
A Comparison between Strand Spaces and Multiset Rewriting for
Security Protocol Analysis∗

Iliano Cervesato
ITT Industries, Inc.

iliano@itd.nrl.navy.mil

Nancy A. Durgin
Sandia National Laboratories

nadurgi@sandia.gov

Patrick D. Lincoln
SRI International

lincoln@csl.sri.com

John C. Mitchell
Stanford University

jcm@cs.stanford.edu

Andre Scedrov
University of Pennsylvania

scedrov@cis.upenn.edu

Abstract

Formal analysis of security protocols is largely based on a set of assumptions commonly referred to as
the Dolev-Yao model. Two formalisms that state the basic assumptions of this model are related here:
strand spaces and multiset rewriting with existential quantification. Strand spaces provide a simple and
economical approach to analysis of completed protocol runs by emphasizing causal interactions among
protocol participants. The multiset rewriting formalism provides a very precise way of specifying finite-
length protocols with unboundedly many instances of each protocol role, such as client, server, initiator, or
responder. A number of modifications to each system are required to produce a meaningful comparison. In
particular, we extend the strand formalism with a way of incrementally growing bundles in order to emulate
an execution of a protocol with parametric strands. The correspondence between the modified formalisms
directly relates the intruder theory from the multiset rewriting formalism to the penetrator strands. The
relationship we illustrate here between multiset rewriting specifications and strand spaces thus suggests
refinements to both frameworks, and deepens our understanding of the Dolev-Yao model.

Keywords: Cryptographic Protocols, Specification Methodologies, Strand Spaces, Multiset Rewriting.

1 Introduction

The late 1990’s saw a burst of research in security protocol analysis which yielded theoretical insight [16]
and enhanced verification techniques [20, 29]. The cornerstone of these endeavors was a rising tide of
formal notational frameworks for protocols, among them the spi-calculus [1], strand spaces [33] and mul-
tiset rewriting [10]. A first attempt to sort out the diverse languages, security assumptions, and execution
models, appeared in an early version of this work [9], which focused on the relationship between strand

∗Partial support for various authors by OSD/ONR CIP/SW URI “Software Quality and Infrastructure Protection for Diffuse Com-
puting” through ONR Grant N00014-01-1-0795, by NRL under contract N00173-00-C-2086, by DoD MURI “Semantic Consistency
in Information Exchange” as ONR grant N00014-97-1-0505 and by NSF grants CCR-9509931, CCR-9629754, CCR-9800785, CCR-
0098096, and INT98-15731.

1

spaces [33, 34, 23] and a formalism based on multiset rewriting [10]. In the years that followed [9], re-
searchers built several more bridges between languages for cryptographic protocol analysis, producing an
almost complete map by now: strand spaces and multiset rewriting are tied to linear logic in [8]; mappings
between process algebra, Petri nets (a close relative of multiset rewriting), strand spaces and inductive mod-
els are given in [11]; strand spaces and BAN logic are related in [32]; similarities between strand spaces
and multi-agent systems are investigated in [21]; and the relation between multiset rewriting and process
algebraic specifications is analyzed in [3, 27]. These theoretical investigations allow researchers to under-
stand precisely how their results are related, often enabling a direct transfer of properties such as secrecy
and many forms of authentication as most of these formalisms ultimately rely on a trace-based semantics.
This observation is put into practice in the CAPSL Intermediate Language (CIL — another close relative
of multiset rewriting) [14] and the numerous “connectors” translating CIL specifications to and from other
languages and tools [5, 13, 25].

Protocol execution steps can be seen as inducing local changes to a global state consisting of messages
in transit and the private data of each principal. This view was sharpened into a rigorous, formal language
based on multiset rewriting with existential quantification [10, 16]: multiset rewrite rules represent proto-
col actions that can alter the portion of the global state visible to a principal. Messages and local data are
represented symbolically in accordance with the Dolev-Yao abstraction [15, 28], while existential quantifi-
cation, as commonly used in formal logic, provides a natural way of choosing new values, such as fresh
keys or nonces. Protocol execution is carried out symbolically, with the behavior of the standard Dolev-Yao
intruder explicitly implemented as rewrite rules. This model formed the core of CIL [14], which was de-
signed as a neutral intermediate language for the exchange of specifications written for diverse verification
tools [5, 13, 25]. This model also forms the core of the more recent MSR specification framework [7], an
expressive and usable high-level language for describing cryptographic protocols.

Strand spaces [33, 34, 23] are a highly popular formalism for describing the result of a protocol execution
as they visualize the causal interactions among individual steps. Roughly, the actions of each protocol
participant are linearly ordered into strands, while a second spatial dimension connects complementary
events of different principals, e.g. the transmission and reception of a given message. It should be observed
that strand spaces were designed as a means to represent completed executions, both normal and malicious,
and therefore offered only an indirect way of expressing protocols themselves. In this light, they provide a
simple and succinct framework for state-based analysis of completed protocol runs. State space reduction
techniques based on the strand space framework are utilized in an efficient automated checker, Athena [31].
It has recently been observed [11, 17] that strand spaces are closely related to process-based specification
language such as the spi-calculus [1].

Since both multiset rewriting and strand spaces are used to specify cryptographic protocols and their
(mis-)behaviors, one would expect them to be equivalent in some way. Producing a meaningful equivalence
requires a heavy infrastructure and may be obtained only after a number of modifications are made in each
setting. We shall trace these difficulties to two orthogonal aspects of these languages.

• First, they differ in their inherent focus: multiset rewriting provides a syntax to write protocols and
a semantics to produce valid executions, while strand spaces offer static specifications of protocol
executions, from which the protocols themselves can be glimpsed only in an indirect light.

We choose to bring strand spaces on a par with multiset rewriting by endowing them with a syntax
to express protocols as first-class objects, and a semantics that incrementally grows strand spaces (in
the original sense) as an execution of a protocol unfolds. The resulting notion of parametric strand
has since [9] been adopted under different names by numerous researchers, e.g. [11, 17].

We also make minor changes to the multiset rewriting formalism, in particular with the elimination of
the original “initialization phase” [10] which specifies rules to define principals and distribute shared,

2

public, or private keys. This information is now statically assumed as part of the initial state, in line
with most protocol specification languages, including strand spaces, CIL and MSR.

• A second major difference derives from the underlying paradigm for specifying concurrent execu-
tions. As noted above, multiset rewriting is state-based, operating through local transformation on
an explicit global state, while strand spaces are process-based with emphasis on communication be-
tween strands. This subtle distinction is a well-known problem in concurrency theory and has been
repeatedly addressed, starting with [2]. It has recently been isolated relative to protocol specification
in [3]. The material presented here specializes this account to strand spaces and multiset rewriting,
and integrates it with the alterations outlined above.

The resolution of these two issues accounts for most of the machinery in this paper, with the rest taken
up by minor syntactic differences. In the end, it provides effective procedures for faithfully translating the
specification of security protocols, and in particular their execution, from the strand world into multiset
rewriting, and vice versa. While comparing verification techniques is outside the scope of this paper, it is
worth noting that the correspondence between executions in the two models allows swapping any trace-
based property such as secrecy and most forms of authentication.

This paper is organized as follows: the multiset rewriting formalism is discussed in Section 2. In sec-
tion 3, we introduce strand spaces and present our extensions. The translation from multiset rewriting to
strand spaces is presented in Section 4. The reverse mapping, from strand spaces to multiset rewriting, is
given in Section 5. Section 6 discusses related work, while Section 7 offers some concluding remarks.

2 Multiset Rewriting Theories

This section recalls basic notions pertaining to multiset rewriting (Section 2.1) and introduces the method-
ology by which they can be applied to specify cryptographic protocols (Section 2.2). We deviate from the
original presentation [10] by eliminating the initialization phase in favor of persistent information given
a priori. We also outline the transformation of generic specifications into regular protocol theories (Sec-
tion 2.3), a step that will simplify the comparison with strand spaces. We conclude with a description of the
intruder model tailored to simplify the comparison with strand spaces (Section 2.4).

2.1 First-Order Multiset Rewriting

A multiset M is an unordered collection of objects or elements, possibly with repetitions. The empty
multiset does not contain any object and will be written “·”. We accumulate the elements of two multisets
M and N by taking their multiset union, denoted “M , N ”. The elements we will consider here will be
first-order atomic formulas A(~t) over some signature.

We will make use of the standard definitions pertaining to the variables of first-order logic. In particular,
we write Var(A0, . . . , An) for the set of variables occurring in the multiset of atomic formulas A0, . . . , An.
We say that a (multiset of) formula(s) is ground if no variable appear in it. Finally, substitutions (generally
written δ, θ or ξ) are as usual mappings from variables to generic terms. We write A[δ] for the application
of a substitution δ to a formula A, and use a similar notation for multisets of formulas.

In its simplest form, a multiset rewrite rule r is a pair of multisets F and G, respectively called the
antecedent and consequent of r. We will consider a slightly more elaborate notion in which F and G

are multisets of first-order atomic formulas with variables among ~x. We emphasize this aspect by writing
them as F (~x) and G(~x). Furthermore, we shall be able to mark variables in the consequent so that they

3

are instantiated to “fresh” constants, that have not previously been encountered, even if the rule is used
repeatedly. A rule assumes then the form

r : F (~x) → ∃~n. G(~x, ~n)

where r is a label and ∃~n indicates that the variables ~n are to be instantiated with constants that ought to be
fresh. A multiset rewriting system R is a set of rewrite rules.

Rewrite rules allow transforming a multiset into another multiset by making localized changes to the el-
ements that appear in it. Given a multiset of ground facts M , a rule r : F (~x) → ∃~n. G(~x, ~n) is applicable
if M = F (~t), M ′, for terms ~t. Then, applying r to M yields the multiset N = G(~t,~c), M ′ where the
constants ~c are fresh (in particular, they are distinct from any symbol appearing in M or r), ~x and ~n have
been instantiated with ~t and ~c respectively, and the facts F (~t) in M have been replaced with G(~t,~c) to
produce N . Here, θ = [~t/~x] is the matching substitution of rule r with respect to M , while ξ = [~c/~n] is
its fresh constant substitution. We write δ for the composite substitution (θ, ξ) and call it the instantiating
substitution of rule r with respect to M . We denote the application of a single rule and of zero or more
rewrite rules from the rewriting system R by means of the one-step and multistep transition judgments:

M
(r,δ)
−→RN M

~r,~δ
−→∗

RN

respectively. The labels r and ~r identify which rule(s) have been applied together with its (their) instantiat-
ing substitution(s). Thus, ~r acts as a complete trace of the execution.

2.2 Protocol Theories

We model protocols by means of specifically tailored first-order multiset rewriting systems. We present
here a simplified version of the model introduced in [10, 16]. We will further refine it in Section 2.3 to
achieve a meaningful comparison with the strand formalism. We rely upon the following atomic formulas:

Persistent information: Data such as the identity of principals and their keys often constitute the stage on
which the execution of a protocol takes place, and does not change as it unfolds. We will represent
and access this persistent information through a fixed set of persistent predicates that we will indicate
using a slanted font (e.g. KeyP, as opposed to N). A selection of persistent predicates is described in
Appendix A.2.

In [10, 16], we described the choice of the persistent data by means of a set of multiset rewrite rules of
a specific form, that we called the initialization theory. We showed that the application of these rules
can be confined to an initialization phase that precedes the execution of any other rule. Let Π be the
resulting set of ground facts.1 Strand constructions assume instead that the persistent information is
given up-front as a set. We reconcile the two approaches by dropping the explicit initialization phase
of [10, 16] and assuming Π given. We will allow individual rules to query Π (but not to modify it).
Therefore, for every rule, the persistent predicates appearing in its antecedent and consequent shall
be identical. We will generically indicate them as π, or π(~x) when emphasizing the variables they
may mention.

Network messages: Network messages are modeled by the predicate N(m), where m is the message being
transmitted. Having a distinct network predicate for each message exchanged in a protocol specifica-
tion, as done in [10, 16], is equivalent, but would obscure the translation in Section 5. Messages will
consist of the class of terms freely generated from atomic messages (principal names, keys, nonces,
etc.) by the operators of concatenation, denoted “ , ”, and encryption, written “{ } ”. The detailed
syntax of messages is presented in Appendix A.

1Constraints on the initialization theory prevent Π from containing duplicates [10, 16]

4

Initiator

rA0 : πA(A,B) → A0(A, B), πA(A, B)

rA1 : A0(A,B) → ∃NA. A1(A, B, NA),
N({NA, A}KB)

rA2 : A1(A, B,NA),
N({NA, NB}KA)

→ A2(A, B, NA, NB)

rA3 : A2(A,B, NA, NB) → A3(A, B, NA, NB),
N({NB}KB)

Responder

rB0 : πB(A,B) → B0(A, B), πB(A, B)

rB1 : B0(A, B),
N({NA, A}KB)

→ B1(A, B, NA)

rB2 : B1(A, B, NA) → ∃NB . B2(A, B, NA, NB),
N({NA, NB}KA)

rB3 : B2(A,B, NA, NB),
N({NB}KB)

→ B3(A, B, NA, NB)

where πA(A,B) = Pr(A), PrvK(A, K−1

A
), Pr(B), PubK(B, KB)

πB(A,B) = Pr(B), PrvK(B, K−1

B
), Pr(A), PubK (A, KA)

Figure 1. Multiset Rewriting Specification of the Needham-Schroeder Protocol

Role states: We first choose a set of role identifiers ρ1, . . . , ρn for the different roles constituting the pro-
tocol. Then, for each role ρ, we have a finite family of role state predicates {Aρi(~m) | i = 0, . . . , lρ}.
They are intended to hold the internal state of a principal in role ρ during the successive steps of the
protocol.

This scheme can immediately be generalized to express roles that can take conditional or non-
deterministic actions (e.g. toss a coin to choose among two messages to send — useful for zero-
knowledge proofs for examples — or respond in two different ways depending on the contents of an
incoming message — useful for intrusion detection). We simply need to alter our naming convention
for role states and rules (below) to take alternatives into account.2 This paper will consider only lin-
early ordered role states, as the layer of technicality required to treat the general case would obscure
the comparison with strands.

Intruder knowledge: The unary predicate symbol I is needed to model the intruder’s knowledge in a
distributed fashion. It will be discussed at length in Section 2.4. This predicate shall not be accessible
to honest principals.

We represent each role ρ in a protocol by means of a single role generation rule and a finite number of
protocol execution rules. The purpose of the former is to prepare for the execution of an instance of role ρ.
It has the form

rρ0 : π(~x) → Aρ0(~x), π(~x).

2Indeed, any partial ordering of the role state predicates will implement a well-founded protocol theory, as defined in [10, 16].

5

where, here and in the rest of the paper, π(~x) denotes a multiset of persistent atomic formulas that may
mention variables among ~x. This portion of the antecedent will be matched against Π, with the effect of
instantiating ~x to actual persistent values such as principal names and keys. This implements a form of
look-up. Notice how persistent information is preserved.

The execution rules describe the messages sent and expected by the principal acting in this role. For
i = 0, . . . , lρ − 1, we have a rule rρi+1 of either of the following two forms:

Send:
[
Aρi(~x),
π(~x, ~z)

]
→ ∃~n.

Aρi+1(~x, ~z, ~n),
π(~x, ~z),
N(m(~x, ~z, ~n))

Receive:

Aρi(~x),
π(~x, ~y, ~z),
N(m(~x, ~y))

 →

[
Aρi+1(~x, ~y, ~z),
π(~x, ~y, ~z)

]

where m(~v) stands for a message pattern with variables among ~v. In the first type of rules, we rely on the
existential operator ∃~n to model the ability of a principal to create nonces when sending a message. This
principal can also include some persistent data ~z (e.g. the name and public key of an interlocutor), possibly
related to information it already possesses (~x). In the second rule template, the principal should be able to
access persistent information ~z related to data ~y in the received message m (e.g. the sender’s public key) or
previously known information ~x. Situations where a principal both sends and receives a message, or sends
multiple messages, can easily be expressed by these rules.

A protocol is specified as a set R of such roles. Every R constructed in this way is trivially a well-
founded protocol theory [10, 16]. As an example, Figure 1 shows the encoding of the familiar simplified
Needham-Schroeder public key protocol in the multiset rewriting notation, according to the syntax defined
in Appendix A. For the sake of readability, we omitted the keys in the persistent state predicates.

A state S = (Π, A, N , I) is a multiset of ground facts, where Π is the persistent information, A is a
multiset of role states Aρi(~t), N is multiset of messages N(m) currently in transit, and I is a collection of
predicates I(m) summarizing the intruder’s knowledge. Notice in particular that the initial state, denoted
S0, is just (Π, I0), where I0 contains the information (e.g. keys) initially known to the intruder.

2.3 Regular Protocol Theories

The notion of protocol theory introduced in the previous section, although weaker than our original
definition [10, 16], is too liberal for a direct comparison with the strand formalism. We will instead rely
on the more restrictive definition of regular protocol theory. The role generation rule of a regular role shall
access all the persistent information that will be used in this role. It has therefore the following form:

rρ0 : π(~x) → Aρ0(~x), π(~x).

Consequently, protocol execution rules do not need to mention any persistent information:

Send: Aρi(~x) → ∃~n. Aρi+1(~x, ~n), N(m(~x, ~n))

Receive: Aρi(~x), N(m(~x, ~y)) → Aρi+1(~x, ~y)

Regular protocol theories look up all the persistent information that is used in a role, including the identity
and keys of other parties, before any message is exchanged. As we will see, this is closely related to the
mode of executions of strands. The example in Figure 1, already discussed in the previous section, is indeed
a regular protocol theory.

6

It should be observed that every protocol theory R can be transformed into a regular protocol theory
R̂ by simply moving all the persistent predicate occurring in a role to its role generation rule, and adding
arguments to the role state predicates accordingly. In order to formalize this idea, we write π̂(r) for the
persistent predicates occurring in a rule r. We similarly write π̂(ρ) for the persistent predicates appearing in
role ρ; without loss of generality, we shall assume that variable names are used consistently in the different
rules of a role: in particular every occurrence of state predicate symbol Aρi in ρ is always applied to the
same string of variables. These notions are defined as follows:

π̂(rρ0) = π(~x) where rρ0 = π(~x) → Aρ0(~x), π(~x)

π̂(rρi+1) = π(~x, ~z) if rρi+1 =
[
Aρi(~x),

π(~x, ~z)

]
→ ∃~n.

Aρi+1(~x, ~z, ~n),

π(~x, ~z),

N(m(~x, ~z, ~n))

π̂(rρi+1) = π(~x, ~y, ~z) if rρi+1 =

Aρi(~x),

π(~x, ~y, ~z),

N(m(~x, ~y))

 →

[
Aρi+1(~x, ~y, ~z),

π(~x, ~y, ~z)

]

π̂(ρ) = π̂(rρ0), . . . , π̂(rρn) where ρ = rρ0, . . . , rρn

Then, the regular protocol theory R̂ (resp. role ρ̂ and rule r̂) corresponding to protocol theory R (resp.
role ρ and rule r) is defined as follows:

r̂ρ0 = π̂(ρ) → Âρ0(Var(π̂(ρ))), π̂(ρ)

r̂ρi+1 = Âρi(~x
′) → ∃~n.Âρi+1(~x

′, ~n), N(m(~x ′, ~n)) (1)

r̂ρi+1 = Âρi(~x
′), N(m(~x ′, ~y)) → Âρi+1(~x

′, ~y) (2)

ρ̂ = r̂ρ0, . . . , r̂ρn

R̂ = ρ̂1, . . . , ρ̂m

where
rρ0 = π(~x) → Aρ0(~x), π(~x)

rρi+1 =

{
Aρi(~x), π(. . .),→ ∃~n.Aρi+1(. . .), π(. . .), N(m(. . .)) in (1)
Aρi(~x), π(. . .), N(m(~x, ~y)) → Aρi+1(~x, ~y, ~z), π(. . .) in (2)

ρ = rρ0, . . . , rρn

R = ρ1, . . . , ρm

Here, Âρi is the role state predicate corresponding to Aρi. The definition of rule translation describes how
to compute its arguments: the first of these predicates, Âρ0 is equipped with all the variables occurring
in π̂(ρ), a set that we have written Var(π̂(ρ)) above. The choice of argument of the remaining role state
predicates, Âρi+1 is guided by the form of the rule in which the corresponding Aρi+1 first occurs. Therefore,
the variables ~x ′ in the definitions of r̂ρi+1 are the arguments computed for Âρi+1 in the consequent of rule
r̂ρi.

Example: As a simple example, consider the three-rule role at the top of the following table, in which an
initiator A sends a newly generated nonce NA on the network, and expects it back encrypted with her own

7

private key KA.

rρ0 : Pr(A) → Aρ0(A), Pr (A)

rρ1 : Aρ0(A) → ∃NA. Aρ1(A, NA), N(NA)

rρ2 :

Aρ1(A, NA),
PubK (A, KA),
N({NA}KA

)

 →

[
Aρ2(A, NA, KA),
PubK (A, KA)

]

r̂ρ0 :

[
Pr(A),
PubK(A, KA)

]
→

[
Âρ0(A, KA), Pr (A),
PubK (A, KA)

]

r̂ρ1 : Âρ0(A, KA) → ∃NA. Âρ1(A, KA, NA), N(NA)

r̂ρ2 :

[
Âρ1(A, KA, NA),
N({NA}KA

)

]
→ Âρ2(A, KA, NA)

The corresponding regular role is displayed at the bottom of the table. Observe that all the persistent
information is gathered in the role generation rule r̂ρ0 and no persistent predicates appears in any other rule.
Observe also how the arguments of the role state predicates have been updated.

The transformation we have just outlined does not preserve execution. This can clearly be seen in the
above example: assume that the specification contains a principals a who does not have a public key. Then,
rule rρ0 (and successively rule rρ1) can fire in any state S, resulting in the state (S, Aρ0(a)). Rule rρ2

cannot execute since there is no PubK(a, k) in Π for any k. However, rule r̂ρ0 is not enabled in any
reasonable translation Ŝ of S since there is no ka such that PubK(a, ka) holds.

However, any execution sequence in the transformed system can be mapped back to an application of
the corresponding rules in the original system:

Property 2.1 If S0−→
∗
R̂

S, then S0−→
∗
RS.

Proof: The proof proceeds by induction on the length of the transformed execution sequence, say ~̂r,
~̂
δ,

where ~̂
δ denotes the instantiating substitutions used in it. 2

Observe that this property does not hold, in general, if we start from a state that includes intermediate
role state predicates as we cannot guarantee that their arguments are related to Π. This is the reason we
consider only the initial state S0.

Regular protocol theories upgrade our original definition of (unqualified) protocol theories [9] with the
requirement that all the persistent information used during the execution of a role be accessed in its role
generation rule. While the two definitions are equally acceptable in general, the regularity restriction brings
us one step closer to the strand world, where all accessory values are chosen up-front. This is a slippery
slope since, as we just saw, protocol theories cannot be regularized in general without losing transition
sequences (see Section 4.1 for the consequences of starting from generic protocol theories). This is one
more restriction that our multiset rewriting formalism shall abide by in order to set up a fair comparison
with strand spaces.

From now on, all the protocol theories we will be considering shall be regular.

8

(Receive) rec : N(m) → I(m)

(Decompose) dcmp : I(m1, m2) → I(m1), I(m2) , I(m1, m2)

(Decrypt) decr :

»

I({m}k), I(k′),
KeyP(k, k′)

–

→

"

I(m) , I({m}k),

I(k′), KeyP(k, k′)

#

(Send) snd : I(m) → N(m) , I(m)

(Compose) cmp : I(m1), I(m2) → I(m1, m2) , I(m1), I(m2)

(Encrypt) encr : I(m), I(k) → I({m}k) , I(m), I(k)

(Nonce) nnc : · → ∃n. I(n)

(Persistent) pers : π(m) → I(m) , π(m)

Figure 2. The Standard Intruder Theory I

2.4 Intruder Theory

The knowledge available at any instant to the intruder consists of the persistent information in Π, of
the unused portion of its initial knowledge I0 (e.g. the keys of dishonest principals), and of intercepted or
inferred messages. We use the state predicate I() to hold each piece of information known to the intruder.
In particular, we represent the fact that the intruder “knows” m (a message, a key, etc.) as I(m). The overall
knowledge of the intruder at any particular instant is indicated with I . As mentioned above, we write I 0

for the intruder’s initial knowledge.
The capabilities of the intruder are modeled by the standard intruder theory I displayed in Figure 2.

These rules are taken from [10, 16]. The standard intruder theory I implements the Dolev-Yao model [15,
28] in our notation. For the sake of readability, we have grayed out the information produced by each
rule. Observe that these rules display an overly conservative bookkeeping strategy for the known messages:
knowledge is never discarded, but carried along as new messages are inferred.

The intruder capabilities formalized in the strand model relies on a slightly different strategy for man-
aging captured knowledge: inferring new information has the effect of deleting the data it was constructed
from. Moreover, it can discard information. However, explicit duplication is possible. We express this
behavior by the set of rules I ′ in Figure 3.

Clearly, our original intruder model I can easily be simulated by a systematic use of the duplication rule
of I ′. Going in the other direction is slightly more complicated as I never discards any information. The
substantial equivalence of these two systems is summarized in the following result.

Property 2.2 Let R be an arbitrary protocol theory, and S1 and S2 two states.

• For every rule sequence ~r in R, I such that S1
~r−→∗

R,IS2, there exists a rule sequence ~r ′ in R, I ′

such that S1
~r′−→∗

R,I′S2.

• For every rule sequence ~r ′ in R, I ′ such that S1
~r′−→∗

R,I′S2, there exist a rule sequence ~r in R, I

and an intruder state I
′ such that S1

~r−→∗
R,IS2, I

′.

Proof: The idea underlying the proof of the first statement is that every rule in I can be emulated by the
corresponding rule in I ′ preceded by one or more applications of dup. Rule del is never used. The transition
sequence ~r ′ is derived from ~r according to this strategy. A formal proof proceeds by induction on ~r.

The proof of the second half of this property is based on the observation that rule dup can be emulated
in I by applying snd and rec in succession. Rules rec′–pers′ are mapped to their unprimed name sakes in

9

(Receive) rec′ : N(m) → I(m)

(Decompose) dcmp′: I(m1, m2) → I(m1), I(m2)

(Decrypt) decr′ : I({m}k), I(k′), KeyP(k, k′) → I(m), KeyP(k, k′)

(Send) snd′ : I(m) → N(m)

(Compose) cmp′ : I(m1), I(m2) → I(m1, m2)

(Encrypt) encr′ : I(m), I(k) → I({m}k)

(Nonce) nnc′ : · → ∃n. I(n)

(Persistent) pers′ : π(m) → I(m), π(m)

(Duplicate) dup : I(m) → I(m), I(m)

(Delete) del : I(m) → ·

Figure 3. The Modified Intruder Theory I ′

I, which has the effect of retaining copies of intermediate intruder information. Rule del is discarded. The
extra intruder knowledge predicates resulting from these two situations are collected in the intruder state
fragment I

′. Again, this is formally proved by induction on ~r ′. 2

3 Strand Constructions

This section introduces strands spaces and the dynamic extension that will be considered throughout
this paper. We start with some basic definitions from graph theory (Section 3.1). We then introduce the
strands and related concepts as a graphical language to describe protocol executions (Section 3.2). It is then
upgraded with a syntax for protocols as first-class objects and a dynamic semantics that emulates step-wise
execution (Section 3.3). These extensions are of independent interest and some of their properties will
be further analyzed in Appendix B. We conclude with a presentation of penetrator strands as the intruder
model of strand spaces (Section 3.4).

3.1 Preliminary Definitions

A directed graph G is a pair (S,−→) where S is the set of nodes of G and −→ ⊆ S × S is the set
of edges of G. We will generally write ν1 −→ ν2 for (ν1, ν2) ∈ −→. A directed labeled graph GL is a
structure (S,−→, L, Λ) where (S,−→) is a directed graph, L is a set of labels, and Λ : S → L is a labeling
function that associates a label to every node. In the sequel, all our graphs will be directed and labeled, but
we will generally keep Λ implicit for simplicity. In particular, for ν ∈ S and l ∈ L, we will write “ν = l”
as an abbreviation of Λ(ν) = l. However, for ν1, ν2 ∈ S, expressions of the form “ν 1 = ν2” shall always
refer to the nodes themselves, and not to their labels.

A graph G = (S,−→) is a chain if there is a total ordering ν0, ν1, . . . of the elements of S such that
νi −→ νj iff j = i + 1. A graph G = (S,−→) is a disjoint union of chains if S =

⋃
i∈I Si and

−→ =
⋃

i∈I −→i (for some set I) and (Si,−→i) are chains for each i ∈ I .
A bipartite graph is a structure G = (S1, S2,−→) such that S1 and S2 are disjoint, (S1 ∪ S2,−→)

is a graph, and if ν1 −→ ν2 then ν1 ∈ S1 and ν2 ∈ S2. Observe that all edges go from S1 to S2 (i.e.
−→ ⊆ S1 × S2).

We say that G = (S1, S2,−→) is

10

Alice(A, B, NA, NB)

NA fresh, πA(A, B)

{NA, A}KB −→
w

w

w

−→ {NA, NB}KA
w

w

w

{NB}KB −→

Bob(A, B, NA, NB)

NB fresh, πB(A,B)

−→ {NA, A}KB
w

w

w

{NA, NB}KA −→
w

w

w

−→ {NB}KB

where πA(A, B) = Pr(A), PrvK(A,K−1

A
), Pr(B), PubK (B, KB)

πB(A, B) = Pr(B), PrvK(B, K−1

B
), Pr(A), PubK (A,KA)

Figure 4. Parametric Strand Specification of the Needham-Schroeder Protocol

• functional if −→ is a partial function (i.e. if ν −→ ν ′
1 and ν −→ ν′

2 imply ν′
1 = ν′

2).
• injective if −→ is injective (i.e. if ν1 −→ ν′ and ν2 −→ ν′ imply ν1 = ν2).
• surjective if −→ is surjective onto S2 (i.e. for each ν′ ∈ S2 there is ν ∈ S1 such that ν −→ ν′).

A bi-graph G is a structure (S, =⇒,−→) where both (S, =⇒) and (S,−→) are graphs.
In the sequel, we will often rely on the natural adaptation of standard graph-theoretic notions (e.g. iso-

morphism) to labeled graphs and bi-graphs.

3.2 Strands and Bundles

An event is a pair consisting of a message m and an indication of whether it has been sent (+m) or
received (−m) [33]. The set of all events will be denoted ±M.

A strand is a finite sequence of events, i.e. an element of (±M)∗. We indicate strands with the letter
s, the length of a strand as |s|, and its i-th event as si (for i = 1, . . . , |s|). Observe that a strand s can be
thought of as a chain graph (S, =⇒) with labels over ±M, where S = {si : i = 1, . . . , |s|} and si =⇒ sj

iff j = i + 1.
Slightly simplifying from [33], a strand space is a set of strands with an additional relation (−→) on

the nodes. The only condition is that if ν1 −→ ν2, then ν1 = +m and ν2 = −m (for the same message
m). Therefore, −→ represents the transmission of the message m from the sender ν1 to the receiver ν2.
Alternatively, a strand space can be viewed as a labeled bi-graph σ = (S, =⇒,−→) with labels over ±M,
=⇒ ⊆ S ×S, and −→ ⊆ S+ ×S− where S+ and S− indicate the set of positively- and negatively-labeled
nodes in S respectively, and the constraints discussed above: (S, =⇒) is a disjoint union of chains, and if
ν1 −→ ν2, then ν1 = +m and ν2 = −m for some message m.

A bundle is a strand space σ = (S, =⇒,−→) such that the bipartite graph (S+, S−,−→) is injective,
and surjective, and the graph obtained by dropping the distinction between =⇒ and −→ is acyclic. In terms
of protocols, the first two constraints imply that no message is received from more than one sender, and
every received message has been sent, respectively. Dangling positive nodes correspond to messages in
transit. Slightly departing from [33, 31], it will be convenient to restrict our attention to functional bundles,
which corresponds to adding the further constraint that a message is sent to at most one recipient at a time.

11

ρ(~x, ~n)

~n fresh, π(~x)

±m1(~x, ~n)ww�

±m2(~x, ~n)
...

±m|ρ|−1(~x, ~n)ww�
±m|ρ|(~x, ~n)

Figure 5. A Parametric Strand

An arbitrary bundle can be easily made functional by inserting T strands from the standard intruder toolkit,
developed in Section 3.4.

If we think in terms of protocols, a bundle represents a snapshot of the execution of a protocol. As we
will see in Sections 3.3 and also in Appendix B, this comprises a current global state (what each principal
and the intruder are up to, and the messages in transit), as well as a precise account of how this situation
has been reached. Each role is expressed as a strand in the current bundle. The intruder capabilities are
themselves modeled as a fixed set of penetrator strands, which can be woven in a bundle. We postpone
the exact definition until Section 3.4 as the construction we propose in the next sections will generalize the
presentation in [33, 31].

3.3 Extensions

We now refine these concepts with a language to describe protocols as first-class objects and a semantics
to grow bundles dynamically. Following [9], similar extensions have become popular in the strand literature,
e.g. [11, 17, 19, 26].

The notion of role is kept implicit in [33] and introduced as the concept of trace-type in [31]. A role is
nothing but a parametric strand: a strand where the messages may contain variables. An actual strand is
obtained by instantiating all the variables in a parametric strand (or an initial segment of one) with persis-
tent information and actual message pieces. For simplicity, we will not define nor consider constructions
corresponding to arbitrary well-founded protocol theories (see Section 2 and [10, 16]).

A parametric strand for the role ρ may look as in Figure 5. The freshness of ~n, i.e. the fact that the
variables ~n should be instantiated with “new” constants that have not been used before, is expressed as a side
condition. Using the terminology in [33, 31], the values ~n are uniquely originated. This descriptive notion
is sufficient to characterize fresh information in a stopped execution. In a parametric strand, ‘~n fresh’ (like
∃~n in the previous section) has instead prescriptive strength as it shall enforce freshness as the execution
unfolds rather than just acknowledge it. Therefore, ‘fresh’ is an operator in our specification calculus while
unique origination only needed to be a meta-level property in [33, 31]. The relationships between variables
are expressed in [31] using intuitive notation, e.g. k−1 for the inverse key of k, or kA for the key of A. We
formalize these relations by equipping ρ with the constraints π(~x), that, without loss of generality, will be
a set of persistent atomic formulas from Section 2, parameterized over ~x.

As in the case of transition systems, a protocol is given as a set of roles. The model of the intruder in
the style of Dolev and Yao [15, 28] is also specified as a set of parametric strands P(P0) called penetrator
strands, where P0 is the intruder’s initial knowledge (see Section 3.4 or [31] for a definition). As an

12

example, Figure 4 shows how the Needham-Schroeder public key protocol is modeled using parametric
strands, where we have used incoming and outgoing arrows instead of the tags + and − for readability.

As in Section 2.1, a substitution is a finite tuple δ = (t1/x1, . . . , tn/xn) of term-variable pairs ti/xi.
The domain of δ is dom(δ) = (x1, . . . , xn), with each xi distinct. All our substitution will be ground, by
which we mean that none of the ti’s will contain any variable. We will rely on two types of substitutions:
substitutions that replace variables with distinct fresh constants that have not been previously encountered,
and substitutions that map variables to previously used ground terms (not necessarily constants). We will
use the letters ξ and θ, possibly subscripted, to denote them respectively. We will use δ for substitutions
that mix these two components. Given a parametric message m with variables in dom(δ), we denote the
application of δ to m as m[δ]. Given substitutions δ1, . . . , δn, we write m[δ1 · · · δn] for (. . . (m[δ1]) . . .)[δn].
We extend this notation to nodes, writing ν[δ] and to (possibly partially instantiated) parametric strands,
with the notation ρ[δ].

These definitions allow us to specialize the bundles we will be looking at: given a set of parametric
strands S, every strand in a bundle σ should be a fully instantiated initial prefix of a protocol (or penetrator)
strand. We are interested in initial prefixes since a bundle is a snapshot of the execution of a protocol, and
a particular role instance may be halfway through its execution. We then say that σ is a bundle over S. We
need to generalize strands constructions to admit strand spaces containing partially instantiated parametric
strands. We call them parametric strand spaces. The bundles we will consider will however always be
ground.

We will now give a few definitions needed to emulate the execution of a protocol with parametric strands.
No such definitions can be found in the original description of strand constructions [33, 31], which focuses
on analyzing protocol traces, not on specifying how to generate them.

First, observe that the network traffic in a bundle is expressed in terms of events and of the −→ relation.
The edges of −→ represent past traffic: messages that have been sent and successfully received. The
dangling positive nodes correspond to current traffic: messages in transit that have been sent, but not yet
received. We will call these nodes the fringe of the bundle (or strand space). More formally, given a strand
space σ = (S, =⇒,−→), its fringe is the set

Fr(σ) = {ν : ν ∈ S, ν = +m, and 6∃ν′. ν −→ ν′}

Another component of the execution state of a protocol is a description of the actions that can legally
take places in order to continue the execution. First, some technicalities. Let σ be a bundle over a set of
parametric strands S, a completion of σ is any strand space σ̃ that embeds σ as a subgraph, and that extends
each incomplete strand in it with the omitted nodes and the relative =⇒-edges. A completion of σ may
contain additional strands, possibly only partially instantiated. If s is a strand in σ and s̃ is its extension in
σ̃, the sequence obtained by removing every event in s from s̃ is itself a (possibly empty) strand. We call
it a residual strand and indicate it as s̃ \ s. We then write σ̃ \ σ for the set of all residual strands of σ̃ with
respect to σ, plus any strands that σ̃ may contain in addition to those in σ.

Figure 6 illustrates these concepts on a standard run of the Needham-Schroeder protocol. Role names
and variable instantiations are given in the header. Ignoring for a moment the lower horizontal −→-edge,
the grayed-out portion of this figure shows a bundle σ representing an initial segment of the execution of
this protocol. The strand space σ̃ in the overall figure is a possible completion of σ with respect to the
parametric strands given in Figure 4. The set of residual strands σ̃ \ σ is given by the white portion of this
figure.

Given these preliminary definitions, a configuration over S is a pair of strand spaces (σ, σ]) where σ is
a bundle over S, and σ] is a completion of σ whose only additional −→-edges originate in Fr(σ), cover
all of Fr(σ), and point to σ] \ σ. Clearly, if σ = (S, =⇒,−→) and σ] = (S], =⇒],−→]), we have that

13

Initiator
(kA, k−1

A
, kI, nA, nB)

Responder
(kB, k−1

B
, kA, nB, nA)

{nA, kA}kB
{kA, nA}kB

{nA, nB}kA
{nA, nB}kA

{nB}kB
{nB}kB

wwww�

wwww�

wwww�

wwww�

>

<

Figure 6. A Configuration for the Needham-Schroeder Protocol

S ⊆ S], and =⇒ ⊆ =⇒], and finally −→ ⊆ −→]. The above figure represents a configuration for the
Needham-Schroeder protocol. We will rely on this intuitive format as a diagrammatic abstraction in the
remaining of this paper.

A one-step transition is what it takes to go from one bundle to the “next”. Since a bundle only keeps
track of events that have taken place on each strand, but does not have any record of the remaining events
on that strand, we shall define this relation over configurations. There are two ways to make progress in the
bundle world: extend an existing strand, or add a new one. Let us analyze them:

• Extending a strand: If the configuration at hand embeds a strand that is not fully contained in its
bundle part, then we add the first missing node of the latter and the incoming =⇒-edge. If this node
is positive, we add an −→]-arrow to a matching negative node devoid of any incoming −→-arrow. If
it is negative, we must make sure that it has an incoming −→]-edge.

• Creating a strand: Alternatively, we can select a parametric strand and instantiate first its “fresh”
variables and then its other parameters. The first operation replaces the “fresh” variables with new
values prescriptively enforcing freshness, while the second relies solely on existing values. Combin-
ing these two instantiations into a single operation would either imply abandoning the prescriptive
power of “fresh” (which would not serve our purposes), or would lead to a logical deadlock, in gen-
eral. Take for example the above configuration for the Needham-Schroeder protocol: the initiator
cannot instantiate the parameter nB until the responder has created a nonce nB for it and dually for
nA. The execution is possible only if the instantiation of the fresh variable of each role precedes the
instantiation of the other variables.

We will now formalize this notion. Let (σ1, σ
]
1) and (σ2, σ

]
2) be configurations over a set of parametric

strands S, with σi = (Si, =⇒i,−→i) and σ]
i = (S]

i , =⇒
]
i ,−→

]
i), for i = 1, 2. We say that (σ2, σ

]
2)

immediately follows (σ1, σ
]
1) by means of move o, written (σ1, σ

]
1)

o7−→S(σ2, σ
]
2), if any of the following

situations apply. An intuitive sense of what each case formalizes can be gained by looking at the pictorial
abstraction to the right of each possibility. Here, ν, ν ′ and ν′′ stand for nodes on fully instantiated strands,
while ν0 will generally be only partially instantiated.

S0 — Initial Send: There are nodes ν, ν ′′ ∈ S]
1 \ S1 such that ν = +m, ν ′′ = −m, no −→-edge enters

14

ν′′, and no =⇒-arrow enters ν. Then,

S2 = S1 ∪ {ν}, =⇒2 = =⇒1, −→2 = −→1;

S]
2 = S]

1, =⇒]
2 = =⇒]

1, −→]
2 = −→]

1 ∪ {(ν, ν′′)}.

ν

(+m)

ν′′

(−m)

S S]\S

(ν,−,ν′′)

−→S

ν

(+m)

ν′′

(−m)
−−−−→

S S]\S

S — Successive Send: There are nodes ν, ν ′′ ∈ S]
1 \ S1 and ν′ ∈ S1 such that ν = +m, ν ′′ = −m, no

−→-edge enters ν ′′, and ν′ =⇒]
1 ν. Then,

S2 = S1 ∪ {ν}, =⇒2 = =⇒1 ∪{(ν′, ν)}, −→2 = −→1;

S]
2 = S]

1, =⇒]
2 = =⇒]

1, −→]
2 = −→]

1 ∪{(ν, ν′′)}.

ν

(+m)

ν′′

(−m)

ww�

ν′S S]\S

(ν,ν′,ν′′)

−→S

ν

(+m)

ν′′

(−m)

ww�

ν′

−−−−→

S S]\S

R0 — Initial Receive: There are nodes ν ∈ S]
1 \ S1 and ν′′ ∈ S1 such that ν = −m, ν ′′ = +m,

ν′′ −→]
1 ν, and no =⇒ enters ν. Then,

S2 = S1 ∪ {ν}, =⇒2 = =⇒1, −→2 = −→1 ∪ {(ν′′, ν)};

σ]
2 = σ]

1.

ν

(−m)

ν′′

(+m)
−−−−→

S S]\S

(ν,−,−)

−→S

ν

(−m)

ν′′

(+m)
−−−−→

S S]\S

R — Successive Receive: There are nodes ν ∈ S]
1 \ S1 and ν′, ν′′ ∈ S1 such that ν = −m, ν ′′ = +m,

ν′′ −→]
1 ν, and ν′ =⇒]

1 ν. Then,

S2 = S1 ∪ {ν}, =⇒2 = =⇒1 ∪ {(ν′, ν)}, −→2 = −→1 ∪ {(ν′′, ν)};

σ]
2 = σ]

1.

ν

(−m)

ν′′

(+m)
−−−−→

ww�

ν′S S]\S

(ν,ν′,−)

−→S

ν

(−m)

ν′′

(+m)
−−−−→

ww�

ν′S S]\S

Cf — Fresh Variable Instantiation: ρ is a parametric strand in S and ξ is a substitution for all its vari-
ables marked “fresh” with constants that appear nowhere in (σ 1, σ

]
1).

σ2 = σ1; σ]
2 = σ]

1 ∪ ρ[ξ].

15

S S]\S

(ρ,ξ)

−→S

⇓
...
⇓

S S]\S

ρ[ξ]

where, σ ∪ s is obtained by taking the union of the nodes and =⇒-edges of σ and s,

Ci — Other Variables Instantiation: ρ[ξ] is a partially instantiated parametric strand in σ]
1 and θ is a

ground substitution for the remaining variables. In particular, if ρ[ξ] mentions constraints π, then
their instantiation should be compatible with the know persistent data, i.e. π[θ] ⊆ Π. Then,

σ2 = σ1; σ]
2 = (σ]

1 − ρ[ξ]) ∪ ρ[ξ, θ].

⇓
...
⇓

ν0S S]\S

ρ[ξ]

(ν0,θ)

−→S

⇓
...
⇓

ν0S S]\S

ρ[ξ,θ]

where, σ − s is the subgraph of σ obtained by removing all nodes of s and their incident edges.

The move o that labels the transition arrow 7−→S records the necessary information to reconstruct the
transition uniquely. Given a configuration (σ, σ]), a move for transitions of type S0, S, R0, and R is a
triple o = (ν, ν̄p, ν̄s) where ν is a node, ν̄p is the parent node νp of ν according to the =⇒ relation (or “−”
if ν is the first node of a chain — cases S0 and R0), and ν̄s is the recipient νs of the message that labels ν
along the −→ relation (if ν is positive, or “−” otherwise). For transitions of type C f and Ci, moves have
the form (ρ, ξ) and (ν0, θ) respectively, where ρ is the name of the chosen parametric strand, ν0 is the first
node of the partially instantiated strand ρ[ξ], and ξ and θ are the instantiating substitutions.

A multistep transition amounts to chaining zero or more one-step transitions. This relation is obtained by
taking the reflexive and transitive closure ~o7−→∗

S of o7−→S , where ~o is the sequence of the component moves
(“·” if empty). ~o is a trace of the computation.

Observe that our definition of transition preserves configurations, i.e. if (σ1, σ
]
1) is a configuration and

(σ1, σ
]
1)

o7−→S(σ2, σ
]
2), then (σ2, σ

]
2) is also a configuration. This property clearly extends to multistep

transitions.

Property 3.1 Let (σ1, σ
]
1) be a configuration.

1. If (σ1, σ
]
1)

o7−→S(σ2, σ
]
2), then (σ2, σ

]
2) is a configuration.

2. If (σ1, σ
]
1)

~o7−→∗
S(σ2, σ

]
2), then (σ2, σ

]
2) is a configuration.

Proof: By inspection, it is easy to ascertain that each form of transition produces a configuration when
applied to a configuration. The second part of this lemma is proved by induction on the length of ~o. 2

An analysis of the notions just defined can be found in Appendix B.

3.4 Penetrator Strands

We now formalize the intruder model of [33, 31], which consists of patterns called penetrator strands,
and of a set of messages P0 expressing the intruder’s initial knowledge. The corresponding parametric

16

Persistent

M(m) (m persistent) :

m −→

Initial

M ′(m) (m ∈ P0) :

m −→

Nonces

N(n) : n fresh

n −→

Intercept

F (m) :

−→ m

Compose

C(m1, m2) :

−→ m1
w

w

w

−→ m2
w

w

w

(m1, m2) −→

Decompose

S(m1, m2) :

−→ (m1, m2)
w

w

w

m1 −→
w

w

w

m2 −→

Encrypt

E(m,k) :

−→ m
w

w

w

−→ k
w

w

w

{m}k −→

Decrypt

D(m, k, k′) : KeyP(k, k′)

−→ {m}k
w

w

w

−→ k′
w

w

w

m −→

Duplicate

T (m) :

−→ m
w

w

w

m −→
w

w

w

m −→

Figure 7. The Penetrator Strands P

strands are shown in Figure 7, which includes a case to handle intruder-generated nonces. Since freshness
is a descriptive property in [33, 31], this possibility is handled by the M penetrator strand. For convenience
of comparison with the multiset model, we also distinguished cases M(m) and M ′(m), which are identified
in [33, 31]. We refer to the collection of (parametric) penetrator strands in Figure 7 as P(P0).

Several observations need to be made. First, the intruder specification underlying penetrator strands
follows the Dolev-Yao model [15, 28]. The parametric strands in Figure 7 are indeed closely related to the
multiset rewriting intruder model I ′ above. A translation can be found in Sections 4.2.2 and 5.2.2 below.

As a final remark, notice that the transition system specification distinguishes between messages trans-
mitted on the network (identified by the predicate symbol N) and messages intercepted and manipulated
by the intruder. Indeed, the predicate I implements a private database, a workshop for the fabrication of
unauthorized messages, hidden from the honest principals of the system. No such distinction exists in the
strand world. Therefore, it seems that the intruder dismantles and puts together messages in the open, under
the eyes of the other principals in the system. This is not a problem as honest agents expect messages of a
very specific format. Moreover, when such a principal accepts the result of penetrator manipulations, this
can be viewed as a final product of message forgery rather than an intermediate step.

The concepts and extensions we have just introduced set the basis for the translations between the mul-
tiset rewriting approach to security protocol specification and strand constructions. We describe the two

17

directions of this translations in Sections 4 and 5, respectively.

4 From Multisets to Strands

We observed that multiset rewriting is a state-based specification language for concurrent systems, while
the strand space formalism is process-based. In general, a translation from this first paradigm to the second
needs to be rather elaborate to be faithful [2] as their atomic steps have different granularity. Multiset
rewriting specifications for security protocols have however a particularly streamlined form, with one action
per rule and a control structure highly regulated by the role state predicates. This will considerably simplify
the translation in this direction. The basic idea will be to map a set of multiset rewrite rules specifying a
role to a parametric strand. In particular, rules will correspond to nodes, and the role state predicates will
be replaced by the backbone (=⇒) of the strand. The technique is described in a more general form in [3].

It will be convenient to stage this translation into two steps: we first operate within the multiset rewriting
formalism and transform a regular protocol theory into an equivalent but more manageable normal form
(Section 4.1). Normal protocols theories are then rather directly mapped to strands (Section 4.2), which
permits a very simple proof of correctness.

4.1 Normal Protocol Theories

A normal protocol theory collapses the generation step of each role and its first action of the execution
in a single rule. It also requires that all the nonces used in a role be chosen up-front. We will now formalize
this intuition and show how to normalize a regular protocol theory. For simplicity, we will describe the
two parts of this transformation as if they ere two separate steps. Note that these transformations are only
used for mathematical convenience as we devise a mapping from multiset rewriting specifications to the
strand model: non-normal, and even non-regular, protocol theories are often more perspicuous than their
normalized counterparts.

Role generation rule: We subsume the role generation rule of every role ρ, i.e. the rule rρ0 : π(~x) −→
Aρ0(~x), π(~x), into the first rule of ρ. For each of its two schematic forms:

rρ1 : Aρ0(~x) −→ ∃~n. Aρ1(~x, ~n), N(m(~x, ~n))

rρ1 : Aρ0(~x), N(m(~x, ~y)) −→ Aρ1(~x, ~y)

we obtain the following rules:

r̈ρ1 : π(~x) −→ ∃~n. Aρ1(~x, ~n), N(m(~x, ~n)), π(~x)

r̈ρ1 : π(~x), N(m(~x, ~y)) −→ Aρ1(~x, ~y), π(~x)

respectively. Observe that, by definition of role state predicate, the parameters ~x include the argu-
ments of the elided Aρ0 (as usual, m(~x) does not need to mention each variable in ~x). This amounts
to setting initial values in the first step of a role, rather than prior to any message exchange.

If R is a regular protocol theory, we will denote the effect of this transformation as R̈. If S is a state,
the transformed state S̈ is obtained by dropping every mention of an initial role state Aρ0 from S.
Clearly, S̈0 = S0 for any initial state S0. Similarly, a transition sequence ~r is mapped to a sequence
~̈r from which all the instances of rules for the form rρ0 have been dropped, and the uses of rρ1 have
been replaced with r̈ρ1.

The above transformation is sound and complete as witnessed by the following result:

18

Lemma 4.1

Let R be a regular protocol theory with initial state S0 and S a state. Then,

1. If S0
~r−→∗

RS, then S0
~̈r−→∗

R̈
S̈.

2. If S0
~̈r−→∗

R̈
S̈, then S0

~r−→∗
RS.

Proof: In both cases, the proof proceeds by induction on the length of the given transition sequences.

1. If ~r = ·, then the result follows immediately since ~̈r = ·.

Assume then that the transition sequence at hands has the form (~r, r), with S0
~r−→∗

RS
′ and

S
′ r−→RS for some state S

′. By induction hypothesis, we know that S0
~̈r−→∗

R̈
S̈

′
. We then

show by cases on r that this property can be extended to (~r, r).

• If r is any rule beside rρ0 or rρ1, then its applicability does not change when going from

S
′ to S̈

′
since this transformation only affects initial role states. For the same reason, its

application clearly produces S̈.

• If r has the form rρ1 for some role ρ, then r̈ differs from r only by the addition of the
persistent predicated π(~x) of rρ0. It is therefore applicable only if the proper instance
of these predicates, π(~t) say, holds in the current state S

′. By definition of state, this
reduces to requiring that π(~t) ∈ Π. However, by definition of persistent information, Π is
contained in every state. Thus it is sufficient to show that there exists one state Sπ such
that π(~t) ⊆ Sπ . Now, since rρ1 is enabled in S

′, it must be the case that an identical
instantiation of rρ0 appears in ~r. The state to which rρ0 applies is precisely Sπ .

• If r has the form rρ0, then S̈
′
= S̈. By induction hypothesis, S0

~̈r−→∗
R̈

S̈
′
, which is what

we want since the transformation cancels r.

2. If ~̈r = ·, the result is immediate.

Otherwise, the transformation sequence will have the form (~̈r, r̈). Again, we assume the result
holds for ~̈r and show by cases that it must also hold for the extended sequence.

• If r̈ = r̈ρ1 for some role ρ, then we restore it as rρ0 immediately followed by rρ1.

• In all other cases, we leave r̈ unchanged. 2

Observe that applying this transformation and then “undoing” it as specified in the above lemma is
not equivalent to the identical transformation: going in the reverse direction, we group occurrences
of rρ0 and rρ1 together, and moreover we eliminate every isolated instance of rρ0.

Stating this lemma relative to general rather than regular protocol theories would be incorrect: assume
that S0

~r−→∗
RS1 thanks to the initialization rule rρ0 of some role ρ. As in Section 2.3, assume also

that the first message exchange rule rρ1 of this role contains a persistent predicate which does not
have any instantiation in Π. The normal form of rρ0 would then contain this constraint, making it
inapplicable to any state S1 would be mapped to. This scenario can clearly not occur when starting
from a regular protocol theory since, by definition, all the accesses to persistent predicate are confined
in the role instantiation rule.

An alternative way to go about it is to statically bind persistent information to any point in a protocol
description where it is used. A realization of this idea by means of a strong typing infrastructure
is at the basis of MSR [7], a thorough redesign of the multiset rewriting formalism discussed in this

19

paper. Although the language discussed here has been superceded by MSR for any practical purposes,
the results shown here should not be dismissed as obsolete. Indeed, MSR builds on the language
considered here, and any mapping between MSR and strand spaces is likely to use that language as a
meeting point, or risk a considerably more complex translation.

Nonces: We further transform protocol theories so that all nonces generated by a role are preemptively
chosen in the first rule of that role. We accomplish this by adding extra arguments to role state
predicates, and pass the nonces generated in the first rule to subsequent uses through fresh variables
in these predicates. Since roles are bounded, there are only a small finite number of nonces that need
to be generated in an entire role. This transformation intuitively means that a participant should roll
all her dice immediately, and look at them as needed later.

More formally, let ρ be the multiset rewriting specification of a role as from the previous transforma-
tion, and let eρi be the number of existentially quantified variables in rule rρi, for i = 1..|ρ|. We map
each role state predicate Aρi(~x) in ρ to a predicate of the form

Āρi(~x, ~ni+1, . . . , ~n|ρ|)

where, for j = i + 1..|ρ|, there are exactly eρj elements in ~nj , and each of the added arguments is a
distinct new variable.

We transform rules by replacing each state predicate Aρi with Āρi, and moving existential quantifiers
to the first rule of the role. As a result, we are left with the following normalized rules:

Role generation rules:

r̄ρ1 : π(~x) −→ ∃~n. Āρ1(~x, ~n), N(m(~x, ~n)), π(~x)
r̄ρ1 : π(~x), N(m(~x, ~y)) −→ ∃~n. Āρ1(~x, ~y, ~n), π(~x)

Other rules:

r̄ρi+1 : Āρi(~x) −→ Āρi+1(~x), N(m(~x))
r̄ρi+1 : Āρi(~x), N(m(~x, ~y)) −→ Āρi+1(~x, ~y)

where all the newly introduced variables in rule r̄ρ1 are existentially quantified. Given a role ρ, we
denote the normalized specification as ρ̄. We write R for the application of this transformation to a
protocol theory R.

In order to formally relate a regular protocol theory with its normalized form, we need to assess the
effect of normalization on states. Given a ground predicate P in a state S, we construct the open term
P corresponding to the possible normalizations of P as follows:

Aρi(~t) = Āρi(~t, ~ni, . . . , ~n|ρ|) where ~ni, . . . , ~n|ρ| consist of
distinct variables

P = P if P is not a role state predicate

It is easy to extend this definition to open states: if S is a state, we construct the open multiset S

representing all normalized states it is mapped to. S is defined as follows:

S = HP : P � SI

where H. . .I is the multiset equivalent of the usual set notation {. . .}, and x � M denotes multiplicity-
conscious multiset membership. We shall choose different variables for each P in S. Observe that
since the initial state S0 does not contain role state predicates, we have that S0 = S0.

20

The mapping between an open state S and states that can be processed by transitions is done by
means of substitutions ξ that map each variable in S to a distinct constant that does not appear in S.
Observe that S[ξ] is a (ground) state.

The definition of transition does not change, but we will denote a transition sequence that uses normal-
ized rules as ~̄r with the usual subscripts. We will shortly see how to normalize a transition sequence
~r.

Given these various definitions, we are now in a position to prove that normalization preserves tran-
sitions. We have the following result.

Lemma 4.2

Let R̈ be a regular protocol theory that has been subjected to the role generation transformation
in the first part of this section, S0 the initial state, and S a state. Let moreover ξ be an arbitrary
substitution from the variables in S to distinct unused constants. Then,

1. If S0
~r−→∗

R̈
S, then S0

~̄r−→∗
R̄

S[ξ].

2. If S0
~̄r−→∗

R̄
S[ξ], then S0

~r−→∗
R̈

S.

Proof: In both cases, the proof proceeds by induction on the length of the given transition sequences.
We will examine them in turn.

1. If ~r = ·, then the result holds trivially since S0 = S0. Clearly, ~̄r = ·.
Assume then that the given derivation sequence has the form (~r, r) so that there is a state S

′

such that S0
~r−→∗

R̈
S

′ and S
′ r−→R̈S. By induction hypothesis, for any substitution ξ ′ of the

required form, S0
~̄r−→∗

R̄
S

′[ξ′]. We show by cases on the structure of r that this property extends
to (~r, r). For the sake of conciseness, we will only develop the (more challenging) cases where
r is a sending rule. The other situations follow the same pattern.

Sending, initial: r : π(~x) −→ ∃~n. Aρ1(~x, ~n), N(m), π(~x).
r̄ has then the form

r̄ : π(~x) −→ ∃~n. ∃~n2, . . . , ~n|ρ|.

[
Āρ1(~x, ~n, ~n2, . . . , ~n|ρ|),
N(m), π(~x)

]

The normalized rule r̄ is enabled in S
′[ξ′] since r is enabled in S

′ and their preconditions consist
only of persistent information. Its application yields the state S

′[ξ′], Āρ1(~t,~c,~c2, . . . ,~c|ρ|), N(m)
for constants ~c,~c2, . . . ,~c|ρ| that can be arbitrary as long as they are distinct from each other and

from constants in S
′[ξ′].

Now, S = S
′, Aρ1(~t,~c), N(m), and therefore, we have that S = S

′, Āρ1(~t,~c, ~n2, . . . , ~n|ρ|), N(m)
for distinct variables ~n2, . . . , ~n|ρ|. It then suffices to define ξ as the extension of ξ ′ with the map-
ping (~c2, . . . ,~c|ρ|)/(~n2, . . . , ~n|ρ|) to obtain the desired result.

Sending, non-initial: r : Aρi(~x) −→ ∃~n. Aρi+1(~x, ~n), N(m).
r̄ has then the form

r̄ : Āρi(~x, ~n, ~ni+1, . . . , ~n|ρ|) −→ Āρ1(~x, ~n, ~ni+1, . . . , ~n|ρ|), N)

By definition, S
′ = S

′′, Aρi(~t) and S = S′′, Aρi+1(~t,~c), N(m), for distinct new constants ~c.

We then have that S
′ = S

′′, Āρi(~t, ~n, ~ni+1, . . . , ~n|ρ|). Therefore r̄ is applicable to S
′[ξ′] for

21

any ξ′ satisfying the above conditions. In particular, this holds for all such substitutions ξ ′~c/~n that

map ~n to~c. The application of r̄ to S
′[ξ′~c/~n] produces the state (S′′, Āρi+1(~t, ~n, ~ni+1, . . . , ~n|ρ|), N(m))[ξ′~c/~n],

which we can rewrite as (S′′, Āρi+1(~t,~c, ~ni+1, . . . , ~n|ρ|), N(m))[ξ′~c/~n]. The desired result fol-

lows then immediately once we observe that S = S
′′, Āρi+1(~t,~c, ~ni+1, . . . , ~n|ρ|), N(m).

2. The proof of the reverse direction of this lemma uses the techniques we just deployed: in the in-
ductive step, we proceed by case distinction on the form of the last transition applied, assuming
that the result holds up to this last step. The reverse of the substitution manipulations that we
witnessed above are used to drop the added arguments of the role state predicates, which allows
us to do without the substitution. 2

In the following we will start from a regular protocol theory R and apply these two transformations in
sequence. For clarity reasons, we will generally write R̄ when ¯̈R would be appropriate. We extend this
convention to roles and states.

The following corollary chains the above results together. It also considers protocols augmented with
the standard intruder theory I. It must be observed that the above transformations do not have any effect on
I.

Corollary 4.3
Let R be a regular protocol theory, S0 the initial state, and S a state. Let moreover ξ be an arbitrary

substitution from the variables in S to distinct unused constants. Then,

1. If S0
~r−→∗

R,IS, then S0
~̄r−→∗

R̄,I
S[ξ].

2. If S0
~̄r−→∗

R̄,I
S[ξ], then S0

~r−→∗
R,IS.

Proof: This is a direct consequence of Lemmas 4.1 and 4.2 once we observe that the intruder rules never
access the role state predicates of a principal. Therefore, the elision of the state predicate A0 is invisible to
the intruder. Similarly, the intruder cannot see nor take advantage of the fact that all existentials in a normal
role have been instantiated up-front since they are safely stored in Aρi(~x, ~ni, . . . , ~n|ρ|) until they are made
visible in a message. 2

4.2 Translation

We are now in a position to translate protocol representations expressed in the multiset rewriting for-
malisms into strands. We first show in Section 4.2.1 how to map a general protocol theory into a set of
parametric strands, and then relate the intruder theory directly to the penetrators strands in Section 4.2.2. In
Section 4.2.4, we prove that this translation preserve transitions after discussing how states are handled in
Section 4.2.3.

4.2.1 From Protocol Theories to Parametric Strands

To each normalized role specification ρ̄, we associate a parametric strand pρ̄q of the following form

ρ(~x, ~y, ~n) ~n fresh, π(~x)

22

where ~n are the existential variables mentioned in the first rule r̄ρ1 of this role, π(~x) are the persistent
predicates accessed in this rule, and ~y are the other variables appearing in the role (~x, ~y, ~n appear therefore
in its last role state predicate).

Next, we associate a parametric node νr̄ρi
with each rule r̄ρi. The embedded message is the message

appearing in the antecedent or the consequent of the rule, the distinction being accounted for by the asso-
ciated action. More precisely, we have the following translation (where we have omitted the argument of
the state predicates, the indication of the variables occurring in the message, persistent information, and the
existential quantifiers appearing in the role generation rule):

pĀρi −→ Āρi+1, N(m)q = +m

pĀρi, N(m) −→ Āρi+1q = −m

where p q is our translation function.
Finally, we set the backbone of this parametric strand according to the order of the indices of the nodes

(and rules):
νr̄ρi

=⇒ νr̄ρj
iff j = i + 1.

In this way, we are identifying the role state predicates of the transition system specification with the =⇒-
edges constituting the backbone of the corresponding parametric strand. Notice that the well-founded or-
dering over role state predicates is mapped onto the acyclicity of the =⇒-arrows of the strand constructions.

This completes our translation as far as roles, and therefore protocols, are concerned. Applying it to
the Needham-Schroeder protocol yields exactly the parametric strand specification of Figure 4 presented
in Section 3. Given a set of roles R in the transition system notation, we indicate the corresponding set of
parametric strands as pRq. We will give correctness results at the end of this section after showing how to
translate global states.

4.2.2 From Intruder Theory to Penetrator Strands

The introduction of the alternate intruder theory I ′ in Section 2.4 enables a trivial mapping to penetrator
strands: we simply map every intruder rule to the corresponding penetrator strand, with the exception of
rec′ and snd′, which do not have any correspondent. In symbols:

prec′(m)q = none
pdcmp′(m1, m2)q = S(m1, m2)

pdecr′(m, k)q = D(m, k)

pnnc′(n)q = N(n)

pdup(m)q = T (m)

psnd′(m)q = none
pcmp′(m1, m2)q = C(m1, m2)

pencr′(m, k)q = E(m, k)

ppers′(m)q = M(m)

pdel(m)q = F (m)

where we have equipped the intruder rules with arguments in the obvious way. We also need to map the
initial intruder knowledge I0 to a set P0 of messages initially known to the intruder, to be processed by the
penetrator strand M ′: pI0q = {m : I(m) ∈ I0}. Every access to a message I(m) in I0 will be translated
to an application of the penetrator strand M ′(m).

4.2.3 Relating States and Configurations

In order to show that a transition system specification and its strand translation behave in the same way, we
need to relate states and configurations. We do not need to give an exact mapping, since a configuration
embeds a bundle expressing the execution up to the current point in fine detail. A state is instead a much

23

simpler construction that does not contain any information about how it has been reached. Therefore, we
will consider some properties that a configuration should have to be related to a state.

We say that a state S = (Π, A, N(~m), I(~m′)) is compatible with a strand configuration (σ, σ]) rela-
tive to a (regular, but not necessarily normal) protocol theory R, written S ∼R (σ, σ]), if the following
conditions hold:

• Fr(σ) = {~m, ~m′}.

• Let Aρi(~tρ, ~cρ) in A be the instantiation of the i-th role state predicate of a role ρ in R with terms ~tρ
and fresh nonces ~cρ. Then,

– σ] contains a strand sρ(~cρ, ~tρ), obtained by instantiating the strand sρ = pρq with terms ~tρ and
new constants ~cρ.

– σ contains an initial prefix of sρ(~t) whose last node has index i.

Moreover every non-penetrator strand in (σ, σ]) is obtained in this way.

• Every instance of a penetrator strand in (σ, σ]) is completely contained in σ.

Intuitively, we want the state and the configuration to mention the same nonces, to have the same mes-
sages in transit (including the data currently processed by the intruder), to be executing corresponding role
instances and have them be stopped at the same point.

4.2.4 Transition to Move Sequences

Given these definitions, we can state the correctness result for our translation of transition systems into
strand constructions. We shall start by limiting our attention to normal protocol theories together with the
modified intruder theory introduced in Section 2.4.

Lemma 4.4
Let R be a normal protocol theory, I0 some initial intruder knowledge, and pI0q its strand translation.

If Π, I0
~r−→∗

I′,R
S is a normal multiset rewriting transition sequence over I ′,R from the empty state to

state S, then there is a configuration (σ, σ]) and a sequence of moves ~o such that

(·, ·) ~o7−→∗
P(pI0q),pRq

(σ, σ])

is a strand transition sequence from the empty configuration (·, ·) to (σ, σ]), and S ∼R (σ, σ]), i.e. S is
compatible with (σ, σ]).

Proof: The proof proceeds by induction on ~r. The base case is trivial. The inductive step does a case
analysis on the last rule applied in ~r. Intruder rules from I ′ are directly emulated by the corresponding
penetrator strands, as defined in Section 4.2.2. The use of protocol rule rρi is emulated by a move involving
the corresponding node in pρ̄q. For each of these possibilities, we show that the corresponding move in the
strand world is possible, and that it preserves the compatibility relation.

We omit formalizing this proof as it relies on exactly the same techniques as the proofs of previous
results. 2

We can now extend this result to any regular (not necessarily normal) theory together with the standard
intruder model. We have the following theorem:

24

Theorem 4.5
Let R a regular protocol theory and I0 be some initial intruder knowledge. For every regular multiset

rewriting transition sequence Π, I0
~r−→∗

I,RS there is a configuration (σ, σ]) and a sequence of moves ~o
such that

(·, ·) ~o7−→∗
P(pI0q),pRq

(σ, σ])

is a strand transition sequence from the empty configuration (·, ·) to (σ, σ]), and S ∼R (σ, σ]).

Proof: This is a simple corollary of the above lemma mediated by an application of Lemma 4.1 to move
between regular and normal protocol theories, and Property 2.2 reconcile using the standard vs. the modified
intruder theory. 2

Observe that we cannot further relax the statement of this theorem to consider arbitrary (i.e. non-regular)
protocol theories as regularization does not preserve transition sequences.

5 From Strands to Multisets

We will now show how to translate a set of parametric strands into a set of multiset rewrite rules that
preserve multistep transitions. To this end, we rely on relatively standard techniques to map process-based
representations of security protocols to state-based descriptions [3]. However, we shall first address a slight
mismatch between the two formalisms (Section 5.1). This technical adjustment of our definition of strands
will produce precisely the regular role transition rules we originally defined in Section 2. The translation
itself and its proof of correctness are then rather straightforward (Section 5.2).

5.1 Decorated Strands

In the previous section, we have observed and taken advantage of the fact that there is a close affinity
between the rules in the transition system specification of a role and the nodes in a parametric strand. More
precisely, a node together with the outgoing or incoming −→-edge and an indication of what to do next cor-
responds to a transition. In transition systems, “what to do next” is specified through the role state predicates
Aρi; in strand constructions, by means of the =⇒-edges. Therefore, using the same intuition as in Section 4,
we will translate =⇒-edges to state predicates. We need to equip these predicates with the appropriate ar-
guments (while we were able to simply drop them in the inverse translation). This method is relatively
standard when mapping process-based representations of security protocols to state-based descriptions [3].

Before describing how to do so, we will address two other minor syntactic discrepancies: the absence
of an (explicit) strand equivalent of the role generation rule π(~x) −→ Aρ0(~x), π(~x), and the fact that, in
the transition system specification of a role, there is a final state predicate that lingers in the global state no
matter what other transitions take place.

Role Generation transition: We add a dummy initial node, say >, to every strand, with no incoming or
outgoing −→-edges, and one outgoing =⇒-edge to the original first node of the strand.

Final state: Dually, we alter the definition of strands to contain a final node, say ⊥, again without any
incoming or outgoing −→-edge, and with one incoming =⇒-arrow from the original last node of the
strand.

This corresponds to redefining strands as strings drawn from the language >(±M)∗⊥, rather than just
(±M)∗. Notice that now every (proper) event has both a predecessor and a successor =⇒-edge.

25

Alice(A, B, NA, NB)

NA fresh, πA(A, B)

>
w

w

w

w

w

A0(A,B)

{NA, A}KB −→
w

w

w

w

w

A1(A,B, NA)

−→ {NA, NB}KA
w

w

w

w

w

A2(A,B, NA, NB)

{NB}KB −→
w

w

w

w

w

A3(A,B, NA, NB)

⊥

Bob(A,B, NA, NB)

NB fresh, πB(A, B)

>
w

w

w

w

w

B0(A, B)

−→ {NA, A}KB
w

w

w

w

w

B1(A, B, NA)

{NA, NB}KA −→
w

w

w

w

w

B2(A, B, NA, NB)

−→ {NB}KB
w

w

w

w

w

B3(A, B, NA, NB)

⊥

where πA(A, B) = Pr(A), PrvK(A, K−1

A
), Pr(B), PubK (B, KB)

πB(A, B) = Pr(B), PrvK(B, K−1

B
), Pr(A), PubK(A, KA)

Figure 8. Extended Strand Specification of the Needham-Schroeder Protocol

With the addition of these auxiliary nodes, we can label each =⇒-arrow in a strand s with parameters
~xs, ~ns (~ns marked fresh), in symbols,

ρ(~xs, ~ns) : ~ns fresh, π(~xs)

and a predicate constant Asi with progressive indices i. In the case of parametric strands, we equip these
labels with arguments drawn from its set of parameters as follows:

Initial arrow: > =⇒ ν

This is the predicate As0 labeling the =⇒-edge that links the added initial node > to the first node of
the original strand. The arguments of As0 will be ~xs, the persistent information used by the strand.

Successor arrow to a positive node:

. . .
Asi(~x)
=⇒ +m(~x, ~n) =⇒ . . .

Let Asi(~x) be the label of the incoming =⇒-edge of a positive node ν = +m(~x, ~n), where m
mentions known variables among ~x and unused nonces ~n among ~ns. Then the outgoing =⇒-arrow
of ν will have label Asi+1(~x, ~n).

Successor arrow to a negative node:

. . .
Asi(~x)
=⇒ −m(~x, ~y) =⇒ . . .

26

Let Asi(~x) be the label of the incoming =⇒-edge of a positive node ν = −m(~x, ~y), where m
mentions known variables among ~x, and unseen data ~y (for examples nonces created by another
party). Then, the outgoing =⇒-arrow of n will have label Asi+1(~x, ~y).

Given a parametric strand s, we denote the result of applying these transformations as s̄. If S is a set of
parametric strands specifying a protocol, we write S for the transformed set. Applying this transformation
to the Needham-Schroeder protocol yields the enhanced strand specification in Figure 8, where the additions
have been grayed out.

Since we have changed the syntax of a parametric strand, we need to upgrade its dynamics, originally
presented in Section 2. First, an obvious alteration to the instantiation of a parametric strand: we apply the
substitution to the labels of the =⇒-edges as well as to the messages embedded in the nodes. We carry on
this change to the resulting bundles and configurations: every =⇒-edge between two nodes ν1 and ν2 now
carries a label Asi(~t). We indicate this as ν1

Asi(
~t)

=⇒ ν2 (or with its vertical equivalent). Notice that we erased
this information in the reverse translation. Given a bundle σ and a configuration (σ, σ]) relative to a set of
parametric strands S, we write σ̄ and (σ̄, σ̄]) for the corresponding entities relative to S .

The definition of one-step transition, in symbols (σ̄1, σ̄
]
1)

o7−→S(σ̄2, σ̄
]
2), changes as follows:

Extension of an existing strand: We proceed exactly as in Section 2, except for the fact that situations S0

and R0 in Section 3.3 do not apply.

Installation of a new strand:

We select a parametric strand ρ from S, instantiate it with a substitution ξ for its fresh variables and
add the resulting strand ρ[ξ] to σ̄]

2. This corresponds to upgrading case Cf in Section 3.3 as outlined
in the following figure. We do not formalize this transformation (call it Cf

′) it in full detail since it
should be obvious how to obtain it.

S̄ S̄]\S̄

(ρ,ξ)

−→S

>ww�
... ρ[ξ]

S̄ S̄]\S̄

Transition Ci is consequently upgraded to Ci
′ described in the following figure. Notice that we add

the first node, >, of ρ[ξ, θ] to σ̄2

>ww�
...

ν0

ρ[ξ]

S̄ S̄]\S̄

(ν0,θ)

−→S

>ww�
...

ν0

ρ[ξ,θ]

S̄ S̄]\S̄

As in the original case, multistep transitions are obtained by taking the reflexive and transitive closure of
the above judgment.

This transformation is sound and complete with respect to our original system.

Lemma 5.1 Let S be a set of parametric strands, and (σ1, σ
]
1) and (σ2, σ

]
2) two configurations on it. Then,

(σ1, σ
]
1)

~o7−→∗
S(σ2, σ

]
2) if and only if (σ̄1, σ̄

]
1)

~̄o7−→∗
S
(σ̄2, σ̄

]
2)

where ~̄o is obtained from ~o by extending the given transformation to traces.

27

>
w

w

w

w

As0(~x)

9

>

=

>

;

; π(~x) −→ As0(~x), π(~x)

w

w

w

w

Asi(~x)

m(~x, ~n) −→

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

; Asi(~x) −→ ∃~n.

2

4

Asi+1(~x, ~n),

N(m(~x, ~n))

3

5

w

w

w

w

Asi+1(~x, ~n)

w

w

w

w

Asi(~x)

−→ m(~x, ~y)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

;

2

4

Asi(~x),

N(m(~x, ~y))

3

5 −→ Asi+1(~x, ~y)
w

w

w

w

Asi+1(~x, ~y)

w

w

w

w

As|s|(~x)

9

>

=

>

;

; (No corresponding rule)

⊥

Figure 9. Transforming Extended Strands to Multiset Rewriting Rules

Proof: In the forward direction, we add the labels as from the definition (they do not constrain the con-
struction in any way); every use of transition Cf that introduces a new strand is mapped to Cf

′, which also
installs the node >. In the reverse direction, we simply forget about labels and extra nodes. Formally, both
directions require a simple structural induction. 2

5.2 Translation

Given the above definitions, we are in a position to propose an transition-preserving translation that maps
strand representations of security protocols to the multiset rewriting formalism. We will proceed in stages:
in Section 5.2.1 we concentrate on parametric strands, in Section 5.2.2 we relate the intruder models, in
Section 5.2.3 we extract a notion of state from a configuration, and finally in Section 5.2.4 we prove the
correctness of our translation.

5.2.1 From Parametric Strands to Roles

We now present a translation of parametric strands to the coordinated sets of transition rules representing
a role. Each node is mapped to a rule, the label of its incoming and outgoing =⇒-edge will be the state
predicates in the antecedent and consequent, respectively, and the network message will be the message em-
bedded in the node, its polarity dictating on which side of the arrow it should be appear. More formally, we

28

have the translation displayed in Figure 9, where the parameters of the added state predicates are classified
as in the above definition.

Given a set of (decorated) parametric strands S, we write pSq for the set of protocol rules resulting
from this transformation. Observe that it yields regular rules. Applying this translation to the enhanced
parametric strands representing the Needham-Schroeder protocol in Figure 8 produces exactly the original
transition system specification given in Figure 1.

5.2.2 From Penetrator Strands to Intruder Theory

The translation of the penetrator strands P(P0) in Figure 7 is essentially the inverse of the mapping dis-
cussed in Section 4.2.2. Our target intruder model, in the multiset rewriting world, is I ′.

pS(m1, m2)q = dcmp′(m1, m2)

pD(m, k)q = decr′(m, k)

pN(n)q = nnc′(n)

pT (m)q = dup(m)

pM ′(m)q = (see below)

pC(m1, m2)q = cmp′(m1, m2)

pE(m, k)q = encr′(m, k)

pM(m)q = pers′(m)

pF (m)q = del(m)

where we have again equipped the intruder transition rules with the obvious arguments.
Notice that no penetrator strand is made to correspond to rules rec′ or snd′. When translating transition

sequences from the strand world to the transition system setting, we will insert these rules whenever a
message sent by a principal’s strand is received by a penetrator strand, and vice-versa, respectively. We
map P0 to a multiset I0 of messages initially known to the intruder in the multiset rewriting framework:
pP0q = HI(m) : m ∈ P0I. Uses of M ′(m) with m ∈ P0 are translated to accesses to I(m) ∈ pP0q,
possibly preceded by an application of rule dup if M ′(m) is accessed more than once.

5.2.3 From Configurations to States

Before we can show that the translation we just outlined preserves transition sequences, we need to extract
a state from a configuration and show that steps between configurations are mapped to steps between the
corresponding states.

Let S be a set of parametric strands, pSq its translation as a set of transition rules, and (σ, σ]) a con-
figuration over S,P(P0) where all penetrator strands have been completed. We define the state associated
with (σ̄, σ̄]), written SS(σ̄, σ̄]), as the state (Π, A, N , I) obtained as follows, where we write H. . .I for the
multiset equivalent of the usual set notation {. . .}:

• N = HN(m) : ν ∈ Fr(σ̄), ν is not on a penetrator strand, and ν has label +mI.

• I = HI(m) : ν ∈ Fr(σ̄), ν is on a penetrator strand,and ν has label +mI.

• A = HAsi(~t) : si−1
Asi(~t)
=⇒ si ∈ σ̄] \ σ̄ and si−1 ∈ Fr(σ)I.

Intuitively, we collect the messages in transit coming from honest principal’s strands in N , the current
knowledge of the intruder in I , and the labels of the =⇒-edges at the boundary between σ̄] and σ̄ as the
multiset of role state predicates A.

5.2.4 From Move to Transition Sequences

Then, sequences of moves in the strand world and their translation as transition system steps are related as
follows:

29

Theorem 5.2 Let P0 be some initial penetrator knowledge, and pP0q its multiset translation as defined in
Section 5.2.2. Let (σ1, σ

]
1) and (σ2, σ

]
2) be two configurations on the penetrator strands P(P0) and a set

of parametric strands S such that all penetrator strands have been completed. For every multistep strand
transition

(σ1, σ
]
1)

~o7−→∗
P(P0),S(σ2, σ

]
2),

and every I ′
0 ⊆ pP0q, there exists a regular multiset transition sequence ~r such that

pP0q, SS(σ̄1, σ̄
]
1)

~r−→∗
I′,pSq

SS(σ̄2, σ̄
]
2), I

′
0.

Proof: The proof of this result proceeds by induction on the structure of ~o. The only non-obvious aspect is
that, as observed in Section 5.2.2, we need to insert applications of the rule rec′ when processing a message
that flows from an honest principal’s to a penetrator strands. We add uses of snd′ in the dual case. 2

Notice that we do not need to start from the empty configuration.
The mapping from strands to multiset rewriting we have just finished outlining, and the translation from

multiset rewriting to strand constructions described in Section 4 are inverse of each other. We leave the
proof of this fact to the interested reader.

6 Related Work

Differences in models for distributed system have captivated the curiosity of researchers for over two
decades. It was observed that they tend to fall into two paradigms: state-based languages such as Petri
nets and multiset rewriting cleanly separate the factual description of the world (as a marking or a state,
resp.) and the transformations that modify it (as transitions or rules, resp.); process-based languages such
as the various process algebras and here strand spaces blur the distinction in favor of the self-transforming
notion of a process. An early attempt to provide a Petri net semantics to CCS can be found in [12], while a
reverse mapping first appeared in [4]. First-order formalisms were considered only several years later in the
classical work of Berry and Boudol [2], whose state-based formalism, however, is in many ways closer to
a process algebra than to multiset rewriting. Most subsequent research on the subject has been semantic in
nature [30] or has investigated specialized sublanguages [6, 18]. We were unable to take direct advantage
of these and other papers in the literature in our attempt to define simple syntactic translations between
state-based and process-based languages that could be instantiated to the security setting described here.

To the best of our knowledge, the first investigation of the relationship among specification languages for
security protocols appeared in [9]. The present paper completes that work with a layer of detail previously
omitted for editorial reason and by connecting it to the body of research dedicated to relating languages
for distributed systems, cryptographic protocols in particular. As observed in the introduction, numerous
authors have explored the problem of connecting the numerous languages for security protocol analysis
proposed in recent years.

The work of Crazzolara and Winskel [11] bears clear similarities to the present investigation: they start
with SPL, a simple process-oriented language akin to the spi-calculus [1] and map it to several other for-
malisms, which include a form of contextual Petri nets, strand spaces, and Paulson’s inductive method [29].
Once a few idiosyncracies have been ironed out, the relationship to strand spaces is relatively simple as
both have a process-based semantics. The translation to Petri nets, on the other hand, is closely related to
our mapping of strand spaces to multiset rewriting in Section 5 although it does not go into the same level
of detail. The reverse mapping is not discussed.

An abstract investigation of the relationship between state-based and process-based specification lan-
guages, with particular emphasis on formalisms for expressing security protocols, is initiated in [3], which

30

is a preludes to general results linking the two paradigms. This work is directly inspired by recent research
which places linear logic at the crossroad between the two paradigms [8, 27].

Additional cross-language investigations are found in [21], which notes similarities between strand
spaces and multi-agent systems and proposes translations in both directions, as well as extensions to the
strands space formalism. In [22], Heather unveils strong links between strand spaces and rank functions.
In [24], Meadows surveys these two approaches and several more for their specific use of invariants. A
different target is considered in [32], which uses strand spaces to define a semantics for BAN-like log-
ics. Different yet is [19], which adapts strand spaces to relate the concrete cryptography found in protocol
implementations and its abstraction in the Dolev-Yao model.

Following [9], several authors have made use of a dynamic semantics for strand space inspired to our
parametric strands. Millen and Shmatikov [26] base their innovative constraint-solving analysis method for
cryptographic protocols on a form of parametric strand without prescriptive freshness. The MITRE group,
which pioneered strand spaces, embraced the related notion of schematic strands in [19]. A interpretation
of parametric strand in linear logic was given in [8]. Further variants on the notion of parametric strands
also appeared in [11, 17]

All of the above theoretical investigations allow researchers to understand precisely how their results are
related, often enabling a direct transfer of properties such as secrecy and many forms of authentication as
most of these formalisms ultimately rely on a trace-based semantics. This observation was put into practice
in the CAPSL Intermediate Language (CIL — another close relative of multiset rewriting) [14] and the
numerous “connectors” translating CIL specifications to and from other languages and tools [5, 13, 25].

7 Conclusions and Future Work

We have revised the formal connection between multiset rewriting [10, 16] and strand constructions [33,
31] previously outlined in [9]. In particular, we situated it relative to the recent body of work aimed at
relating languages for describing security protocols. The formalization required a number of unexpected
adjustments to both frameworks. In particular, we equipped strands with a dynamic dimension by introduc-
ing a notion of transition that allows growing bundles from a set of parametric strands. This enabled us to
relate the distinct notions of traces inherent to these formalisms: bundles and multiset rewrite sequences.

This work did not attempt any connection between the various verification methodologies that have been
successfully used in conjunction with multiset rewriting and strand spaces (or closely related languages).
There are two reasons for this. First the multiset rewriting formalism was designed to be independent from
any particular analysis technique, and indeed a number of proposals have been successfully applied to it.
Second, such a meta-theoretic investigation is simply beyond the scope of this paper. However, it should
be noted that the results here can be directly used to port any trace-based property established for one
formalism to the other. This includes secrecy and most forms of authentication.

Acknowledgments

We would like to thank Joshua Guttman, Javier Thayer Fábrega, Jonathan Herzog, and Al Maneki for
the stimulating discussions about strands. We are also indebted to Sylvan Pinsky for his encouragements to
write down our ideas about the relationship between strand construction and our protocol theories. Finally,
this work profitted from fruitful discussions with Jon Millen, Cathy Meadows, Paul Syverson, and the
comments of the anonymous reviewers.

31

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus. Information and Computation,
148(1):1–70, 1999.

[2] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science, 96(1):217–248, 1992.
[3] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating Process Algebras and Multiset Rewriting for

Immediate Decryption Protocols. In V. Gorodetski, V. Skormin, and L. Popyack, editors, Second International
Workshop on Mathematical Methods, Models and Architectures for Computer Networks Security — MMM’03,
pages 86–99, St. Petersburg, Russia, 20–24 September 2003. Springer-Verlag LNAI 2776.

[4] G. Boudol, G. Roucairol, and R. de Simone. Petri nets and algebraic calculi of processes. Advances in Petri Nets
1985, pages 41–58, 1986.

[5] S. Brackin, C. Meadows, and J. Millen. CAPSL interface for the NRL protocol analyzer. In 2nd IEEE Workshop
on Application-Specific Software Engineering and Technology (ASSET ’99). IEEE Computer Society, 1999.

[6] N. Busi and R. Gorrieri. A Petri net semantics for pi-calculus. In Proc. of the 6th International Conference on
Concurrency Theory — CONCUR’95, pages 145–159, Philadelphia, PA, 1995.

[7] I. Cervesato. Typed MSR: Syntax and Examples. In V. Gorodetski, V. Skormin, and L. Popyack, editors, First
International Workshop on Mathematical Methods, Models and Architectures for Computer Networks Security —
MMM’01, pages 159–177, St. Petersburg, Russia, May 2001. Springer-Verlag LNCS 2052.

[8] I. Cervesato, N. Durgin, M. I. Kanovich, and A. Scedrov. Interpreting Strands in Linear Logic. In H. Veith,
N. Heintze, and E. Clark, editors, 2000 Workshop on Formal Methods and Computer Security — FMCS’00,
Chicago, IL, July 2000.

[9] I. Cervesato, N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A Comparison between Strand Spaces
and Multiset Rewriting for Security Protocol Analysis. In M. Okada, B. Pierce, A. Scedrov, H. Tokuda, and
A. Yonezawa, editors, Software Security: Theories and Systems, pages 356–383, Tokyo, Japan, 2003. Springer-
Verlag LNCS 2609.

[10] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-notation for protocol analysis.
In P. Syverson, editor, Proceedings of the 12th IEEE Computer Security Foundations Workshop — CSFW’99,
pages 55–69, Mordano, Italy, June 1999. IEEE Computer Society Press.

[11] F. Crazzolara and G. Winskel. Events in security protocols. In P. Samarati, editor, Proceedings of the 8th ACM
Conference on Computer and Communications Security, pages 96–105, Philadelphia, PA, USA, Nov. 2001. ACM
Press.

[12] F. de Cindio, G. de Michelis, L. Pomello, and C. Simone. Milner’s communicating systems and Petri nets. In
Pagnoni, A. and Rozenberg, G., editors, Informatik-Fachberichte 66: Application and Theory of Petri Nets —
Selected Papers from the Third European Workshop on Application and Theory of Petri Nets, Varenna, Italy,
September 27–30, 1982, pages 40–59. Springer-Verlag, 1983.

[13] G. Denker. Design of a CIL connector to Maude. In H. V. andN. Heintze and E. Clarke, editors, Workshop on
Formal Methods and Computer Security. Carnegie Mellon University, July 2000.

[14] G. Denker and J. K. Millen. CAPSL Intermediate Language. In N. Heintze and E. Clarke, editors, Proceedings
of the Workshop on Formal Methods and Security Protocols — FMSP, Trento, Italy, July 1999.

[15] D. Dolev and A. C. Yao. On the security of public-key protocols. IEEE Transactions on Information Theory,
2(29):198–208, 1983.

[16] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Multiset rewriting and the complexity of bounded security
protocols. Journal of Computer Security, 12:247–311, 2004.

[17] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol correctness. In 14th IEEE
Computer Security Foundations Workshop — CSFW’01, pages 241–255, Cape Breton, Canada, 11–13 June 2001.
IEEE Computer Society Press.

[18] J. Engelfriet and T. Gelsema. Multisets and structural congruence of the π-calculus with replication. Theor.
Comput. Sci., 211(1-2):311–337, 1999.

[19] J. Guttman, J. Thayer Fábrega, and L. Zuck. The faithfulness of abstract protocol analysis: message authentica-
tion. In P. Samarati, editor, Proceedings of the 8th ACM Conference on Computer and Communications Security,
pages 186–195, Philadelphia, PA, USA, Nov. 2001. ACM Press.

[20] J. D. Guttman and F. J. T. Fábrega. Authentication tests and the structure of bundles. Theoretical Computer
Science, 283(2):333–380, 2002.

32

[21] J. Y. Halpern and R. Pucella. On the relationship between strand spaces and multi-agent systems. In P. Samarati,
editor, Proceedings of the 8th ACM Conference on Computer and Communications Security, pages 106–115,
Philadelphia, PA, USA, Nov. 2001. ACM Press.

[22] J. Heather. Strand spaces and rank functions: More than distant cousins. In 15th IEEE Computer Security
Foundations Workshop — CSFW’01, pages 104–116, Cape Breton, Canada, 24–26 June 2002. IEEE Computer
Society Press.

[23] A. Maneki. Honest functions and their application to the analysis of cryptographic protocols. In P. Syverson,
editor, Proceedings of the 12th IEEE Computer Security Foundations Workshop — CSFW’99, pages 83–89,
Mordano, Italy, June 1999. IEEE Computer Society Press.

[24] C. Meadows. Invariant generation techniques in cryptographic protocol analysis. In 13th IEEE Computer Security
Foundations Workshop — CSFW’00, pages 159–169, Cambridge, UK, 3–5 July 2000. IEEE Computer Society
Press.

[25] J. Millen. A CAPSL connector to Athena. In H. Veith, N. Heintze, and E. Clarke, editors, Workshop of Formal
Methods and Computer Security. CAV, 2000.

[26] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In P. Sama-
rati, editor, Proceedings of the 8th ACM Conference on Computer and Communications Security, pages 166–175,
Philadelphia, PA, USA, Nov. 2001. ACM Press.

[27] D. Miller. Encryption as an abstract data-type: An extended abstract. In I. Cervesato, editor, Proceedings of the
2nd Workshop on Foundations of Computer Security — FCS’03, pages 3–14, Ottawa, Canada, 26–27 June 2003.

[28] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers. Communi-
cations of the ACM, 21(12):993–999, 1978.

[29] L. C. Paulson. Proving properties of security protocols by induction. In Proc. of The 10th Computer Security
Foundations Workshop. IEEE Computer Society Press, 1997.

[30] V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency: Towards a classification. Theoretical Computer
Science, 170(1–2):297–348, 1996.

[31] D. Song. Athena: a new efficient automatic checker for security protocol analysis. In Proceedings of the Twelth
IEEE Computer Security Foundations Workshop, pages 192–202, Mordano, Italy, June 1999. IEEE Computer
Society Press.

[32] P. Syverson. Towards a strand semantics for authentication logic. In S. Brookes, A. Jung, M. Mislove, and
A. Scedrov, editors, Electronic Notes in Theoretical Computer Science, volume 20. Elsevier, 2000.

[33] J. Thayer Fábrega, J. Herzog, and J. Guttman. Strand spaces: Why is a security protocol correct? In Proceedings
of the 1998 IEEE Symposium on Security and Privacy, pages 160–171, Oakland, CA, May 1998. IEEE Computer
Society Press.

[34] J. Thayer Fábrega, J. Herzog, and J. Guttman. Mixed strand spaces. In P. Syverson, editor, Proceedings of the
12th IEEE Computer Security Foundations Workshop — CSFW’99, pages 72–82, Mordano, Italy, June 1999.
IEEE Computer Society Press.

A Protocol Signatures

In this appendix, we give a formal description of the syntax of the various entities used in this paper. We
also characterize the persistent information we have been relying upon with respect to this language.

A.1 Language

First, we rigorously define the language of terms and the predicate symbols we have been using in the
body of this paper in order to specify a protocol in the multiset notation. It is meant to be extensible if the
need arises, therefore it should not be considered complete. Clearly, this is only one of the many possible
formalizations, not necessarily the best one. This attempt goes along the lines of [16], although it is not
identical to it.

33

Sorts

We first declare a number of sorts to classify the various entities we are working with.

msg : sort (Messages)
principal :: msg : sort (Principals)
key :: msg : sort (Keys)
nonce :: key : sort (Nonces)
text :: msg : sort (Data)

We rely on subsorting for simplicity (written “::”). Since nonces are often used as session keys, we
declare nonce to be a subsort of key. By transitivity, it is also a subsort of msg.

We write m for messages, k for keys, n for nonces, t for texts, and a, b, . . . for principal names.
We use the corresponding capital letters for variables of the same sorts. We generally indicate the
owner(s) of a key with a subscript. For example, the public key of a could be ka, a shared key between
a and b could be indicated as kab. We sometimes write k−1

a for the inverse of key ka.

Whenever the effect of the protocol is to transmit information that is not generated within the protocol
itself (e.g. a file or a credit card number), we tag it with sort text. This is slightly more precise than
classifying it as a generic msg.

Messages

Complex messages themselves are constructed from simpler messages by means of the operations of
encryption and composition, declared below. Other operations, e.g. hashing, are declared similarly if
the need arises.

{ } : msg × key → msg (Encryption)
(,) : msg × msg → msg (Composition)

We do not include explicit decomposition and decryption operators as these functionalities are achieved
by pattern matching on terms mentioning the above constructs. This simplification is adequate for
our modeling purposes. Furthermore, it avoids the introduction of any non-trivial equational theory
at the level of terms. Observe that this is not a limitation of our model, but a simplification: these op-
erations could be included as primitives, and their equational theory operationally specified by means
of rewrite rules.

As anticipated in Section 2, we often work with parametric messages, written m(~x), which differ
from proper messages by the fact that some submessages can be variables among ~x = {x1, . . . , xv}.
Some of the xi may not occur in m. Instantiating a parametric message m(~x) with messages
~t = {t1, . . . , tv} matching (or specializing) the sorts of ~x is written m(~t). We write ~t/~x for the
corresponding substitution, call it δ. We denote the application of a substitution δ to a parametric
message m as m[δ].

Network

Information broadcast over the network has the form N(m), where N is declared as follows:

N() : msg → atom (Message in transit)

An equivalent, but not as general, specification of network messages establishes a distinct predicate
for each legal message class that can be exchanged during a run of a protocol.

34

Roles

We declare the sort role to classify role names, used, for example, to distinguish the initiator and the
responder of the Needham-Schroeder protocols.

role : sort (Role)
Aρl(, . . . ,) : principal × τ∗ → atom

with ρ : role, l ∈ L, and τ :: msg

The predicates Aρl(a, ~m) are intended to hold the local data ~m of a principal a in role ρ during
the run of the successive steps of the protocol. Such data typically includes a’s keys, the identity
and public/shared keys of the message recipients (other principals or some server), nonces, external
messages, etc.

We shall assume that for each role ρ, there are finitely many state predicates Aρl, where l is a label in
a partially ordered set L. In most cases, the indices l are successive numbers (l ∈ N and l = 0 . . . lρ).
We give a more general definition to accommodate roles that can take conditional or non-deterministic
actions.

Intruder knowledge

The predicate symbol I is used to hold the knowledge of the intruder in a distributed way.

I() : msg → atom

Initialization

Finally, we have a number of predicates intended to organize the static information known to and
about the various parties in a protocol. This list is by no means exhaustive.

Pr() : principal → atom

Foe() : principal → atom

PubK(,) : principal× key → atom

PrvK (,) : principal× key → atom

ShK (, ,) : principal× principal × key → atom

KeyP(,) : key × key → atom

Txt(,) : principal× text → atom

As a convention, we write initialization predicates in a slanted font to distinguish them from other
symbols. The information they hold is expected not to change during the execution of a protocol.

Pr declares the known principals. It is actually redundant as the same information is conveyed by
typing. Foe identifies the subset of the principals that are in league with the intruder (this could
also be obtained via subsorting). PubK and PrvK are intended to relate a principal and its public
and private keys, respectively. ShK indicates what keys are shared between which principals. KeyP

records which pairs of keys are inverse of each other. Finally, Txt contains some piece of text that a
principal may know before any run of the protocol takes place (and wants to transmit it).

We collect these declarations in a signature that we call Σ. We generally keep Σ implicit. We assume that
all the expressions we are considering are well-typed according to the contents of Σ.

35

A.2 Persistent Information

We discussed how to specify a protocol (given a signature Σ) in the body of this paper (Section 2.2). We
complete this presentation by making more precise the contents of the initialization theory Π.

As we said, some information is given prior to any run of a protocol, and does not change during its
execution. This include the principals that are allowed to take part into it including the dishonest ones
(we may assume the intruder cannot bribe an otherwise honest principal during the execution), their keys
unless the protocol models key distribution, the identity and public key of the servers, etc. We store this
persistent information as a set of ground facts that we call Π. Given the declarations in the previous section,
it contains some number of facts of the following form:

• Pr (a).

• Foe(a).

• ShK (a, b, kab).

• PubK (a, ka).

• PrvK (a, k−1
a).

• KeyP(k, k−1).

• Txt(a, t).

None of the other predicates declared in the previous section may appear in Π. For any principals a and b,
and keys k and k′, we make the following assumptions on Π:

1. if PubK(a, k) ∈ Π, then there is k−1 such that PrvK (a, k−1) ∈ Π and KeyP(k, k−1) ∈ Π.

2. if ShK(a, b, k) ∈ Π, then ShK (b, a, k) ∈ Π and KeyP(k, k) ∈ Π.

3. if KeyP(k, k′) ∈ Π, then KeyP(k′, k) ∈ Π.

The set Π can be viewed as an initialization theory.

B Configurations vs. Move Sequences in Dynamic Strands

The definition of execution for parametric strands given in Section 3 embeds two distinct notions of
traces for strand constructions. On the one hand, configurations give a precise account of which events have
taken place, abstracting from their temporal occurrence order, but taking into consideration their depen-
dencies both in terms of the ordering of steps (captured by =⇒-edges) and message transmission/reception
(expressed by the −→-arrows). On the other hand, the move sequence ~o that labels the transition arrow also
indicates which steps have taken place, but imposes a linear occurrence order on them. We will now relate
these two notions.

B.1 From Configurations to Move Sequences

Notice that, with the exception of Cf and Ci, each move inserts exactly one node in a configuration.
Moreover, the very possibility of making such an insertion is regulated by the two types of edges. Therefore,
we can think of a bundle as specifying a partial order of the occurrence of individual moves (the ordering
relation is the transitive closure of the union of =⇒ and −→). Instead, a move sequence linearizes the set
of moves into a total order. In general, we can linearize a configuration (σ, σ]) as a sequence of moves in
many ways. The following definition imposes constraints on the form of acceptable move sequences.

Given a configuration (σ, σ]) with σ = (S, =⇒,−→) and σ] = (S], =⇒],−→]), we define O(σ,σ]) as
the set of move sequences ~o = (o1, . . . , on) such that, for i = 1, . . . , n:

36

(a) n = nS0 + nR0 + nS + nR + nCf + nCi , where nS0 and nR0 are respectively the number of initial
sending and receiving nodes in σ, nS and nR are the number of non-initial sending and receiving
nodes in σ respectively, nCf is the total number of strands (possibly only partially instantiated) in
σ], and nCi is the number of fully instantiated strands among these. Moreover, ~o contains exactly nτ

move of each type τ above. Observe that |S| = nS0 + nR0 + nS + nR.

(b) For each oi = (νi, ν̄
p
i , ν̄s

i), we have that νi ∈ S.
Moreover, if oj = (νj , ν̄

p
j , ν̄s

j), then νi 6= νj for
i 6= j.

(b’) For each ν ∈ S, there is an index i such that
oi = (ν, ν̄p

i , ν̄s
i).

(c) If oi = (νi,−, ν̄s
i), then νi is initial in S, and

there is a unique index j < i such that oj =
(νj , θj) and νi = νj [θj].

(c’) For every initial node ν in σ, there is a unique
index i such that oi = (ν,−, ν̄s

i).

(d) If oi = (νi, ν
p
i , ν̄s

i), then there is a unique index
j < i with oj = (νj , ν̄

p
j , ν̄s

j) such that νj =⇒
νi is in σ and νp

i = νj .

(d’) For every non-initial node ν in σ with parent
νp, there is a unique index i such that oi =
(ν, νp, ν̄s

i).

(e) If oi = (νi, ν̄
p
i ,−), then there is a unique index

j < i with oj = (νj , ν̄
p
j , νs

j) such that νj −→
νi in σ and νs

j = νi.

(e’) For every receiving node ν in σ with sender
νs, there is a unique index i such that oi =
(ν, ν̄p,−).

(f) If oi = (νi, ν̄
p
i , νs

i), then νs
i ∈ S] and there are

unique indices k < j < i with ok = (ρk, ξk)
and oj = (νj , θj) such that ρk

0 [ξk] = νj and
there is an index l such that ρk

l [ξk , θj] = νs
i and

νi −→
] νs

i in σ].

(f’) For every sending node ν in σ with receiver
νs, there is a unique index i such that oi =
(ν, ν̄p, νs).

(g) If oi = (νi, θi), then there a unique index j < i
such that oj = (ρj , ξj) and ρj

0[ξj] = νi, and
there is a fully instantiated strand ρ in σ] such
that ρ = ρj [ξj , θi].

(g’) For every fully instantiated strand ρ in σ],
there are unique indices i < j with oi =
(ρi, ξi) and oj = (νj , θj), such that ρ =
ρi[ξi, θj] and νj = ρi

0[ξi].

(h) If oi = (ρi, ξi), then either ρi[ξi] is a partially
instantiated strand in σ], or there is a unique
index j > i such that oj = (νj , θj), and
ρi
0[ξi] = νj (and ρj [ξj , θi] is a fully instantiated

strand in σ]).

(h’) For every partially instantiated strand ρ in σ],
there is a unique index i such oi = (ρi, ξi)
and ρ = ρi[ξi].

The left-hand side column specifies sufficient and mostly internal coherence conditions so that a move se-
quence belongs to O(σ,σ]), while the right-hand side column gives the corresponding necessary conditions.

Any legal move sequence ~o from (·, ·) to any configuration (σ, σ]) is an element of O(σ,σ]). This is
formalized in the following completeness result.

Property B.1
Let (σ, σ]) be a configuration over a set S of parametric strands and ~o a move sequence such that

(·, ·) ~o7−→∗
S(σ, σ]). Then ~o ∈ O(σ,σ]).

37

Proof:
The proof proceeds by induction on the length of the move sequence ~o, checking that each element in it

satisfies the above definition.
The base case, where ~o = ·, trivially satisfies the property.
Assume then that (·, ·) ~o7−→∗

S(σ̂, σ̂]) with ~o = (o1, . . . , on) ∈ O(σ̂,σ̂]), and that (σ̂, σ̂])
on+1
7−→S(σ, σ]). We

will then show that for every such move on+1, it happens that (~o, on+1) ∈ O(σ,σ]). We proceed by cases.

S0: Let on+1 = (ν,−, ν′′). We need to examine the various conditions of the definition of O(σ,σ]).

(a) By induction hypothesis |~o| = n̂ = n̂S0 + n̂R0 + n̂S + n̂R + n̂Cf + n̂Ci , moreover ~o contains
exactly n̂τ moves of each type τ , and the constituents of (σ̂, σ̂]) are related to these numbers as
from the definition.
Now, n = |(~o, on+1)| = n̂ + 1. For τ 6= S0, the number of moves of type τ in (~o, on+1) does
not change, so that nτ = n̂τ ; instead nS0 = n̂S0 + 1. Moreover, (σ, σ]) differs from (σ̂, σ̂])
only by the addition of a single initial sending node (ν) to the bundle part of the configuration
(the definition of O(σ,σ]) is not directly concerned with arrows). This entails that condition (a)
holds for (~o, on+1).

Since the first n elements of (~o, on+1) are unchanged with respect to ~o, the induction hypothesis
allows us to conclude that conditions (b), (c), (d), (e), (f), (g), and (h) still hold for these elements.
We will therefore check that they hold also for on+1. Since this move has type S0, only conditions
(b), (c), and (f) are applicable. We will check them in turn:

(b) By definition of S0 transition, ν ∈ S. Moreover, since ν is new in S (i.e. ν ∈ S but ν 6∈ Ŝ),
there is clearly no index i ≤ n such that oi = (νi, ν̄

p, ν̄s) such that νi = ν.

(c) Again by definition of S0 transition, ν is the initial node of a fully instantiated strand ρ̂ in σ̂].
Therefore, by condition (g’) on ~o, there are unique indices i < j ≤ n with oi = (ρi, ξi) and
oj = (νj , θj), such that ρ̂ = ρi[ξi, θj] and νj = ρi

0[ξi]. In particular, ν = νj [θj] = ρi
0[ξi, θj] =

ρ̂0.

(f) By definition of S0 transition, ν′′ ∈ Ŝ] \ Ŝ and it lies on a fully instantiated strand ρ̂. Again by
condition (g’) on ~o, there are unique indices i < j ≤ n with oi = (ρi, ξi) and oj = (νj , θj),
such that ρ̂ = ρi[ξi, θj] and νj = ρi

0[ξi]. If ν′′ has index l in ρ̂, then ν ′′ = ρi
l [ξi, θj]. Moreover,

again by definition of S0, we have that ν −→] ν′′ is in σ].

Conditions (b’), (c’), (d’), (e’), (f’), (g’) and (h’) specify a family of mappings from nodes in the
bundle part and strands in the parametric strand space part of the configuration to moves. By induction
hypothesis, there exist such mappings from (σ̂, σ̂]) to ~o. Since (σ, σ]) and (~o, on+1) can be seen
as extensions of (σ̂, σ̂]) and ~o respectively, we will simply extend these mappings by relating the
additions to the configuration and the new element on+1 of the move sequence. Because the added
move has type S0, only conditions (b’), (c’) and (f’) apply.

(b’) We associate the index n + 1 to the added node ν. Again, the indices the other nodes in S are
mapped to remain the same.

(c’) Again, we map ν to n + 1 and leave the rest unchanged.

(f’) Ditto.

S: Let on+1 = (ν, ν′, ν′′). The proof proceeds as in the previous case, except that we need to examine
conditions (d) and (d’) instead of (c) and (c’). Condition (d’) is handled similarly to the other primed
cases above. We will develop the remaining condition:

38

(d) By definition of S transition, ν ′ ∈ Ŝ and ν′ =⇒ ν in σ. By induction hypothesis, condition
(b’), there is a unique index j ≤ n such that oj = (ν′, ν̄p

j , ν̄s
j).

R0: Let on+1 = (ν,−,−). The proof proceeds as in the previous cases, except that we need to examine
conditions (e) and (e’). The latter is handled like the other primed cases above. We will focus on (e):

(e) By definition of R0 transition, ν′′ ∈ Ŝ and ν′′ −→ ν in σ. By induction hypothesis, condition
(b’), there is a unique index j ≤ n such that oj = (ν′′, ν̄p

j , ν̄s
j).

R: In this case, on+1 = (ν, ν′,−). The proof proceeds as in the previous cases, and we have examined
all the relevant subcases.

Cf : Let on+1 = (ρ, ξ). The considerations made in the previous cases can readily be extended to this
situation. Condition (a) is treated similarly, the remaining non-primed conditions hold identically for
the elements of ~o, and the primed conditions are processed as above. We need however to check that
condition (h) holds for on+1 (it is the only non-primed condition applicable to a move of this kind).

(h) This condition can be fulfilled in two alternative ways: either by mapping the considered move
to a partially instantiated strand in the configuration, or by showing that it is connected to a
subsequent move of type Ci. We must clearly adopt the first option and associate on+1 to ρ[ξ]
in σ].

Ci: Let on+1 = (ν0, θ). The verification of the unprimed conditions proceeds as above: in particular we
can assume that conditions (b) through (h) hold for the elements of ~o. We are then left with checking
that (g) holds for on+1 (no other unprimed condition applies).

(g) By definition of Ci, σ̂] contains a partially instantiated strand ρ̂ with initial node ν0. By induc-
tion hypothesis and condition (h’) on ρ̂, there is a unique index j ≤ n such that oj = (ρj , ξj)

and ρ̂ = ρj [ξj]. Clearly, ν0 = ρj
0[ξj]. Moreover, ρ[θ] = ρj [ξj , θ] is a fully instantiated strand in

σ].

The verification of the primed conditions is more subtle than in the previous cases since moves of
type Ci have the unique characteristic of not simply extending a configuration, but actually replacing
a partially instantiated strand ρ̂ with a ground instance ρ̂[θ]. Therefore, we not only need to map
the newly inserted strand ρ̂[θ] to some index (which will clearly be n + 1), but also to upgrade the
conditions associated with the elided ρ̂.

By condition (h’) on ρ̂, there exists an index i ≤ n such that oi = (ρi, ξi) and ρ̂ = ρi[ξi]. Then,
condition (h) applied to oi in ~o because ρi[ξi] belonged to σ̂]. We must verify that it still applies in
(~o, on+1) although ρi[ξi] is not present in σ]. We fall back to the second alternative in the definition
of (h): n + 1 is an index greater than i such that on+1 = (ν0, θ) and, by construction, ν0 = ρi

0[ξi].
Clearly, this index is unique since the use of any other transition of type Ci would have instantiated
ρi, making ν0 unavailable.

This concludes the proof of this property. Most of the proofs below rely on similar techniques. Therefore,
whenever this is the case, we will only present proof sketches and refer the reader to this detailed proof. 2

Moreover, any ~o in O(σ,σ]) is a legal move sequence from (·, ·) to (σ, σ]), as expressed by the following
soundness result.

39

Property B.2
Let (σ, σ]) be a configuration over a set S of parametric strands, then for each ~o ∈ O(σ,σ]), the multistep

transition (·, ·) ~o7−→∗
S(σ, σ]) is well-defined.

Proof: We proceed by induction on the structure of the configuration. For this purpose, we need to define
two well-orderings, both denoted with ≺, one over parametric strand spaces, and the other over configura-
tions themselves.

Let σ]
1 and σ]

2 be two parametric strand spaces. We say that σ]
1 ≺ σ]

2 if either of the following condition
holds:

• σ]
2 = σ]

1 ∪ {ρ} for a partially instantiated strand ρ.

• σ]
2 = σ]

1 − {ρ} ∪ {ρ[θ]} for a partially instantiated strand ρ in σ]
1 and a substitution θ such that ρ[θ]

is fully instantiated.

• there is a parametric strand space σ] such that σ]
1 ≺ σ] and σ] ≺ σ]

2.

Let (σ1, σ
]
1) and (σ2, σ

]
2) be two configurations. We say that (σ1, σ

]
1) ≺ (σ2, σ

]
2) if either of the following

conditions hold:

• σ1 is a proper subgraph of σ2 and σ]
1 = σ]

2;

• σ1 = σ2 and σ]
1 ≺ σ]

2;

• there is a configuration (σ, σ]) such that (σ1, σ
]
1) ≺ (σ, σ]) and (σ, σ]) ≺ (σ2, σ

]
2).

It is easy to show that this is indeed a well-ordering. Observe that its minimum is the empty configuration
(·, ·).

In the base case, in which (σ, σ]) is (·, ·), the property at hand holds trivially since only the empty move
sequence is an element of O(·,·).

Let then assume that ~o = (o1, . . . , on+1) ∈ O(σ,σ]). We will show that there is a configuration (σ̂, σ̂]) ≺

(σ, σ]) such that (σ̂, σ̂])
on+1
7−→S(σ, σ]) and (o1, . . . , on) ∈ O(σ̂,σ̂]). It then follows, by induction hypothesis

and the definition of multistep transition, that (·, ·) ~o7−→∗
S(σ, σ]).

The determination of (σ̂, σ̂]) proceeds by cases on the structure of on+1. For the sake of conciseness,
we will only analyze the situation in which on+1 = (ν,−, ν′′), i.e. it is intended to witness a transition of
type S0.

on+1 = (ν,−, ν′′): By condition (b) of the definition of O(σ,σ]), we know that ν ∈ S. By condition (c), ν

has no predecessor in σ. By condition (f), ν ′′ ∈ S] \ S and ν −→] ν′′, from which we deduce that ν
and ν′′ are a sending and a receiving node, respectively. We are therefore in the following situation:

ν

(+m)

ν′′

(−m)
−−−−→

S S]\S

Since (σ, σ]) is a configuration, the process of removing ν from S (but not from S]) and (ν, ν′′) from
−→] yields another configuration, displayed below. Call it (σ̂, σ̂]). By definition of ≺, we have that
(σ̂, σ̂]) ≺ (σ, σ]).

40

ν

(+m)

ν′′

(−m)

S S]\S

A transition of type S0 with ν as the sending node and ν ′′ as the receiving node is then enabled in
(σ̂, σ̂]). The corresponding move is precisely on+1, and the resulting transition is (σ, σ]). Indeed we
have that (σ̂, σ̂])

on+1
7−→S(σ, σ]).

The other cases are treated similarly. 2

B.2 From Move Sequences to Configurations

If ~o describes the transition from (·, ·) to a configuration (σ, σ]), the individual moves in ~o contain enough
information to playback the sequence of moves and exactly reconstruct (σ, σ]). This is done as follows.

Given a sequence of moves ~o = (o1, . . . , ol), we define the configuration associated with ~o, written
(σ~o, σ

]
~o), as the triples (S~o, =⇒~o,−→~o) and (S]

~o, =⇒
]
~o,−→

]
~o) given as follows:

• (S]
~o, =⇒

]
~o) = {ρi[ξi, θj] : (ρi, ξi) ∈ ~o, (νj , θj) ∈ ~o, and νj = ρi

0[ξi]}
∪ {ρi[ξi] : (ρi, ξi) ∈ ~o and there is no (νj , θj) ∈ ~o

such that νj = ρi
0[ξi]}.

• −→]
~o = {(νi, ν

s
i) : (νi, ν̄

p
i , νs

i) ∈ ~o}.

• S~o = {νi : (νi, ν̄
p
i , ν̄s

i) ∈ ~o}.

• =⇒~o = (=⇒]
~o)|S~o

= {(νi, ν
p
i) : (νi, ν

p
i , ν̄s

i) ∈ ~o}.

• −→~o = (−→]
~o)|S~o

= {(νi, ν
s
i) : (νi, ν̄

p
i , ν̄s

i) ∈ ~o and (ns
i , ν̄

p
j ,−) ∈ ~o}.

where R|S is the subrelation of R that only contains edges with extremes in S. It is easy to prove that, in

the last two cases, the alternate definitions are equivalent.
Now, if ~o labels a transition from (·, ·) to some configuration (σ, σ]), then (σ~o, σ

]
~o) is isomorphic to

(σ, σ]). We have the following expected result.

Property B.3
Let (σ, σ]) be a configuration and ~o a move sequence such that (·, ·) ~o7−→∗

S(σ, σ]). Then, (σ~o, σ
]
~o) is a

configuration and there is an isomorphism between (σ~o, σ
]
~o) and (σ, σ]).

Proof: The proof proceeds by induction on the length of ~o.
If ~o = ·, the result follows immediately.
If the move sequence has the form (~o, ô) with (·, ·) ~o7−→∗

S(σ̂, σ̂]) and moreover (σ̂, σ̂]) ô7−→S(σ, σ]), the
induction hypothesis allows us to assume that (σ̂~o, σ̂

]
~o) and (σ̂, σ̂]) are isomorphic. We then show by cases

on the structure of the move ô that this isomorphism is preserved by the extension of ~o with any legal move
that leads to (σ, σ]). We will spare the reader further details from this simple, but rather tedious proof. 2

41

Moves Configurations

~oO(σ~o,σ]

~o
)

(σ~o, σ
]
~o)

Figure 10. Relating Moves and Bundles

The two constructions we have just defined are essentially inverse of each other, as schematized in
Figure 10. Given a configuration, the first returns the set of all the move sequences that produce it. Given
a move sequence, the second returns the resulting configuration. In particular, observe that, when starting
from a configuration, chaining these transformations yields the same configuration. However, if we start
from a move sequence, their cascaded application will return the set of all sequences that construct its same
target configuration. These remarks are summarized in the following corollary and in Figure 10.

Corollary B.4
Let (σ, σ]) be a configuration over a set of parametric strands S.

1. For every ~o such that (·, ·) ~o7−→∗
S(σ, σ]), we have that ~o ∈ O(σ~o,σ]

~o
).

2. For every ~o ∈ O(σ,σ]), (σ~o, σ
]
~o) is isomorphic to (σ, σ]).

Proof: The first statement reduces to Property B.1 after observing that O(σ~o,σ]

~o
) = O(σ,σ]) since (σ~o, σ

]
~o) is

isomorphic to (σ, σ]). The second part is a consequence of Properties B.2 and B.3. 2

These considerations allow us to extract a useful notion of equivalence between move sequences: ~o1

and ~o2 are equivalent if they produce the same configuration, which can be tested by verifying whether
(σ~o1

, σ]
~o1

) and (σ~o2
, σ]

~o2
) are isomorphic. The equivalence class to which a move sequence ~o belongs is

therefore O(σ~o,σ]

~o
). Notice also that, in general, symmetry considerations do not allow selecting a unique

element of O(σ,σ]) as “the” normal move sequence from (·, ·) to a configuration (σ, σ]): this suggests that

(σ~o, σ
]
~o) is the most compact representation of the equivalence class O(σ,σ]) of ~o.

42

