sions produce a small positive externality on
1 and small negative externalities on 2 and 3.

For mathematical tractability, we make the following as-
sumptions:

Assumption 3.1 EachVi(·) function is

1. continuous

2. strictly increasing,and

3. strictly concave

on [0,∞). Moreover

4. V ′
i (0) > ci and

5. limx−>∞ V ′
i (x) < ci

The fourth condition requires that the costs be low enough
so that investment is feasible for each user; the fifth ensures
that the optimal investment level for each user is finite. This
form also suggests diminishing returns for each additional
dollar of investment in security.

Given this model, we now consider the single stage,
complete informationgamein which all players simultane-
ously announce investment levels and receive utility from
the resultingx. As is commonly done in the literature, we



Notation Description
Wij weight of playeri’s influence onj for i 6= j; otherwise1
wij weight of playerj’s influence oni for i 6= j; otherwise1; (=Wji)
x vector of player strategy / investment choices

x−i vector of strategies of all players other thani
(Wx)i total “effective investment” experienced byi
Vi(·) “value” received byi as a function of the previous term
Ui(x) total utility of i (i.e., “value” - “cost”) given its own strategy and those of all other players
gi(x) playeri’s utility-maximizing, “best” response tox
ci cost experienced byi for each unit of its own investment
bi point at whichV ′

i (·) = ci
γi “free riding ratio” experienced byi

Table 1. Summary of notation. More details for each term can b e found in the appropriate sections
of the paper body.

restrict our attention to outcomes which areNash Equilib-
ria (NE) in pure strategies, i.e. “stable” points at which no
user has an incentive to unilaterally deviate. More formally,
these arex = (xi,x−i) values for which

Ui(xi,x−i) ≥ Ui(x
′
i,x−i) ∀i, xi ∈ [0,∞) (3)

Alternatively, one can also define a Nash Equilibrium in
terms of a “best-response” function. To this end, let:

gi(x) = arg max
xi≥0

Ui(xi,x−i) (4)

with g(x) = (g1(x, g2(x), . . . , gN(x))). It then follows
from the definitions above that a feasible investment vector,
x, is a Nash Equilibrium if and only if

x = g(x) (5)

i.e.,x is a fixed point ofg.

4 Equilibrium Properties

4.1 Optimality Conditions

We now examine the properties of equilibria in the given
game, beginning with the associated optimality conditions.
To this end, letbi represent the (single) positive value at
which V ′

i (·) = ci. By the assumptions made previously,
bi exists and is strictly positive for each user.bi represents
the optimal level of investment made by playeri should no
network effects / externalities exist.

It then follows from the first order optimality conditions
that any equilibrium,x, must satisfy

(Wx)i = bi if xi > 0
(Wx)i ≥ bi if xi = 0

(6)

and, by the concavity assumptions made previously, that
these conditions are also sufficient.

Equivalently, we can express the optimality conditions in
terms of finding vectorsx andy such that

y = Wx− b

yTx = 0
x ≥ 0, y ≥ 0

(7)

Any solution(x∗,y∗) encodes both the NE investment lev-
els and the “slacks” on those users who invest nothing.

The conditions thus take the form of the classic, ex-
tensively studiedlinear complementarity problem(LCP)
(11)(7). Because, as mentioned previously, these optimality
conditions are both necessary and sufficient, it follows that
finding a NE for our game is equivalent to solving the asso-
ciated LCP forx∗. By leveraging results from the latter, we
can easily derive strong existence, uniqueness, and conver-
gence results for the given game, as discussed in the next
section.

4.2 Existence and Uniqueness

We begin with the following definition:

Definition 4.1 A matrix A ∈ R
n×n is strictly diagonally

dominantin the row sense if
∑

j 6=i |wij | < |wii| = 1 ∀i.

SupposeW is strictly diagonally dominant. This has the
interpretation, in the specific case of our model, that the in-
vestment by all systems other thani of some fixed amount
produces less value fori, in absolute value, than individual
investment of the same fixed amount. However, an entity’s
investment in itself may end up being more valuable to an-
other entity than to itself. The value of an investment is
reflected in the utility function which can be different be-
tween entities. In other words, even if a fixed amount of
investment by one entity that doesn’t value security very



much may lead to a small amount of utility for that com-
pany, that investment and subsequent improvement in secu-
rity may lead to a relatively larger increase in utility for a
neighbor that values security.

Based on this diagonally dominant feature, we now have
the following uniqueness theorem:

Theorem 4.2 If W is strictly diagonally dominant, then the
given game has a unique Nash Equilibrium.

Proof: If W is diagonally dominant, then it is also a P-
matrix (i.e. the principal minors ofW are positive). A
P-matrix is a matrix in which every real eigenvalue of each
principal submatrix is positive. A diagonally dominant ma-
trix with positive diagonal elements has only positive real
eigenvalues. Since each submatrix of a diagonally domi-
nant matrix with positive diagonal elements is also diago-
nally dominant with positive diagonal elements, it must be
a P-matrix. ForW that is a P-matrix, the associated LCP
has a unique solution for anyb (see (11)(7)). This provides
an equilibrium for the game.

4.3 Convergence

If the system is atx, and this point is a NE, then it follows
by definition that no user will want to change its investment
level unilaterally. If this point is not a NE, however, then
one or more users will be “unhappy”. In this case, it seems
intuitive that some subset of the latter will update their in-
vestment levels to make them optimal given the currently
observedx. Ideally, this process continues until a NE is
reached, giving an easy to implement, distributed algorithm
for converging to such a point1.

We can formalize such dynamics as follows. Let time be
slotted and indexed ast = 0, 1, 2, . . .. Suppose that “best-
response” updates are takenasynchronouslyand each agent
responds using its own timescale. Using the notation found
in (8), letT i represent the set of times at which useri up-
dates its investment levelxi (if necessary). Assume that
these sets are infinite for each user implying that updates
are done infinitely often. Now consider the following algo-
rithm:

Algorithm 1 Asynchronous Best Response Dynamics
(ABRD)

1: Givenx(0) ≥ 0
2: Sett← 0
3: repeat
4: for i = 1 . . .N do
5: if i ∈ T i then
6: xi(t+ 1) = gi(x(t))
7: else
8: xi(t+ 1) = xi(t)
9: end if

10: end for
11: t← t+ 1
12: until converged

The stopping criterion is||x− g(x)||∞ < ǫ for someǫ > 0.

Theorem 4.3 Suppose thatW is strictly diagonally domi-
nant. Then, ABRD converges to the (unique) game NE from
any starting point,x(0) ≥ 0.

Proof: Let G = |I −W|, a non-negative matrix with all
0 diagonal elements and a maximum row (or column) sum
strictly less than1. By the Gershgorin circle theorem, it fol-
lows that necessarilyρ(G) < 1. Thus, from linear algebra
theory, we have that there exists some N-component vector,
w > 0, such that||G||w∞ < 12.

In (author?) (3), it is proven that the synchronous algo-
rithm satisfies:

|x(t+ 1)− x∗| ≤ G |x(t) − x∗| (8)

Taking theLw

∞ norm of both sides, we have

||x(t+ 1)− x∗||w∞ ≤ || G |x(t)− x∗| ||w∞
≤ ||G||w∞ ||x(t)− x∗||w∞
= β||x(t) − x∗||w∞

(9)

for some constant0 < β < 1. Thus, the synchronous al-
gorithm represents apseudocontractionwith respect to the
weighted infinity norm.

Using the notation from (8), define the sets

X(k) = {x ∈ R
N
+ : ||x− x∗||w∞ ≤ βk||x(0)− x∗||w∞}

(10)
We then have that:

1. . . . ⊂ X(k + 1) ⊂ X(k) ⊂ . . . ⊂ X(0)

2. g(x) ∈ X(k + 1) ∀k andx ∈ X(k)

3. For any sequencexk ∈ X(k) ∀k, limk→∞ = x∗

4. For eachk, we can writeX(k) = X1(k) × X2(k) ×
. . .×Xn(k) for setsXi(k) ⊂ R+.



It then follows from theAsynchronous Convergence The-
oremin (8) that the corresponding asynchronous algorithm,
ABRD, also converges. We thus arrive at the desired result3.

5 Free Riding

As discussed previously, our model has the property that
investments by one user can produce externalities on its
neighbors. When a player benefits from positive externali-
ties produced by a neighbor, the affected player ultimately
invests less than it would in isolation. In economics, this
is commonly referred to as “free riding”. For example, if a
company has an finite optimal level of security it would like
to have (due to the diminishing returns we described ear-
lier), in isolation the company would investbi. However,
with positive externalities from its neighbors, that same
company no longer needs to bear the full burden of invest-
ing in security for itself. When a player receives negative
externalities from a neighbor, the affected player is forced
to invest more than it would in isolation. For example, if
a company’s security is known to be more lax than a com-
petitor’s, attackers may be more likely to attack. As a result,
companies faced with such externalities are likely to try to
invest more when a competitor increases their investment in
security. These relationships are what we hope to capture
with what we call the “free riding ratio” which we define
more formally below.

5.1 Free Riding Ratio

To quantify the effects, we propose the following metric:

Definition 5.1 (Free Riding Ratio) Given the game pa-
rametersW, Vi(·), and c, we then define the free riding
ratio for each user,i, as:

γi =
(Wx)i − xi

bi
(11)

Likewise, define the vectorγ as(γ1, γ2, . . . , γN ).

So,γi represents the ratio of the externalities produced
by i’s neighbors over the amount it would invest in isola-
tion. Sincebi > 0, ||x|| < ∞, this ratio is always finite
and well defined. Note thatγi can take any value inR. If
this quantity is negative, then we have a situation wherei is
forced to over invest, since the neighbors’ contributions is
a net negative. If this value is0, we have no free riding in
either the positive or negative sense. If0 < γi < 1, then
we have some limited free riding, but, even in the most ex-
treme case, useri is investing a positive amount. Ifγi ≥ 1,
however, we have “complete” free riding andi contributes
nothing and depends completely on its neighbors.

3 1 2

7 8 9
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Figure 2. Network for web authentication ex-
ample. Firms 1 and 2 are “high risk,” whereas
all others are “low risk.” Dotted links have
weight −0.1, thin, solid links have weight 0.1,
and thick, solid links are assigned a weight
of 0.2.

6 Examples and Simulations

6.1 Web Authentication

Consider a collection web-enabled firms. A connection
between two firms implies that they have customers in com-
mon who use the same username and password on both
sites. If an attacker were able to steal the user database
from one firm, decrypt the file and try the username and
passwords on a neighboring site, they may be able to access
confidential data or even worse, drain the funds out of an
account. The level of security at one firm, then, impacts the
risk faced by a neighboring firm.

In our model, each firm makes an investment in com-
puter / network security which makes them less susceptible
to hostile attacks on their data or network. In this specific
example, we have two types of firms: “high risk” firms are
those firms for whom security is amust. Due to the nature
of their business, they are commonly targeted by attack-
ers. This category includes financial institutions and gov-
ernment agencies, among others. “low risk” firms are ones
for whom security isnice to have. These firms are generally
more social in nature (e.g. Classmates.com, Flickr). They
are not the ultimate target of an attack but can be used as the
inception point for an indirect attack on a “high risk” firm.
In general, we can have the number of types be as large as
needed.

One of the interesting aspects of this model is that when
two firms from the same type are connected to one another,
each is negatively impacted by its neighbor’s investment in
security. Should a neighboring firm of the same type in-



vest in security, it makes that firm less attractive to attackers
and the neighboring firms relatively more attractive to at-
tack. When a “high risk” firm is connected to a “low risk”
firm, they both benefit from a neighbor’s investment in secu-
rity although this relationship is not symmetric; the benefit
the “high risk” firm experiences from a neighboring “low
risk” firm’s investment is larger than the benefit the “low
risk” firm experiences from the same investment made by a
neighboring “high risk” firm. This asymmetry results from
the fact that an attacker will generally not attack a “high
risk” firm in order to get access to one of its “low risk”
neighbors.

Assume the utility function for firmi takes the form
Ui(x) = βi log((Wx)i) − xi whereβi indicates the rel-
ative importance of security for that particular firm and is
the same for any two firms of the same type. Naturally,
the latter value is higher for a “high risk” firm than a “low
risk” one. With this model in mind, we consider the exam-
ple shown in Figure 2 above. Firms 1 and 2 are “high risk”
while the rest are “low risk”. All edge weight values are
denoted in the Figure caption.

We initially setβ1 = β2 = 10, with βi = 1 for the
remaining, “low risk” firms. The system equilibrium was
computed using an ABRD algorithm. As shown in Table 2
above, the “high risk” firms are forced to invest more than
their fair share in equilibrium (in this case by more than
10%) while firms 5, 6, 8, and 9 invest nothing. Firm 3 in-
vests only a tiny amount because of the strong positive in-
fluences of firm 1’s investment. Firms 4 and 7, on the other
hand, invest nearly what they would if they were isolated
nodes (since firm 3 invests very little). Translating this to
the real world, it is fairly intuitive that the “high risk” com-
panies such as banks end up spending a lot more on security
when compared to content focused websites as this equilib-
rium indicates.

Suppose firm1 now wants to change the degree to which
other smaller companies influence its security. One could
drive this down through customer education efforts or even

Firm xi γi

1 11.09 −0.11
2 11.11 −0.11
3 0.09 0.91
4 1.01 −0.01
5 0 1.10
6 0 1.11
7 1.01 −0.01
8 0 1.10
9 0 1.11

Table 2. Equilibrium for web authentication
example. All values are rounded to the near-
est hundredth.

drive this down to zero by creating incompatible require-
ments for the username and password with those of the
neighbor firms. In particular, fixβ1 = 10 and letw13 =
w15 = w16 = w18 = w19 = ω for some parameterω > 0.
Note thatW will remain strictly (row) diagonally domi-
nant provided that|ω| < 0.18. We would expect that, as
ω increases, firms 3, 5, 6, 8, and 9 increase their security
investments. On the other hand, we would expect firm1’s
investment level to be decreasing inω. The plots in Figures
3(a) and 3(b) show that this intuition is correct. Again, we
have just shown the results for firms1 and3; the plots for
5, 6, 8, and 9 look similar to the latter and are omitted for
brevity. Clearly, then, there is a tradeoff in lowering theω
value.

6.2 Phishing and Customer Education

Consider a collection firms or departments within a sin-
gle firm. Two firms may have customers in common. In
order to prevent phishing attempts, the firms invest in ed-
ucating their customers about their firm’s communication
policies using direct mail, advertisements and even email.
For example, one firm may tell their customers that in email
communications, they will never include a link. Another
policy might be that any link included must begin with
www.companyname.com. Many banks display an image
chosen by the user that is embedded in the website of the
firm to verify that the user is indeed at the firm’s website.

Should two firms that share customers have the same
communication policies, any customer education effort
done by one firm would clearly benefit the other. On the
other hand, if the communication policies contradict one an-
other in any significant way, the customer education effort
by one firm would serve to confuse the shared customers
with respect to the other firm’s policies. The customer ed-
ucation effort at one firm, then, impacts the risk faced by a
neighboring firm.

There are three factors that determine the degree of in-
fluence one firm has on another:

1. The number of shared customers

2. The degree to which policies agree or disagree

3. The importance or prevalence of those characteristics
the policy impacts (e.g. the number of emails that go
out with embedded links)

Using the linear influence model described, each node
is a company with a customer communication policy and a
link exists between two nodes if there are shared customers
between the nodes. One unique feature of this situation is
that the interaction matrixW is symmetric since consis-
tency or inconsistency of the customer communication pol-
icy will impact both parties. In this particular example, each
node has identical utility functions,Vi(x) = 2

√
x. This can

be justified by assuming that each node represents a similar
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Figure 3. Web Authentication model: variation in investmen t levels (solid curves) and free riding
ratios (dotted curves) of firms 1 and 3 as function of the parameter ω.
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Figure 4. Network for customer education ex-
ample. Firm 1 has inconsistent policies rela-
tive to the other firms. Those firms ( 2 - 6) have
policies that are consistent with one another.
Dotted links have weight −0.2, and thin, solid
links have weight 0.1.

company (e.g. a financial institution of roughly the same
size). Suppose the cost is allci = 0.50 for all users. This
implies thatb = 0.25e. With a six user example shown
in figure 4, we assume that consistent consumer policies re-
sults in a 0.1 influence factor where inconsistent policies re-
sult in a -0.2 influence factor. An inconsistent policy serves
to confuse the consumer more than the reinforcement a con-
sistent policy would provide.

We obtain the equilibrium for customer education invest-
ment levels and free riding ratios as listed in table 3. In this
example, the positive externalities experienced by node 3
serve to counteract the negative externality from node 1.
Node 3, therefore is able to invest less than it otherwise

Firm xi γi

1 0.41 −0.66
2 0.29 −0.16
3 0.24 0.04
4 0.29 −0.16
5 0.18 0.28
6 0.18 0.28

Table 3. Equilibrium for phishing example. All
values are rounded to the nearest hundredth.

would, 0.25. Nodes 2 and 4, on the other hand, must com-
pensate for the negative externality they experience from
node 1 and must invest more than they otherwise would. In
total, the nodes invest 1.59 where they should be investing a
total of 1.50 if there were no interaction. If node 1 changes
its policy to be consistent with all of the other firms, every-
one collectively invests less (0.15 for node 3 and 0.20 for
all other nodes) so that the sum total of investment is 1.13,
a 25% improvement in the level of investment needed by all
of the firms. This model, then, serves to show the degree
to which customer education costs could potentially be cut
should policies actually be consistent between departments
within a particular firm. Anecdotally, we have heard that
even within a particular bank, the different product groups
might have conflicting policies with regards to their cus-
tomer communication. Such discrepancies clearly lead to
increased cost either due to customer confusion or in the
increased customer education effort required.



6.3 Spam and email path verification

As described in the introduction of this paper, an increas-
ing number of organizations have adopted and deployed
anti-spam efforts through email routing path verification
frameworks such as Sender ID, Sender Policy Framework
(SPF), and Domain Keys (15; 19; 12). Generally speak-
ing, these frameworks allow an organization that sends or
routes email to insert information into the email that can be
verified by the receiver. In Sender ID, which evolved from
SPF and the CallerID proposal developed by Microsoft, do-
main owners must identify their sending mail servers by IP
Address in new DNS records. Receivers then verify the Pur-
ported Responsible Address (PRA) against the information
stored in DNS to reject unauthorized messages (2). In the
functionally similar Domain Keys approach developed by
Yahoo!, domain owners must include a digital signature in
outgoing messages and publish their public key in new DNS
records. Receivers then verify the signature against the pub-
lic key available in DNS to reject unauthorized messages
(2). If the signature is not verified, the email is clearly sus-
picious. However, the signature can be verified and found to
be suspicious due to the originating domain address. This is
generally accomplished using some type of reputation sys-
tem.

At first glance, these mechanisms may appear to appeal
only to an organizations altruistic motives: if organization
A adopts an email sender verification system, this appears
only to benefit an organization B that receives email from
A and verifies its sender. However, the true value of these
mechanisms is more complex. As outlined in Microsoft’s
Sender ID Whitepaper (16), Sender ID protects the send-
ing organization’s brand against spammers who forge email
from the organization. (However, the degree to which this
occurs depends on how many receiving organizations de-
ploy Sender ID.) Another direct benefit is the enhanced de-
livery of authentic email from the organization. Specifi-
cally, suppose organization A adopts Domain keys and this
gives organization B a reliable way to identify legitimate
email from A. Not only does this give B a better way to re-
ject unsolicited email that purports to come from A, but B
can be more certain about accepting legitimate email from
A. In particular, email from A that might have been acci-
dently blocked by a content-based spam filter can now be
accepted by B and delivered to its intended recipient. If
email from A to B has business value to A, then this in-
creased delivery of legitimate email from A to B provides
useful return on A’s investment in Domain Keys (or other
such mechanisms). For all of these reasons, if organization
A adopts a email sender verification framework, this also
benefits other organizations that communicate with A by
email. This leads to a very natural instance of the general
linear influence network model, with influence between A
and B based on the quantity or business value of email ex-
changed by the two organizations.

While vendors claim that the cost of deploying these
methods is low, because the computational load on servers
is relatively low (16), there are still system administration
and maintenance costs that must by balanced against the di-
rect and indirect benefits. In particular, the administrative
costs can be high in maintaining a comprehensive inventory
of all IP addresses that can legitimately send email on that
organization’s behalf. This can actually be quite compli-
cated given the wide range of partners or third party vendors
that may do so on a fairly regular basis (e.g. public relations
firms, investor relations, event marketing, help desk). Since
there are several competing frameworks at present, an or-
ganization can choose to deploy one or more of them, with
increasing cost. In addition, a large organization can choose
to leverage an email sender verification method for all of its
incoming and outgoing email, or only a fraction, with costs
varying accordingly.

The level of effort particularly implemented in recogniz-
ing “suspicious email” within a reputation system will lead
to increasing effectiveness which also shows diminishing
returns (e.g. eventually an additional unit of effort in rec-
ognizing spam has very little effect). A link between two
organizations is the existence of email traffic between those
two organizations. The weight associated with a link is de-
termined by two competing interests:

1. Positive influence is derived from the volume of email
as well as the business value of the email that traverses
a link as long as both parties have implemented the
email routing path verification. The outgoing email
for a legitimate organization benefits from increased
investment in email path verification by any neighbor
since legitimate email traffic should pass through spam
filters more reliably. Corporate communication will
also now be verifiable, ensuring that customers are less
likely to become victims of phishing scams. The in-
coming email should benefit as well since increased
investment by others should translate to a larger per-
centage of incoming email traffic with verifiable email
routing paths. In general, any adoption of path ver-
ification should improve the load on the network by
dropping spam.

2. Negative influence is derived from the fact that in-
creased investment by one entity in email path verifica-
tion will likely focus spammers on other organizations.
Since spammers are trying to bypass spam filters with
the least amount of effort, they are more likely to fo-
cus on organizations with smaller investments in spam
filters. As such, we can expect larger amounts of spam
to be directed at organizations that have less effective
email path verification or no such protection at all.

In order to evaluate the situations in which an organi-
zation may rationally decide to adopt Sender ID or related
mechanisms, we consider a system in which there are two
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Figure 5. Spam filtering model: variation in investment leve ls (solid curves) and free riding ratios
(dotted curves) of business 1 and email service provider 3 as function of the parameter β which is
changed for nodes 4 and 5.

types of nodes: businesses that are potential targets for
phishing scams (e.g. banks, payment services, online busi-
nesses) and email service providers (e.g. hotmail, yahoo,
gmail). As mentioned above, a link indicates email traffic
between the two nodes. Each link has varying weights de-
pending on the types of nodes it connects:

1. Business to email service provider: The externality is
positive since an email service provider is more effec-
tively able to filter for spam with more businesses par-
ticipating. However, the impact of a single business on
an email service provider is relatively small

2. Email service provider to business: The external-
ity here on one hand is minimal since verifying the
email service provider does little to reduce spam since
spam tends to originate from many of these service
providers. On the other hand, when the email service
provider implements email path verification, this al-
lows businesses who can verify their identity with their
emails to ensure that their communication will reach
their end customer without being falsely identified as
spam. This is actually quite valuable to the business
and results in a positive externality for the business.

3. Business to business: The externality is positive since
the path verification for an email from another business
is valuable in identifying spam. There is a slight nega-
tive externality resulting from the fact that any increase
in investment for one business will result in phishing
scams focused on other businesses (e.g. if I know that
you have put in place an email path verification system,
I am less likely to try to phish your customers since
those emails are more likely to be filtered out). The

net externality is still positive since the sheer number
of businesses makes that effect minimal.

4. Email service provider to email service provider: The
externality is a net negative. Whereas when a business’
verification gives the author of the email credibility,
the verification of an email service provider does lit-
tle to ensure that the email received is not spam. In
addition, similar to the business to business case, the
implementation by another email service provider of
email path verification or increase in investment will
focus phishing scams and spam away from that email
service provider potentially making its neighbor more
susceptible to phishing attacks and spam.

As an example, we generated a small network of 6 nodes
as seen in figure 6. Two nodes,4 and 5, are email ser-
vice providers while the others are businesses. The utility
function for each node isUi(x) = βi((Wx)i)

αi . We set
αi = 0.3 ∀i. We start withβi = 4 for all businesses and
βi = 1 for email service providers. This results in the fol-
lowing:

In this setting, as seen in table 4, the email service
providers have no incentive to invest in providing email
routing path verification. They are able to free-ride off
of the investments made by the businesses. If theβi for
email service providers is gradually increased as seen in
figure 5, the email service providers eventually have in-
centive to invest in routing path verification (roughly when
β4 = β5 = 3). What this means is that the email service
providers need to value this service (whether it is motivated
by penalties imposed or by customer migration away from
service providers who don’t provide this service) more in
order for them to invest in this service.
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Figure 6. Network for email routing path veri-
fication example. Firms 4 and 5 are email ser-
vice providers and the others are businesses.
Dashed links have weight 0.2, thin, solid links
have weight 0.1, thick, solid links are as-
signed a weight of −0.1 and dotted links have
weight 0.05.

Firm xi γi

1 5.18 0.29
2 5.18 0.29
3 5.18 0.29
4 0 1.14
5 0 1.14
6 7.25 0

Table 4. Equilibrium for email verification ex-
ample. All values are rounded to the nearest
hundredth.

The value of this model is not to say that these results are
representative of actual relationships between businesses
and email service providers. Rather, a decision maker with
better knowledge of the incentives and quantitative data on
the benefits associated with these decisions could use this
type of model to create policies that serve the best interest
of all involved parties.

7 Conclusion and future work

The game theoretic models of interaction “networks” is
a useful framework by which we can address the interde-
pendent nature of security investment decisions. The trade-
off between the risk associated with information technology
versus the cost of implementing security policies is a long
standing problem. We offer in this paper one such model
that can be applied in a number of different scenarios to

help inform better policy decisions.

We have developed a general quantitative model based
on “linear influence networks” to model interdependent se-
curity investments. The agents in this model interact in
a game of perfect information resulting in a unique Nash
Equilibrium. We show that an asynchronous, iterative strat-
egy by all agents will converge to the unique Nash Equilib-
rium from any starting point.

We applied this model in three different settings. In the
first, we modeled the password-based web authentication
method used in a wide variety of websites. We noted that
many users use the same username and password at multi-
ple sites. We showed how in this case, the overlap in users
between websites created interdependencies that ultimately
resulted in certain types of websites investing more than
their fair share.

In a second scenario, we modeled the customer outreach
efforts that aim to educate them on phishing and identity
theft. Clearly inconsistent messaging results in significant
over-investment in customer education. With this model,
we can see which departments or firms are forced to over-
invest as a result of inconsistent messaging.

Last, we applied this model to the email routing path ver-
ification setting. Here, we model two types of entities: busi-
nesses and email service providers. Based on the email traf-
fic between these entities, various levels of externalitiesare
exerted on the agents in the model. We found that in gen-
eral, the email service providers were not always inclined to
invest in routing path verification. It required making sure
that the email service providers valued the routing path ver-
ification service (through penalties for lack of installation
or added benefits for installation) in order to motivate email
service providers to invest.

These examples serve as case studies rather than true
models of these scenarios. We hope that these examples can
motivate the use of economic modeling and in particular,
“network” game theoretic modeling of security problems to
highlight incentives and risks associated with organizations
that have interdependent operations.

Future work with this model includes design questions
based on these models: given what we know, what incen-
tives can we put in place to arrive at a “better” Nash equi-
librium? Similarly, what changes can we make to the struc-
ture of the network in order improve the resulting equilib-
rium? We also plan to explore the possibility of relaxing
some of the fundamental assumptions such as the diagonal
dominance of the linear influence matrix. By doing so, we
open the possibility of more generalized investment deci-
sions so that agents can invest not only in themselves but in
other entities as well. In doing so, we should be able to ad-
dress a larger variety of questions including whether or not
entities would be well served by subsidizing other entities
in their security investments.
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